A Cellular Genetic Algorithm for
Multiobjective Optimization

Antonio J. Nebro, Juan J. Durillo, Francisco Luna, Bernabé Dorronsoro, and
Enrique Alba

Departamento de Lenguajes y Ciencias de la Computacién
E.T.S. Ingenierfa Informatica
Campus de Teatinos, 29071 Malaga (Spain)
antonio,durillo,flv,bernabe,eat@lcc.uma.es

Abstract. This paper introduces a new cellular genetic algorithm for
solving multiobjective continuous optimization problems. Our approach
is characterized by using an external archive to store non-dominated so-
lutions and a feedback mechanism in which solutions from this archive
randomly replaces existing individuals in the population after each iter-
ation. The result is a simple and elitist algorithm called MOCell. Our
proposal has been evaluated with both constrained and unconstrained
problems and compared against NSGA-II and SPEA2, two state-of-the-
art evolutionary multiobjective optimizers. For the used benchmark, pre-
liminary experiments indicate that MOCell obtains competitive results in
terms of convergence, and it clearly outperforms the other two compared
algorithms concerning the diversity of solutions along the Pareto front.

1 Introduction

Most optimization problems in the real world involve the minimization and/or
maximization of more than one function. Generally speaking, multiobjective op-
timization does not restrict to find a unique single solution of a given multiobjec-
tive optimization problem (MOP), but a set of solutions called non-dominated
solutions. Each solution in this set is said to be a Pareto optimum, and when
they are plotted in the objective space they are collectively known as the Pareto
front. Obtaining the Pareto front of a given MOP is the main goal of multiob-
jective optimization. In general, the search spaces in MOPs use to be very large,
and evaluating the functions can require a significant amount of time. These fea-
tures make difficult to apply deterministic techniques and, therefore, stochastic
techniques have been widely proposed within this domain. Among them, evolu-
tionary algorithms (EAs) have been investigated by many researchers, and some
of the most well-known algorithms for solving MOPs belong to this class (e.g.
NSGA-II [1], PAES [2], and SPEA2 [3]).

EAs are especially well-suited for tackling MOPs because of their ability for
finding multiple trade-off solutions in one single run. Well-accepted subclasses of
EAs are Genetic Algorithms (GA), Genetic Programming (GP), Evolutionary
Programming (EP), and Evolution Strategies (ES). These algorithms work over

Migrat@ %%_é} oGS
@ Dcuromc ol

(2) (b) (©)

Fig. 1. Panmictic (a), distributed (b), and cellular (c) GAs

a set (population) of potential solutions (individuals) which undergoes stochastic
operators in order to search for better solutions. Most EAs use a single popu-
lation (panmixia) of individuals and apply the operators to them as a whole
(see Fig. 1a). Conversely, there exist the so-called structured EAs, in which the
population is decentralized somehow. Among the many types of structured EAs,
distributed and cellular models are two popular optimization variants [4, 5] (see
Fig. 1b and Fig. 1c). In many cases, these decentralized algorithms provide a
better sampling of the search space, resulting in an improved numerical behavior
with respect to an equivalent algorithm in panmixia.

In this work, we focus on the cellular model of GAs (cGAs). In cGAs, the
concept of (small) neighborhood is intensively used; this means that an individ-
ual may only interact with its nearby neighbors in the breeding loop [6]. The
overlapped small neighborhoods of ¢cGAs help in exploring the search space be-
cause the induced slow diffusion of solutions through the population provides
a kind of exploration (diversification), while exploitation (intensification) takes
place inside each neighborhood by genetic operations. These cGAs were initially
designed for working in massively parallel machines, although the model itself
has been adopted also for mono-processor machines, with no relation to paral-
lelism at all. Besides, the neighborhood is defined among tentative solutions in
the algorithm, with no relation to the geographical neighborhood definition in
the problem space.

c¢GAs have proven to be very effective for solving a diverse set of single objec-
tive optimization problems from both classical and real world settings [7, 8], but
little attention has been paid to its use in the multiobjective optimization field.
In [9], a multiobjective evolution strategy following a predator-prey model is pre-
sented. This is a model similar to a ¢cGA, because solutions (preys) are placed
on the vertices of an undirected connected graph, thus defining neighborhoods,
where they are ‘caught’ by predators. Murata and Gen presented in [10] an al-
gorithm in which, for an n-objective MOP, the population is structured in an
n-dimensional weight space, and the location of individuals (called cells) depends
on their weight vector. Thus, the information given by the weight vector of indi-
viduals is used for guiding the search. A metapopulation evolutionary algorithm
(called MEA) is presented in [11]. This algorithm is a cellular model with the
peculiarity that disasters can occasionally happen in the population, thus dying
all the individuals located in the disaster area (extinction). Additionally, these
empty areas can also be occupied by individuals (colonization). Thus, this model

allows a flexible population size, combining the ideas of cellular and spatially dis-
tributed populations. Finally, Alba et al. proposed in [12] cMOGA, the unique
cellular multiobjective algorithm based on the canonical cGA model before this
work, at the best of our known. In that work, cMOGA was used for optimizing
a broadcasting strategy specifically designed for mobile ad hoc networks.

Our proposal is called MOCell, and it is, like in the case of [12], an adaptation
of a canonical cGA to the multiobjective field. MOCell uses an external archive
to store the non-dominated solutions found during the execution of the algo-
rithm, like many other multiobjective evolutionary algorithms do (e.g., PAES,
SPEA2, or cMOGA). However, the main feature characterizing MOCell with re-
spect to these algorithms is that a number of solutions are moved back into the
population from the archive, replacing randomly selected existing individuals.
The contributions of our work can be summarized as follows:

— We propose a ¢cGA for solving continuous MOPs. The algorithm uses an ex-
ternal archive and a feedback of solutions from the archive to the population.

— The algorithm is evaluated using a benchmark of constrained and uncon-
strained MOPs.

— MOCell is compared against NSGA-II and SPEA2, two state-of-the-art GAs
for solving MOPs.

The rest of the paper is organized as follows. In Section 2, we present several
basic concepts on multiobjective optimization. In Section 3, we describe MO-
Cell, our proposal for facing MOPs. Our results are presented and discussed in
Section 4. Finally, in Section 5 we give our main conclusions and suggest some
future research lines.

2 Multiobjective Optimization Fundamentals

In this section, we include some background on multiobjective optimization. In
concrete, we define the concepts of MOP, Pareto optimality, Pareto dominance,
Pareto optimal set, and Pareto front. In these definitions we are assuming, with-
out loss of generality, the minimization of all the objectives. A general multiob-
jective optimization problem (MOP) can be formally defined as follows:

Definition 1 (MOP). Find a vector x* = [x},z5,...,2%] which satisfies

rn

the m inequality constraints g; (x) > 0,4 = 1,2,...,m, the p equality con-
straints h; () = 0,4 = 1,2,...,p, and minimizes the vector function f(x) =
[f1(x), fa(x), .. .,fk(a:)]T, where T = [x1, %2, .. .,xn]T is the vector of decision
variables.

The set of all values satisfying the constraints defines the feasible region {2
and any point € (2 is a feasible solution. As mentioned before, we seek for the
Pareto optima. Its formal definition is provided next:

Definition 2 (Pareto Optimality). A point * € {2 is Pareto Optimal if for
every € € 2 and I = {1,2,...,k} either Vier (fi (x) = fi(x*)) or there is at
least one i € I such that f; (x) > f; (x*).

This definition states that «* is Pareto optimal if no feasible vector x exists
which would improve some criterion without causing a simultaneous worsening in
at least one other criterion. Other important definitions associated with Pareto
optimality are the following:

Definition 3 (Pareto Dominance). A vector u = (u1,...,ux) is said to dom-
inate v=(v1,...,v;) (denoted by u < v) if and only if w is partially less than v,
i.e., Vi € {1,...,]6}, u; <wv; A Jdi € {1,...,/{}}: U; < V.

Definition 4 (Pareto Optimal Set). For a given MOP f(x), the Pareto op-
timal set is defined as P* = {x € 2|-3x’ € 2, f(') < f(x)}.

Definition 5 (Pareto Front). For a given MOP f(x) and its Pareto optimal
set P*, the Pareto front is defined as PF* = {f(x),z € P*}.

Obtaining the Pareto front of a MOP is the main goal of multiobjective
optimization. However, given that a Pareto front can contain a large number of
points, a good solution must contain a limited number of them, which should be
as close as possible to the exact Pareto front, as well as they should be uniformly
spread. Otherwise, they would not be very useful to the decision maker.

3 The Algorithm

In this section we detail first a description of a canonical cGA; then, we describe
the algorithm MOCell.

3.1 Cellular Genetic Algorithms

A canonical cGA follows the pseudo-code included in Algorithm 1. In this basic
c¢GA, the population is usually structured in a regular grid of d dimensions (d =
1,2,3), and a neighborhood is defined on it. The algorithm iteratively considers
as current each individual in the grid (line 3). An individual may only interact
with individuals belonging to its neighborhood (line 4), so its parents are chosen
among its neighbors (line 5) with a given criterion. Crossover and mutation

Algorithm 1 Pseudocode for a Canonical cGA

. proc Steps_Up(cga) //Algorithm parameters in ‘cga’
while not Termination_Condition() do
for individual < 1 to cga.popSize do

n_list— Get_Neighborhood(cga,position(individual));
parents«Selection(n_list);
offspring«—Recombination(cga.Pc,parents);
offspring«Mutation(cga.Pm,offspring);
Evaluate_Fitness(offspring);
Insert(position(individual),offspring,cga,aux_pop);

10: end for

11: cga.pop<«—aux_pop;

12: end while

13: end_proc Steps_Up;

Algorithm 2 Pseudocode of MOCell

1: proc Steps_Up(mocell) //Algorithm parameters in ‘mocell’

2: Pareto_front = Create_Front() //Creates an empty Pareto front
3: while !TerminationCondition() do

4 for individual +— 1 to mocell.popSize do

5 n_list< Get_Neighborhood (mocell,position(individual));

6: parents«—Selection(n_list);

g: offspring«—Recombination(mocell.Pc,parents);

9

offspring«—Mutation(mocell.Pm,offspring);
Evaluate_Fitness(offspring);

10: Insert(position(individual),offspring,mocell,aux_pop);
11: Insert_Pareto_Front(individual);

12: end for

13: mocell.pop«aux_pop;

14: mocell.pop<—Feedback(mocell,ParetoFront);
15: end while
16: end_proc Steps_Up;

operators are applied to the individuals in lines 6 and 7, with probabilities P,
and P,,, respectively. Afterwards, the algorithm computes the fitness value of
the new offspring individual (or individuals) (line 8), and inserts it (or one of
them) into the equivalent place of the current individual in the new (auxiliary)
population (line 9) following a given replacement policy.

After applying this reproductive cycle to all the individuals in the population,
the newly generated auxiliary population is assumed to be the new population
for the next generation (line 11). This loop is repeated until a termination con-
dition is met (line 2). The most usual termination conditions are to reach the
optimal value, to perform a maximum number of fitness function evaluations, or
a combination of both of them.

3.2 A Multiobjective cGA: MOCell

In this section we present MOCell, a multiobjective algorithm based on a cGA
model. Its pseudo-code is given in Algorithm 2. We can observe that Algorithms 1
and 2 are very similar. One of the main differences between the two algorithms
is the existence of a Pareto front (Definition 5) in the multiobjective case. The
Pareto front is just an additional population (the external archive) composed of
a number of the non-dominated solutions found, since it has a maximum size.
In order to manage the insertion of solutions in the Pareto front with the goal
of obtaining a diverse set, a density estimator based on the crowding distance
(proposed for NSGA-II [1]) has been used. This measure is also used to remove
solutions from the archive when this becomes full.

MOCell starts by creating an empty Pareto front (line 2 in Algorithm 2). In-
dividuals are arranged in a 2-dimensional toroidal grid, and the genetic operators
are successively applied to them (lines 7 and 8) until the termination condition
is met (line 3). Hence, for each individual, the algorithm consists of selecting
two parents from its neighborhood, recombining them in order to obtain an off-
spring, mutating it, evaluating the resulting individual, and inserting it in both
the auxiliary population (if it is not dominated by the current individual) and
the Pareto front. Finally, after each generation, the old population is replaced by

Table 1. Parameterization used in MOCell

Population Size 100 individuals (10 x 10)
Stopping Condition 25000 function evaluations

Neighborhood 1-hop neighbours (8 surrounding solutions)
Selection of Parents binary tournament + binary tournament
Recombination simulated binary, p. = 1.0
Mutation polynomial, p,, = 1.0/L

(L = individual length)
Replacement rep_if_better_individual (NSGA-II crowding)
Archive Size 100 individuals
Crowding Procedure crowding distance
Feedback 20 individuals

the auxiliary one, and a feedback procedure is invoked to replace a fixed number

of randomly chosen individuals of the population by solutions from the archive.
We have incorporated a constrain handling mechanism in MOCell to deal

with constrained problems. The mechanism is the same used by NSGA-II [1].

4 Computational Results

This section is devoted to the evaluation of MOCell. For that, we have chosen
several test problems taken from the specialized literature, and, in order to assess
how competitive MOCell is, we decided to compare it against two algorithms
that are representative of the state-of-the-art, NSGA-II and SPEA2. Next, we
briefly comment the main features of these algorithms, including the parameter
settings used in the subsequent experiments.

The NSGA-II algorithm was proposed by Deb et al. [1]. It is characterized by
a Pareto ranking of the individuals and the use of a crowding distance as density
estimator. We have used Deb’s NSGA-II implementation®. Specifically, we used
the real-coded version of the algorithm and the parameter settings proposed
in [1]. A crossover probability of p. = 0.9 and a mutation probability p,, =
1/n (where n is the number of decision variables) are used. The operators for
crossover and mutation are SBX and polynomial mutation [13], with distribution
indexes of 1. = 20 and 7,, = 20, respectively. The population and archive sizes
are 100 individuals. The algorithm stops after 25000 function evaluations.

SPEA2 was proposed by Zitler et al. in [3]. In this algorithm, each individual
has assigned a fitness value that is the sum of its strength raw fitness and a
density estimation based on the distance to the k-th nearest neighbor. Like in
the case of NSGA-II, we have used the authors’ implementation of SPEA22.
The algorithm is implemented within the framework PISA [14]. However, the
implementation of SPEA2 does not contain a constraint-handling management,

! The implementation of NSGA-II is available for downloading at:
http://www.iitk.ac.in/kangal/soft.htm

2 The implementation of SPEA2 is available at:
http://www.tik.ee.ethz.ch/pisa/selectors/spea2/spea2.html

so we were forced to modify the original implementation for including the same
constraint mechanism used in NSGA-II and MOCell. We have used the following
values for the parameters. Both the population and the archive have a size of
100 individuals, and the crossover and mutation operators are the same used in
NSGA-II, using the same values concerning their application probabilities and
distribution indexes. As in NSGA-II, the stopping condition is to compute 25000
function evaluations.

In Table 1 we show the parameters used by MOCell. A square toroidal grid
of 100 individuals has been chosen for structuring the population. The neighbor-
hood used is composed of nine individuals: the considered individuals plus those
located at its North, East, West, South, NorthWest, SouthWest, NorthEast, and
SouthEast (see Fig. 1c). We have also used SBX and polynomial mutation with
the same distribution indexes as NSGA-IT and SPEA2. Crossover and mutation
rates are p. = 1.0 and p,,, = 1/L, respectively.

The resulting offspring replaces the individual at the current position if the
latter is better than the former, but, as it is usual in multiobjective optimiza-
tion, we need to define the concept of “best individual”. Our approach is to
replace the current individual if it is dominated by the offspring or both are
non-dominated and the current individual has the worst crowding distance (as
defined in NSGA-II) in a population composed of the neighborhood plus the
offspring. For inserting the individuals in the Pareto front, the solutions in the
archive are also ordered according to the crowding distance; then, when insert-
ing a non-dominated solution, if the Pareto front is already full, the solution
with a worst crowding distance value is removed. Finally, after each iteration,
20 randomly chosen individuals in the population are replaced by the 20 best
solutions from the external archive according to the crowding distance.

4.1 Test Problems

We have selected for our tests both constrained and unconstrained problems that
have been used in most studies in this area. Given that they are widely known,
we do not include full details of them here for space constraints. They can be
found in the cited references and also in books such as [15] and [16].

The selected unconstrained problems include the studies of Schaffer, Fon-
seca, and Kursawe, as well as the problems ZDT1, ZDT2, ZDT3, ZDT4, and
ZDT6. Their formulation is provided in Table 2. The constrained problems are
Osyczka2, Tanaka, Srinivas, and ConstrEx. They are described in Table 3.

4.2 Performance Metrics

For assessing the performance of the algorithms on the test problems, two dif-
ferent issues are normally taken into account: (i) minimize the distance of the
Pareto front generated by the proposed algorithm to the exact Pareto front, and
(ii) to maximize the spread of solutions found, so that we can have a distribution
of vectors as smooth and uniform as possible. To determine the first issue it is
usually necessary to know the exact location of the true Pareto front; in this work

Table 2. Unconstrained test functions

Problem Objective functions Variable bounds n

fi(z) = 2?
Schaffer f;(T) = (x—2)?

fil) =1—e

—10° <z <10° 1

2
n T — 1
i=1\"i " m

Fonseca 2 —4<z; <4 3
n 1
fo@) =1—e i (Tﬁ—ﬁ)
PN RS Y]
Kursawe h@) =25 7106(PV —5<x; <5 3
fa(z) = 370 (Jz:]* + 5sinm£’);a =0.8,b=3
fi(@) = =
ZDT1 fa(z) = g(=)[1 — /z1/g(x)] 0<z <1 30
g(@) =149 " 2i)/(n—1)
fi(@) = =
ZDT2 fo(z) = g(@)[1 — (z1/g(2))’] 0<z;<1 30
g(@) =149 7" zi)/(n—1)
fi(@) = =
ZDT3 fa(z) = g(x) {1 R sin(lOﬂ'ml)] 0<z; <1 30
o@) = 14905y 20)/(n— 1)
fi(z) = z1 0<z <1
ZDT4 fo(x) = g(@)[1 — (21/9(x))’] —5<z; <5 10
gl®) =1+10(n—1)+ Z:;z[aﬂ? — 10 cos (4x;)] 1=2,...,m
fi(x) = 1 — e~ 15in® (67z1)
ZDT6 fao(x) = g(@)[1 = (f1(2)/g(x))] 0<z; <1 10
g(®) =149, @:)/(n— 1]

Table 3. Constrained test functions

Problem Objective functions

Constraints

fi(®) = —(25(z1 —2)°+

gi(®)=0< 21 + 22 —2

(w2 = 2)°+ , 2@ =0<6-0 - 0< 1,22 < 10
i (z3 — 1)%(zq —4)*+ g3(x) =0<2 -2+ 11 1<z3,z5 <5
Osyczka2 (x5 — 1)2) ga(x) =0< 2 — 21 + 322 0<24<6
f2(@) = 2] + w3+ g5(@) =0<4—(z3-8)° —za 0< g <10
m§+mi+mg+mg ge(x) =0 < (x5 —3)° + 26 — 4
gi(z) = —x7 — x5 + 1+
fi(e) =z 0.1cos(16arctan (z1/x2)) <0 < g <
Tanaka Fo(@) = 2o g2(@) = (w1 — 0.5)%+ m<x; <
(z2 — 0.5)> < 0.5
fi(e) = @1 g1(x) = 2 + 921 > 6 01<z. <10
ConstrBx % (@) = (1 + @) /a1 g2(x) = —x2 + 921 > 1 0 <z2<5
fi(e) = (21 —2)°+ = g2 4 g2 5
Srinivas (22 — 1) +2 g1(®) =y + x5 < 225 —20 < x; <20

f2(®) = 921 — (w2 — 1)?

ga2(x) =1 — 322 < —10

we have obtained these fronts using an enumerative search strategy, and they
are publicly available at http://neo.lcc.uma.es/software/esam (an excep-
tion are the ZDTx problem family, whose fronts can be easily obtained because

their solutions are known).

— Generational Distance This metric was introduced by Van Veldhuizen

and Lamont [17] for measuring how far the elements are in the set of non-
dominated vectors found so far from those in the Pareto optimal set, and it
is defined as:

21 4

where n is is the number of vectors in the set of non-dominated solutions,
and d; is the Euclidean distance (measured in objective space) between each
of these solutions and the nearest member of the Pareto optimal set. It is

clear that a value of GD = 0 means that all the generated elements are in

the Pareto optimal set. In order to get reliable results, non-dominated sets
are normalized before calculating this distance measure.

— Spread The Spread metric [1] is a diversity metric that measures the extent

of spread achieved among the obtained solutions. This metric is defined as:

A= df+dl+Z¢]i_11|di_J| (2)

df+dl+(N—1)d ’

where d; is the Euclidean distance between consecutive solutions, d is the

mean of these distances, and dy and d; are the Euclidean distances to the

extreme (bounding) solutions of the exact Pareto front in the objective space

(see [1] for the details). This metric takes a zero value for an ideal distribu-

tion, pointing out a perfect spread out of the solutions in the Pareto front.

We apply this metric after a normalization of the objective function values.

4.3 Discussion of the Results

The results are summarized in Tables 4 (GD) and 5 (A), and the best result
for each problem has a grey colored background. For each problem, we carried
out 100 independent runs, and the tables include the mean, Z, and the standard
deviation, o, of the results. Since we deal with stochastic algorithms, an sta-
tistical analysis of the results has been made. It consists of the following steps.
First a Kolmogorov-Smirnov test is performed in order to check whether the
values of the results follow a normal distribution or not. If so, an ANOVA I test
is done, otherwise we perform a Kruskal-Wallis test. We always consider in this
work a 95% confidence level in the statistical tests. Symbol ‘+’ in tables 4 and 5
means that the differences among the values of the three algorithms for a given
problem have statistical confidence (p-value under 0.05).

We consider first the metric GD (Table 4). We can observe that the three
compared algorithms provide the best results for four out of the 12 studied prob-
lems. According to these results we cannot decide a winner algorithm considering
convergence, although they allow us to conclude that MOCell is a competitive
algorithm compared to NSGA-IT and SPEA2. Indeed, if we consider only the con-
strained studied problems, the reader can see that MOCell behaves better than
the other compared algorithms, since it reports the best results for ConstrEx
and Srinivas, while it is the second best approach in the other two problems.

Regarding the spread metric (Table 5), the results indicate that MOCell
clearly outperforms the other two algorithms concerning the diversity of the
obtained Pareto fronts, since it yields the best values in 9 out of the 12 problems.
Additionally, MOCell reports the best results for all the constrained studied
problems. It stands out that NSGA-II can not obtain the best value for the
spread metric in any problem.

In order to graphically show our results, we plot in Fig. 2 three fronts obtained
by MOCell, NSGA-II, and SPEA2, together with the optimal Pareto set obtained
by the enumerative algorithm, for problem ConstrEx. The selected fronts are
those having the best diversity (lowest value of A) among the 100 produced ones

Table 4. Mean and standard deviation of the convergence metric GD

Problem MOCell Z,,,

NSGAII z,,

SPEA2 7.,

Schaffer 2.408e-411.79¢—5
Fonseca 1.983e-4.+1 60e—5
Kursawe 1.435e-411 01e—5

2.328e-4+1.19¢—5
4.683e-4+3.95.—5
2.073e-4+2.22¢—5

2.365e-441.06e—5
2.251e-442.37¢—5
1.623e-4+1.51e—5

Zdt1 4~O57e‘4i6.57e—5 2.1686—4i3,57e_5 1-9929‘4i1.34e—5
7dt2 2.432e-4+9.29¢—5 1.714e-4+3.80e—5 1.095e-4+L5 37¢_5
7Zdt3 2.540e-4 42 78¢—5 2.199€-413 72¢—5 2.336€-41+1.34¢—5
Zdt4 8.2736—4i1,s5e_3 4.8886—4i2,5ge_4 6.2036—2i3,946_2
7dt6 2.106e-3+3.33e—4 1.001e-3+8.66e—5 8.252e-4+5.15¢—5

ConstrEx 1.968e-44+2.29¢—5
Srinivas 5.147e-541 51¢—5
Osyczka2 2.678e-3+5.30e—3

2.903e-4+3.19¢—5
1.892e-4+3.01¢—5
1.071e-3+1.33¢—4

2.069e-4+1 78¢5
1.139e-4+1.98¢—5
6.149e-341.14¢—2

s b e e e

Tanaka 7.494e-447.09c—5 1.214€-347.95¢—5 7.163e-447.13c—5

Table 5. Mean and standard deviation of the diversity metric A

Problem MOCell Z,,, NSGA-II z,,,

Schaffer 2.4736—1i3,115_2 4.4486—1i3,625_2
Fonseca 9.695e-241.08c—2 3.596e-142.83.—2
Kursawe 4.1216—1i4,325_3 5.4606—1i2,415_2

SPEA2 7.,
1.469e-141.14¢—2
1.445e-111.28¢—2
4.390e-1+8.94¢—3

Zdtl 1.1526—1i1,4oe_2 3.6456—1i2,915_2 1.6846—1i1,296_2
7dt2 1.120e-141 61c—2 3.644e-143.03c—2 1.403e-116.71e—2
Zdt3 6.9986—1i3,255_2 7.4166—1i2,25e_2 7-0409-111.7&—2
Zdt4 1.5816—1i6.14e—2 3.6516—1i3,32€_2 1.0496—1i1_716_1
Zdt6 1.8596—1:{:2,33672 2.9886—1:{:2,48672 1.7286-1;‘:1,16572

ConstrEx 1.323e-141.32¢—2 4.212e-143.52¢—2
Srinivas 6.191e-218.63.—3 3.680e-143.02¢—2
Osyczka2 2.2376—1i3,5oe_2 4.6036—1i5,535_2
Tanaka 6.629e-1+2.76c—2 7.154e-142 3502

5.204e-141.58¢—2
1.628e-1+1.25¢—2
3.145e-141.35¢—1
6.655e-142.74¢—2

e B e e =

by each technique for that problem. We can observe that the nondominated set
of solutions generated by MOCell achieves an almost perfect spread out and
convergence. Notice that SPEA2 obtains a very good diversity for values of
fi(x) lower than 0.66 (similar to the solution of MOCell), but it finds only 10
solutions when f;(x) € [0.66,1.0]. Regarding NSGA-II, its front does not have
that problem, but its worst diversity with respect to the case of MOCell stands
out at a simple glance.

We also want to remark that, concerning diversity, MOCell is not only the
best of the three analyzed algorithms, but the differences in the spread values
are in general noticeable compared to the rest of algorithms.

5 Conclusions and Future Work

We have proposed MOCell, a cellular genetic algorithm to solve multiobjective
optimization problems. The algorithm uses an external archive to store the non-
dominated individuals found during the search. The most salient feature of MO-

9 9
8l ConstrEx | 8l ConstrEx |
enumerative enumerative
7L o MoCell] 7L o NSGA-II i
6f 6
N 5 N5
4r 4r
3r 3
2r 2r
] ‘ ‘ 1 ‘ ‘ S0 e
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
f, f,
9 .
8l ConstrEx |
enumerative
70 o SPEA2 i
6,
N5
4,
3,
2,
1 .
0.2 0.4 0.6 0.8 1

Fig. 2. MOCell finds a better convergence and spread of solutions than NSGA-II and
SPEAZ2 on problem ConstrEx

Cell with respect to the other cellular approaches for multiobjective optimization
is the feedback of individuals from the archive to the population. MOCell was
validated using a standard methodology which is currently used within the evo-
lutionary multiobjective optimization community. The algorithm was compared
against two state-of-the-art multiobjective optimization algorithms, NSGA-IT
and SPEA2; for that purpose, twelve test problems, including unconstrained
and constrained ones, were chosen and two metrics were used to assess the per-
formance of the algorithms. The results of the metrics reveal that MOCell is
competitive considering the convergence metric, and it clearly outperforms all
the proposals on the considered test problems according to the spread metric.

Finally, the evaluation of MOCell with other benchmarks and its application
to solve real-world problems are matter of future work.

Acknowledgements

Thie authors acknowledge that this work has been funded by FEDER and the
Spanish MCYT under contract TIN2005-08818-C04-01 (the OPLINK project)
http://oplink.lcc.uma.es.

References

10.

11.

12.

13.

14.

15.

16.

17.

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elist Multiobjective
Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation
6 (2002) 182-197

. Knowles, J., Corne, D.: The Pareto Archived Evolution Strategy: A New Baseline

Algorithm for Multiobjective Optimization. In: Proceedings of the 1999 Congress
on Evolutionary Computation, Piscataway, NJ, IEEE Press (1999) 9-105

Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evo-
lutionary algorithm. Technical Report 103, Computer Engineering and Networks
Laboratory (TIK), Swiss Federal Institute of Technology (ETH), Zurich, Switzer-
land (2001)

Alba, E., Tomassini, M.: Parallelism and Evolutionary Algorithms. IEEE Trans.
on Evolutionary Computation 6 (2002) 443-462

Canti-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer Aca-
demic Publishers (2000)

Manderick, B., Spiessens, P.: Fine-grained parallel genetic algorithm. In: Proc. of
the Third Int. Conf. on Genetic Algorithms (ICGA). (1989) 428-433

Alba, E., Dorronsoro, B.: The exploration/exploitation tradeoff in dynamic cellu-
lar evolutionary algorithms. IEEE Transactions on Evolutionary Computation 9
(2005) 126142

Alba, E., Dorronsoro, B., Giacobini, M., Tomasini, M.: Decentralized Cellular Evo-
lutionary Algorithms. In: Handbook of Bioinspired Algorithms and Applications,
Chapter 7. CRC Press (2006) 103-120

Laumanns, M., Rudolph, G., Schwefel, H.P.: A Spatial Predator-Prey Approach to
Multi-Objective Optimization: A Preliminary Study. In: PPSN V. (1998) 241-249
Murata, T., Gen, M.: Cellular Genetic Algorithm for Multi-Objective Optimiza-
tion. In: Proc. of the 4th Asian Fuzzy System Symposium. (2002) 538-542
Kirley, M.: MEA: A metapopulation evolutionary algorithm for multi-objective
optimisation problems. In: Proceedings of the 2001 Congress on Evolutionary
Computation CEC2001, IEEE Press (2001) 949-956

Alba, E., Dorronsoro, B., Luna, F., Nebro, A., Bouvry, P., Hogie, L.. A Cel-
lular Multi-Objective Genetic Algorithm for Optimal Broadcasting Strategy in
Metropolitan MANETSs. Computer Communications (2006) To appear

Deb, K., Agrawal, R.: Simulated Binary Crossover for Continuous Search Space.
Complex Systems 9 (1995) 115-148

Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA - A Platform and Pro-
gramming Language Independent Interface for Search Algorithms. In: Conference
on Evolutionary Multi-Criterion Optimization (EMO 2003). (2003) 494-508
Coello, C., Van Veldhuizen, D., Lamont, G.: Evolutionary Algorithms for Solving
Multi-Objective Problems. Genetic Algorithms and Evolutionary Computation.
Kluwer Academic Publishers (2002)

Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wi-
ley & Sons (2001)

Van Veldhuizen, D.A., Lamont, G.B.: Multiobjective Evolutionary Algorithm Re-
search: A History and Analysis. Technical Report TR-98-03, Dept. Elec. Comput.
Eng., Graduate School of Eng., Air Force Inst. Technol., Wright-Patterson, AFB,
OH (1998)

