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Abstract 

The achievement of efficient implementations is still considered an open problem in 
the distributed object-oriented programming languages field. In this paper we 
present an approach to implement in a reasonable efficient way distributed objects. 
This approach is based on the use of a protocol that allows objects to be migrated 
and replicated. The basic idea is to reduce the overhead of remote invocations 
among objects making them local. The effectiveness of our scheme requires a strict 
programming model, where object invocations must be enclosed between pairs of 
acquire and release operations, and operations are classified in commands or 
queries. Details of a thread based implementation are presented. Experiments with 
a parallel matrix multiply program and a parallel branch and bound program, 
executed in three different architectures, demonstrate that significant speedups can 
be obtained. 

 

1. Introduction 

Concurrent object-oriented programming is a design methodology which tries to combine the advantages 

of two paradigms: concurrent programming and object-oriented programming [Mey93]. The objective of 

concurrent programming is to obtain benefits from parallel architectures and increase expressiveness 

when describing algorithms, whereas object-oriented programming offers a set of techniques that support 

code reuse and modularity. From the point of view of a concurrent object-oriented methodology, parallel 

programs are collections of concurrent objects that communicate and synchronize by invoking the 

operations they define in their interfaces. When concurrent objects execute in distributed systems, they 

are called distributed objects. 

 In order to implement distributed objects in an efficient way it is necessary to reduce the cost of 

remote invocations. The overhead of method invocation is due to the costs of name translation, message 

creation and formatting, transmission, reception, buffering, scheduling and dispatch. There have been a 

number of approaches to reduce these costs in the case of local invocations [CKP+93][TMY94]. These 

approaches apply advanced compiler techniques, efficient runtime systems, or combination of both. Thus, 

if the compiler can detect that two objects will always be local, then several steps of the general 

invocation scheme can be avoided. For example, a method invocation can be reduced to a simple 

procedure call, or the method code can even be inlined. 

 1



 However, these approaches have not paid much attention to the reduction of the invocation cost 

between distributed objects. One possibility is to employ migration and replication schemes. These 

techniques are widely employed in fields such as distributed shared memory [PTM96] and distributed 

programming languages [BKT92], but are rarely used in the field of concurrent object-oriented 

languages. Migrating and replicating distributed objects impose several requirements that must be 

considered. For example, how to deal with the inconsistency problem when one replica of a distributed 

object is modified, or how to know whether an operation modifies or not the state of an object. 

 In this paper, we propose a migration and replication approach to be applied in the context of 

distributed objects. Both techniques try to reduce the cost of remote invocation between objects by 

making them local. Migration moves an object from one node of the system to another one, and 

replication makes several copies of the same object in different nodes. Our proposal is also compatible 

with techniques to reduce the cost of local invocations.  

 The paper is organized as follows. Issues related to migration and replication are briefly commented 

on in Section 2. In the next section we describe our proposal, explaining how migration and replication 

may be combined in this context, and its consequences on the programming model. Implementation 

details and performance results are shown in Sections 4 and 5. Finally, Section 6 summarizes the 

conclusions.  

2. Migration and Replication. Background 

The main objective of migrating and replicating objects is to transform a remote invocation into a local 

one. A common characteristic of these techniques is that they must not modify the semantics of the 

program, i.e., they must be orthogonal to it. The behavior of a parallel program must remain the same 

even if some objects are replicated or migrated. Only performance benefits should be observed. 

Furthermore, they have in common that its applicability only depends on the use of the object instead of 

intrinsic characteristics of the object itself. This means that replication/migration are features of objects 

intead of classes. For example, if we define a class of matrix objects, we cannot establish in the class 

specification whether the instances will be replicable or migrable. It has to be determined specifically for 

each object. Thus, for instance, if two matrix objects are to be multiplied in parallel, then they can be 

replicable, because they are going to receive only read operations. However, the result matrix is not a 

good candidate to be replicable, because it will be mostly written. We assume that the decision of wether 

an object is replicable or migrable must be taken at the time of the object creation, and be specified by the 

programmer. 

 The decision to do an object migrable or replicable can be a complex task, in particular if the 

candidate object invokse operations on other objects. To simplify our study, the following discussion 

only will be applied to those objects that act as pure server objects, that is, objects not invoking 

operations on other objects. Nevertheless, static analysis could be applied on a program to get relevant 

information allowing these decisions to be taken by the compiler. 
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 As mentioned before, a migrable object can reside, during its life, in different nodes of the system. 

There are two advantages of this mechanism: reduction of the number of remote invocation among 

objects and, consequently, load balancing. 

 If an object is going to be accessed by other objects following a high degree of locality, then it can 

be considered migrable. Only the cost of migration, that directly depends on the size of its state variables, 

has to be considered. If an object issues an operation on a migrable object, then the latter is moved to the 

same node as the former, and the invocation can be performed locally. The main inconvenience of this 

technique is when the degree of locality is not high. In that case, a migrable object can be continuously 

moving between nodes, and performance will be negatively affected. 

 At the implementation level, the main problem is the location of the mobile object. Three basic 

strategies are: to broadcast a request message to all the nodes; to have a location server; or to use a chain 

protocol based on sending a request message to the last known location. 

 On the other hand, replication techniques try to reduce the cost of remote invocations by replicating 

objects in different nodes. If an object is going to be accessed by other objects that reside in different 

nodes, and the most of the invoked methods do not modify the state of the object, then it can be candidate 

to be replicable. As mentioned, only the cost of replication has to be taken into account regarding 

migration. 

 A problem of replication occurs when one of the replicas of an object is modified. Then, the object 

becomes inconsistent, i.e., we have several copies of the same object, and the state variables of the copies 

do not have the same values. In these circumstances, the establishment of a memory consistency model is 

necessary, which will define the behavior of replicated object in these cases [Mos93]. The choice of the 

memory consistency model is important, because the stronger the model is, the greater the number of 

messages generated in the implementation. Weak consistency models allow the use of techniques to 

increase performance (buffering, pipelining of messages, etc.). The counterpart is that programming 

becomes more difficult, because the behavior of memory (replicated objects) is not intuitive. 

 Most replication schemes are based on invalidation-based or update-based protocols. When using an 

invalidation-based protocol, a write operation on a replicated object causes all the replicas to be 

invalidated and the write operation is performed only on a special copy, called the main copy. If the local 

copy has been invalidatedm, a read operation has to request a copy from the node where the main copy 

resides. With update-based protocols, the writing is performed on all of the replicas, so the concept of 

invalid copy does not exist. 

3. A Proposal: Combining Replication and Migration 

Our proposal is based on an invalidation-based protocol that combines replication and migration. Objects 

are divided into replicable and non-replicable, and migrable objects are a special case of replicable 

objects.  
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 An outline of the algorithm is explained below. For each replicated object, there is always a main 

copy and, possibly, several secondary copies (see Figure 1). Only the main copy can be modified. In that 

case, the secondary replicas must be invalidated. If the object in which the operation is invoked executes 

in a different node than the invoker object, then it must move to the processor of this last one. In the case 

of a read operation, if the local replica has been previously invalidated, an updating is requested to the 

main copy.  
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Figure 1.- Example of Execution of a Distributed Program. 

 Under this algorithm, all the accesses to replicable objects are local, including write accesses. If an 

object exhibits a high locality of reference (i.e., it is migrable), the overhead is only the cost of 

invalidating the replicas once (and only when the access produces a state change). If the object is not 

replicable nor migrable, the main copy is static and secondary copies do not exist.  

 An important aspect to be considered when using replication algorithms is the consistency protocol. 

Our algorithm is compatible with an entry consistency memory model [BZ91]. Under this model, each 

replicated object must be associated with a lock that must be explictly acquired and released. If a 

replicated object is accessed between a pair of acquire and release operations, then the object is said to be 

consistent. Furthermore, acquire operations can be classified in exclusive and non-exclusive, allowing 

replicated objects to be accessed following a multiple-reader/single-writer scheme. An advantage of entry 

consistency is that no messages are needed when releasing is done. The updating of an invalid replica is 

carried out when an acquire operation is performed. 

 The use of an entry consistency scheme to define the behavior of replicated objects introduces two 

problems. First, replicated objects are used in a different way that non replicated ones (the former must 

be acquired and released), and this fact makes the programming model more complex, due to the 

asymmetric treatment of both kind of objects. Second, if the programmer has to decide if an object is 

replicable, then he or she must know if a given operation modifies or not the state of the object, and this 

requires knowing how the operation is implemented. 
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 We solve the first question requiring that non-replicable objects be acquired and released too. This 

is a special case of the replication/migration algorithm, where all the operations are always sent to the 

main and unique replica, which is not migrable in this case. The other open issue is the matter of how the 

programmer knows if a given operation modifies the internal state of the object or not. A solution is to 

classify operations in two categories: commands and queries [Mey93]. A command is an operation that 

modifies the state of the object, but does not return information about it. A query is an operation that 

returns some information about the object, without modifying its state. This distinction has the advantage 

of eliminating side effects: queries imply pure read accesses and commands imply pure write accesses. 

Furthermore, to enhance performance, the behavior of commands and queries is different: queries are 

synchronous, following an RPC scheme, while commands are asynchronous operations.  

 Taking into account the distinction between command and query operations, the classical example 

of a bounded buffer could be written as follows, using a C++ like notation: 
 ConcurrentObject BoundedBuffer  
 { 
   int *buffer ; 
   int dim ; 
   int in, out, count ; 
 
 public: 
   IntBuffer(int size) ; 
   void put(int);      // Inserts an element 
   void delete();      // Deletes first element 
   int  head() ;       // Returns first element 
   bool is_full() ;    // Returns TRUE if buffer is full 
   bool is_empty() ;   // Returns TRUE if buffer is empty 
 } // BoundedBuffer 

 The inferface of a buffer object is composed of two commands (put and delete) and three 

queries (head, is_full and is_empty). It is not possible to define a get operation, because it is not 

a query nor a command. Instead, a pair of head and delete operations must be invoked after the 

object has been acquired in exclusive mode. 

 The necessity of explictly acquiring and releasing objects imposes a strict programming style, but it 

yields an important compensation: the knowledge of when and how an object is going to be used. This is 

the kind of information that is required to obtain the performance benefits of the entry consistency 

memory model. 

4.  Implementation 

We have implemented a prototype that has been coded in C++ and consists of a runtime system and a 

library of base classes that must be inherited. The implementation is based on threads, asigning a thread 

per object. The prototype runs on three different architectures: 

• 16 Sun UltraSPARC workstations interconnected through an ATM network (a distributed system 

composed of workstations). 

• 4 Digital AlphaServer (4 processors each) interconnected through Memory Channel (a distributed 

system of multiprocessors). 
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Figure 3.- General Communication Scheme. 

• A 16 node Silicon Graphics Origin-2000 (a cache coherent shared memory multiprocessor) 

 The operating systems are, respectively, Solaris 2.5, Digital UNIX 4.0 and IRIX 6.4. We have used 

the Solaris thread package and the native pthreads packages available in IRIX and Digital UNIX. 

Interprocessor communications use the socket interface, although we have also coded a PVM version. 

The library and the programs have been compiled using the native C++ compilers. 

 The software was initially developed on the UltraSPARC architecture and ported later to the other 

two architectures. The use of two different threads packages was not a big problem because we have used 

the minimun set of thread funcions possible, and, at this level, every Solaris thread primitive has a 

pthread equivalent. 

4.1 Implementation details 

The architecture of the current implementation is shown in Figure 2. In each node a process exists 

including the runtime system and the distributed objects. The runtime system is composed of the object 

table, the communication agent (CA) and a set of data structures, as the node identifier and the host table. 

Each entry in the object table is an object handler, a data structure that holds object related data, such as 

the thread identifier, object identifier, object status, the incoming request queue, a pointer to the state 

variables and a pointer to the code of the operations. An object is referenced by its object identifier, but is 

always accessed through its object handler. When an object is referenced for the first time in a node, the 

runtime system creates an object handler in that node. If the object is replicable, a replica is also created. 

. 
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Object 
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Figure 2.- Architecture of the Implementation. 
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 The general communication scheme is shown in Figure 3. The messages for acquiring an object are 

sent to the CA. When the acquisition is performed, the invoking object directly communicates with the 

invoked object, without the intervention of the CA. This scheme reduces the number of messages per 

invocation. Protocols for object replication are carried out by the objects themselves. The CA plays a 

passive role: it only receives and delivers messages among objects. If objects are not replicated and are 

sited in the same node, the acquisition is carried out without the CA. 

 When communication among objects is local (for example, replicated objects are always accessed 

locally), the implementation allows the general communication scheme to be bypassed. An object can call 

the operation code of another object (method inlining), or even directly access to its state variables by 

means of its object handler. As a consequence, the overhead of local invocations is reduced substantially. 

4.2 Using Threads 

All the threads used in the implementation are kernel-level threads. A priori, user-level threads are more 

efficient and less resource consuming, but they are scheduled following a non-preemptive policy. We 

have studied this problem in a previous work [NPT97]. The conclussion is that using kernel-level, in this 

contex, is preferable to user-level threads, because the overhead of kernel management is negligible and 

the preemptive scheduling policy increases the concurrency level.   

 As the socket library is thread-safe on the three operating systems, we have used a kernel thread per 

connection into the CA. Each thread receives messages using a blocking read system call. The 

employment of kernel threads allows active threads to be executed while other ones are blocked. 

 When PVM is used instead of sockets, a different solution must be adopted because PVM is not 

thread-safe. In this case, a lock must guard the invocations to PVM routines. There is only a CA, and it 

cannot remain blocked in a receive primitive (no other object could issue remote messages then), so it 

must do a busy wait loop, using a PVM  primitive to check if there are incoming messages. For this 

reason, this implementation is less efficient, and we will only show the results obtained using sockets. 

 The use of PVM would allow us to get an heterogeneous and interoperable distributed system, but 

at this moment, the Digital UNIX version of PVM is not interoperable with other versions. 

5. Performance 

To measure the performance of the current implementation, we have coded two parallel programs: MM, a 

simple program that multiplies square matrices of reals; and BB, a program that solves traveling salesman 

problem (TSP) instances using a parallel branch and bound algorithm.  

 The same programs are recompiled and executed in the three architectures. We must note that the 

number of replicas of a replicated object depends on the number of machines of the system, instead of the 

number of processors. Thus, up to sixteen copies can be made in the UltraSPARC ATM network, up to 

four in the AlphaServer system, and none replica is generated in the Origin-2000. 
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Figure 4.- Speedups of parallel matrix multiply program. 
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5.1 Matrix Multiply 

The idea under MM is to measure the impact of replicating large objects, because the two matrices to be 

multiplied are fully replicated. The algorithm is based on dividing the result matrix (non replicable) in 4N 

square submatrices, and computing them in parallel. The program is composed of three classes of 

distributed objects: matrix, multiplier and master. There is a multiplier object per processor, and each of 

them computes a submatrix. The master object reads the matrices from a file, creates the rest of the 

objects, starts the computation, detects the termination of the program, and displays the result matrix. 

 The multiplier objects acquire the matrices to multiply in non-exclusive mode, which implies that 

those matrices are transferred into a node when the first acquire access is performed. As the matrices to 

be multiplied are replicated, they are always local, and their state variables can be accessed directly. 

 In Figure 4, we present the results of multiplying square matrices with a size ranging from 512 to 

2048. The speedups are calculated dividing the time obtained by a classical sequential matrix multiply 

program by the time obtained by the parallel program. Time is measured after reading the matrices, and 

when the computation termination has been detected. 

 The results are conditioned by the grain of the computation assigned to each multiplier object, that 

depends both on the size of the problem and the number of processors. For that reason, the speedups 

obtained multiplying 512-matrices are only close to linear when using four processors. On the contrary, 

with eight and sixteen processors, the speedups tend to increase when the size of the matrices is higher. 
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5.2 Branch and Bound 

The branch and bound algorithm is a typical benchmarck for evaluating distributed languages. It is an 

enumerative technique that traverses an imaginary search tree whose nodes are subproblems of the 

original problem. The goal is to find the leaf-node with the best value of an objective function. In 

general, the parallelizaton of this algorithm follows some kind of replicated worker scheme, where the 

worker processes compute a search subtree.  

  The BB program is composed of four classes of distributed objects: worker, upperbound, buffer 

and master. There is a worker object per processor, and each of them computes a local search subtree. 

The global upperbound is an integer object that is invoked by the workers. As the upperbound is 

frequently read and rarely written (only when a new solution is found), it is replicated. The buffer object 

is used for load balancing and termination detection. The aim of the master object is to create the rest of 

objects, start the computation and print the final result. 
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Figure 5.- Speedups of parallel branch and bound program when solving 

a 100-city TSP. 
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 As the matrices to be multiplied in the MM program, the worker objects directly access to the state 

of the upperbound object to improve performance. In the case of a writting, this is possible because the 

exclusive acquire operation migrates the main copy to the node of the worker object, after invalidating all 

the replicas. 

 In Figure 5, we show the speedups obtained running the BB program to solve a 100-city TSP. To 

analyze these results, we must consider two issues. First, it is well-known that parallel branch and bound 

algorithms suffer anomalies that lead to superlinear speedups. This is due, basically, to the fact that the 

parallel program analyzes less nodes than the sequential one. Second, the presence of large caches in the 

processors can produce an important increase of performance if partitioned data fits into the caches. For 

example, each pair of processors in the Origin-2000 share a 4MB cache. As can be observed, we obtain a 

speedup close to 20 with sixteen processors in the Origin-2000. 
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6. Conclusions 

We have presented an approach that allow us to replicate and migrate objects in the context of a 

concurrent object-oriented programming model. The approach is characterized by the necessity of 

acquiring and releasing objects and the distinction between query and command operations. This 

requirement imposes a strict programming style, but it yields information about when and how an object 

is going to be used. This information allow us to reduce the number of messages among nodes in the 

implementation by defining an entry consistency memory model. Objects can be replicated following a 

protocol that involves a migration scheme.  

 Details of a prototype have been discussed. The implementation is thread based, assigning a thread 

per object. It runs on three different architectures, each with sixteen processors: a network of 

workstations, a network of multiprocessors, and a multiprocessor. Portability has been achieved using 

C++, threads and sockets.  

 Performance measurements have been carried out using a matrix multiply program and a branch and 

bound program. The replicated objects are, in the first program, large matrices of float numbers, and, in 

the second one, an integer object. The results obtained from running the two programs show that 

significative speedups can be obtained with our approach in the three systems. 
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