
 1

Atributos de Calidad para Componentes COTS: Una valoración
de la información ofrecida por los vendedores.

Manuel F. Bertoa, José M. Troya y Antonio Vallecillo
Dpto. Lenguajes y Ciencias de la Computación. Universidad de Málaga.

{bertoa,troya,av}@lcc.uma.es

Resumen
La necesidad de desarrollar aplicaciones software complejas en periodos

de tiempo cada vez más cortos está produciendo importantes cambios en la
forma de construirlas, siendo el desarrollo de software basado en componentes
(DSBC) uno de los mecanismos más efectivos para conseguir este objetivo. Esta
nueva disciplina se basa en componentes software comerciales, construidos y
probados previamente, que se conocen como componentes COTS
(Commercial-Off-The-Shelf). Esto permite construir una aplicación buscando y
ensamblando componentes, desarrollados por terceros y cuyo código no se
puede modificar, que combinados adecuadamente satisfacen los requisitos del
sistema.

Trabajos recientes de calidad software proponen un modelo de calidad
específico para componentes, señalando las características y atributos de
calidad más relevantes para este tipo de producto software. Para cada atributo
existen diversas métricas que lo pueden cuantificar y que permiten describir y
medir no sólo su funcionalidad sino también sus aspectos extrafuncionales. Por
tanto, un punto importante del DSBC debe ser la documentación de los
componentes. Sin embargo, la información que necesitan los desarrolladores
para poder valorar y seleccionar un componente no suele estar disponible ni en
los repositorios software ni en los sitios de los vendedores de componentes
COTS.

En este trabajo valoramos y analizamos la información que los principales
vendedores de componentes COTS ofrecen de sus productos, tratando de
adecuar esta información con las métricas definidas para un modelo de calidad
de componentes software. Nuestro objetivo ha sido estimar la diferencia
existente entre la información que se necesita para realizar la selección y
valoración de componentes y la información que ofrecen los principales
vendedores de componentes software. Además, se ofrecen algunas
recomendaciones y sugerencias para tratar de disminuir estas diferencias.

1 Introducción
El Desarrollo de Software Basado en Componentes (DSBC) aparece como una

nueva disciplina que ayuda a los desarrolladores de software a realizar sus
productos con menores esfuerzos tanto humanos como económicos. Su principal
característica es utilizar componentes software ya desarrollados, que son
combinados adecuadamente para satisfacer los requisitos del producto. Construir
una aplicación se convierte por tanto en la búsqueda y ensamblaje de piezas
prefabricadas, desarrolladas en su mayoría por terceras casas, y cuyo código no
puede modificarse. Bajo este nuevo planteamiento, cobran especial interés los
procesos de búsqueda y selección de los componentes apropiados para construir las
aplicaciones.
Los principales esfuerzos de la comunidad de software en estos temas se han
basado hasta ahora en los aspectos funcionales de los componentes, es decir, en la

 2

funcionalidad que ofrecen. Sin embargo, por lo general se han venido obviando
muchos de los aspectos de calidad que intervienen a la hora de seleccionar
componentes. Este tipo de aspectos, que llamaremos “extra-funcionales”, cada vez
acapara más la atención de los arquitectos e ingenieros del software. Por un lado,
los requisitos extrafuncionales –por su naturaleza global– pueden afectar a varias
partes del sistema, y por ello tendrán prioridad si entran en conflicto con los
requisitos funcionales.
Añadido a todo esto, podemos encontrar una ausencia casi total de métricas que
permitan dar una estimación más objetiva de estos atributos. Este hecho se ve
afectado por la situación actual de los estándares internacionales relativos a la
calidad del producto software. Las normas ISO 9126 [ISO, 2001] e ISO 14598
[ISO, 1999], encargadas de especificar estos temas, se encuentran ahora mismo en
proceso de revisión. El proyecto SQuaRE [Azuma, 2001] es el encargado de tratar
de hacerlas converger, eliminando algunas de las lagunas e inconsistencias que
presentan. Por otro lado, es importante señalar que los estándares internacionales
proporcionan guías y modelos de calidad para temas muy generales y su aplicación
suele centrarse en temas de un gran espectro. Por tanto, no suelen estar pensadas
para ofrecer soluciones en temas muy concretos, en particular para los relativos al
DSBC y componentes COTS.
La siguiente causa de dificultad es la falta de información que suministran los
vendedores de componentes software acerca de este tipo de atributos. Una visita
virtual a los portales de los principales vendedores lo pone en evidencia, como
ocurre con Componentsource (www.componentsource.com), Flashline
(www.flashline.com) o WorldComp (www.wrldcomp.com). Precisamente, el objetivo
de este artículo se centra en obtener una visión general de la información que
ofrecen los principales vendedores de componentes COTS y las posibilidades que
ofrece esta información para ser utilizada en la evaluación de los atributos de calidad
de un componente software dentro de un modelo de calidad específico para
componentes.
El documento está estructurado en seis secciones. Tras esta introducción, la sección
2 hace una breve descripción del Desarrollo de Software Basado en Componentes.
Después, la sección 3 propone un modelo de calidad para componentes software
referenciando sus atributos de calidad. En la sección 4, se presentan los datos
obtenidos en el análisis de un muestra de componentes ofertados por los principales
vendedores de COTS. Por último, la sección 5 analiza los resultados encontrados y
plantea algunas recomendaciones y trabajos futuros.

2 Desarrollo de Software Basado en Componentes (DSBC)
Antes de empezar, necesitamos definir qué es un componente software. En

este artículo vamos a adoptar la definición que da Szyperski, donde un componente
es “una unidad de composición de aplicaciones software que posee un conjunto de
requisitos, y que ha de poder ser desarrollado, adquirido, incorporado al sistema y
compuesto con otros componentes, de forma independiente en tiempo y espacio”
[Szyperski, 1998].
Una de las principales ventajas del desarrollo de software basado en componentes
se basa en la “reutilización” de los mismos. De esta forma, los componentes se
diseñan y desarrollan con el objetivo de poder ser reutilizados en otras aplicaciones,
reduciendo el tiempo de desarrollo, mejorando la fiabilidad del producto final (al usar
componentes ya probados previamente), y siendo más competitivos en costes.

 3

Aunque hasta ahora la reutilización suele suceder principalmente en el ámbito
interno de las organizaciones, el uso de los componentes comerciales comienza a
extenderse. De esta forma se habla de componentes COTS, que han sido definidos
como una clase especial de componentes software, normalmente de grano grueso,
que presentan las siguientes características [Bass et al., 1999]:

− Son vendidos o licenciados al público en general

− Los mantiene y actualiza el propio vendedor, quien conserva los derechos de
la propiedad intelectual

− Están disponibles en forma de múltiples copias, todas idénticas entre sí

− Su código no puede ser modificado por el usuario
La disponibilidad y uso cada vez mayor de este tipo de componentes está
impulsando notablemente la creación de un mercado global de componentes COTS,
que está pasando de ser la utopía de hace unos años a una realidad cada vez más
cercana. La tecnología básica de componentes comienza a estar los suficientemente
madura (a través de plataformas de objetos distribuidos como EJB, CORBA o .NET)
como para que numerosas empresas la adopten en sus nuevos desarrollos y
sistemas de información. Incluso el gobierno y el ejército norteamericano han
anunciado su uso, y han empezado a apostar por la utilización de componentes
comerciales como única vía de mantener sus costes de desarrollo y mantenimiento
de software bajo control [Sweeney et al., 2001]. Asimismo, están empezando a
proliferar las empresas que venden con éxito componentes software al mercado
general, como pueden ser componentsource, flashline, worldcomp, etc. [Seppanen y
Helander, 2001].

3 Modelo de Calidad de Componentes
En general, no existe un consenso a la hora de definir y clasificar las

características de calidad que debe presentar un producto software. Por tanto,
hemos basado nuestra propuesta en los estándares internacionales,
fundamentalmente el ISO 9126.
Siguiendo su terminología, entendemos por característica de calidad de un producto
software a un conjunto de propiedades mediante las cuales se evalúa y describe su
calidad. Una característica se puede refinar en múltiples niveles de
subcaracterísticas.
Llamaremos atributo a una propiedad de calidad a la que puede asignársele una
métrica, donde una métrica es un procedimiento que examina un componente y
produce un dato simple, un símbolo (p.e. Excelente, Sí, No) o un número. Hay que
tener en cuenta que no todas las propiedades que son mensurables (p.e. la
“demostrabilidad”).
Un modelo de calidad es el conjunto de características y subcaracterísticas, y de
cómo estas se relacionan entre sí. Por supuesto, el modelo de calidad a utilizar va a
depender del tipo de producto a evaluar, en nuestro caso los componentes software.
Nuestro principal objetivo es detectar los atributos que pueden describir los
proveedores (externos o internos) de componentes COTS en la información que
suministran acerca de los mismos y que, por tanto, permitirían facilitar su valoración
y selección por parte de los diseñadores y desarrolladores de productos software.

 4

Partiendo del modelo de calidad general de ISO, vamos a tratar de particularizarlo
realizando distintos tipos de clasificaciones.
1. En primer lugar, necesitamos discriminar entre aquellas características que

tienen sentido para los componentes aislados (características locales) o bien
deben ser valoradas a nivel de la arquitectura software de la aplicación (que
llamaremos características globales). Por ejemplo, la “tolerancia a fallos” es una
típica característica que va a depender de la arquitectura de la aplicación,
mientras que la “madurez” es más propia de los componentes.

2. El instante en el cual una característica puede ser observada o medida, permite
establecer otra clasificación de las características de un producto. Así, tenemos
dos posibles categorías dependiendo de sí la característica es observable en
tiempo de ejecución (p.e. el rendimiento) o durante el ciclo de vida del producto
(p.e. la mantenibilidad) [Preiss et al., 2000].

3. Como se menciona en los estándares de ISO, es importante identificar los
usuarios a los que se dirige el modelo. En nuestra propuesta, los usuarios son
fundamentalmente los arquitectos software, que necesitan evaluar los
componentes COTS que van a formar parte de su aplicación. Así, las interfaces
de los componentes objeto de nuestro estudio son más las interfaces
programáticas (es decir, las APIs que definen las formas de acceder desde otros
programas a los servicios que ofrecen los componentes), que las interfaces de
usuario.

4. Para componentes COTS, es fundamental distinguir entre métricas internas y
externas. Las internas miden los atributos internos del producto final o de los
productos intermedios (p.e. la especificación o el código fuente) durante el diseño
y la codificación. Las externas son las que realizan las mediciones en función del
comportamiento del sistema durante las pruebas y la operación del componente.
Por tanto, debido al carácter de caja negra de los componentes COTS, son las
métricas externas las que interesan. Esto no quita que algunas de las
características internas den una medida indirecta de las externas, e incluso que
puedan tener efectos sobre la arquitectura final. Así por ejemplo, el tamaño de un
componente puede ser importante a la hora de tener en cuenta los requisitos de
espacio de la aplicación.

Por último, es importante reseñar que además de las características de calidad en
un componente, hay otro conjunto de características no relacionadas directamente
con la calidad como pueden ser el precio, la asistencia técnica, las condiciones de
licencia, etc., que también son necesarias a la hora de valorar el componente más
adecuado, pero que quedan fuera del ámbito de este artículo.
Como hemos indicado anteriormente, no todas las características de un producto
software son aplicables a un componente COTS. La Tabla 1 muestra el modelo de
calidad que proponemos para este tipo de producto software. Básicamente se trata
del modelo de calidad de ISO, donde desaparecen algunas subcaracterísticas de
Mantenibilidad y Portabilidad y las subcaracterísticas Tolerancia a Fallos, Estabilidad
y Analizabilidad. Es importante observar que algunas de ellas cambian de sentido,
como detallamos a continuación (las características que cambian su sentido
aparecen en negrita en la Tabla 1).

 5

Característica Subcaracterística
(tiempo ejecución)

Subcaracterística
(ciclo de vida)

Funcionalidad
Precisión

Seguridad

Idoneidad

Interoperatividad
Conformidad

Fiabilidad
Recuperabilidad

Madurez

Facilidad de Uso Facilidad de Aprendizaje
Facilidad de Comprensión
Operatividad

Eficiencia Comportamiento Temporal
Utilización de Recursos

Mantenibilidad
Cambiabilidad
Facilidad de Prueba

Portabilidad

Reemplazabilidad

Tabla 1. Modelo de Calidad para COTS

Funcionalidad. Esta característica mantiene el mismo sentido para los
componentes que para un producto software. Podríamos expresarla como la
capacidad del componente para proporcionar las funciones que satisfagan las
necesidades establecidas o implícitas cuando se usa bajo las condiciones
especificadas.
Fiabilidad. Es aplicable directamente a los componentes, y fundamental para su
reutilización. La subcaracterística de Madurez la medimos en función de los cambios
que sufren las versiones comerciales y la velocidad a la que aparecen. La
Recuperabilidad, en función de una serie de atributos que pueden estar presentes o
no en su diseño, indicando los métodos que se utilizan para implementarlos.
Facilidad de Uso. Esta característica, y todas sus subcaracterísticas cambian de
sentido, dado que un componente no será utilizado por un usuario final directamente
sino por los diseñadores y desarrolladores de aplicaciones software. La facilidad de
uso real de un componente debe interpretarse como la capacidad del componente
para ser utilizado en la construcción de un producto o sistema software. En este
sentido buscaremos atributos que midan la facilidad de uso del componente durante
el diseño de las aplicaciones.
Eficiencia. Vamos a respetar la definición y clasificación que hace la ISO de esta
característica (en Comportamiento Temporal y Utilización de Recursos), aunque la
mayoría de las propuestas de otros autores prefieren hablar de Rendimiento
(Performance) y usan otra subclasificación. En cualquier caso, los atributos que
vamos a definir para medir estas características son aplicables de forma
independiente al nombre y clasificación que se utilice.
Mantenibilidad. La facilidad de mantenimiento o mantenibilidad mide la capacidad
de un producto software de ser modificado, entendiendo por modificación cualquier
corrección, mejora o adaptación del software. En este sentido, y aunque las

 6

modificaciones internas no serán realizadas por el usuario del componente
(desarrollador), sí necesitará probar el componente antes de incluirlo en su
aplicación o cambiar alguno de los parámetros que se pueden particularizar. Por
ello, las subcaracterísticas Cambiabilidad y Facilidad de Prueba son las que deben
ser medidas para los componentes.
Portabilidad. Esta característica se define como la capacidad del producto software
para poder ser reutilizado en distintos entornos. En COTS, esa es la esencia misma
de los componentes, que son diseñados y desarrollados específicamente para ser
reutilizados. (Es importante observar que en la Ingeniería del software Basada en
Componentes, reutilizar significa no sólo usar más de una vez, sino usar en distintos
contextos [Szyperski, 1998]).
Las tres primeras columnas de la Tabla 4 muestran los atributos de calidad para
componentes COTS mensurables en tiempo de ejecución. Similarmente, las tres
primeras columnas de la Tabla 5 muestran los atributos de calidad mensurables
durante todo el ciclo de vida. Una descripción detallada del modelo de calidad para
componentes y de los atributos de calidad se puede encontrar en [Bertoa y Vallecillo,
2002].

4 Análisis de la Información Ofrecida por lo Vendedores de COTS
Para tener una visión global de la información que ofrecen los vendedores de COTS
hemos analizado una muestra de 96 componentes de varios vendedores de COTS,
siendo la muestra más significativa (64) la de componentsource. El método de
elección de los componentes de la muestra consistió en seleccionar la mitad de las
categorías que aparecen en el catalogo del vendedor y escoger para cada una de
ellas dos componentes. Uno, el más vendido, indicado en una lista de los 5 más
vendidos dentro de cada categoría, y el segundo de forma aleatoria entre los
componentes de cada categoría. Si este coincidía con el anterior o era del mismo
fabricante, seleccionamos el siguiente en la lista con el objetivo de abarcar un
numero mayor de fabricantes.
La primera dificultad detectada es que la información necesaria para evaluar los
atributos de calidad no está disponible de forma fácil. Es necesario buscarla entre
los ficheros de ayuda, los manuales o las demostraciones que ofrecen los
fabricantes. Por tanto, cualquier intento de realizar una evaluación más o menos
automatizada es prácticamente imposible.
No obstante, en la página de cada producto aparece actualmente un conjunto de
datos, denominados datos valorables (asset values) como Líneas de Código,
Tiempo dedicado a I+D o un factor de madurez de la empresa (man months skill
factor). El grado de cumplimentación de estos tres datos que ofrece
componentsource se resume en la Tabla 2 para los componentes analizados.

N=64 Man Months R&D Man Months Skill
Factor Lines of Code

SI 22% 20% 20%

NO 78% 80% 80%

Tabla 2. Porcentaje de fabricantes COTS que dan información sobre “datos valorables”

 7

El siguiente conjunto de información que hemos analizado es el tipo de información
para la evaluación de los productos que ofrecen los desarrolladores de COTS. En la
muestra analizada aparecen tres tipos de ficheros con información relevante:
Ficheros de Ayuda y/o Manuales; Productos de evaluación; y Diagramas UML.
Los Ficheros de Ayuda ofrecidos van desde algunas páginas de publicidad del
producto hasta el manual completo o guías de usuario. Hemos considerado este tipo
de ficheros como adecuados cuando la información que aportan puede utilizarse
para evaluar alguno de los atributos del modelo de calidad.
Los productos de evaluación (o demos) se presentan también con diversos formatos,
proporcionando la funcionalidad completa durante un corto periodo de tiempo (p.e.:
30 días) o limitando algunas funcionalidades o capacidades. En cualquier caso,
aunque la información que ofrece una demo, desde el punto de vista de una
evaluación inicial de los atributos de calidad, no es muy adecuada ya que obliga a la
instalación del producto y a un análisis laborioso de sus funcionalidades y atributos
de calidad, sí nos parece importante resaltar la posibilidad de probar el producto.
Por último, los diagramas UML se muestran como un fichero independiente o de
forma menos detallada dentro del manual o del fichero de ayuda, por ejemplo,
proporcionando sólo un diagrama de objetos. En cualquier caso, dado que es una
información poca habitual pero quizás la más interesante para evaluar los
componentes, hemos recogido este tipo de información cuando aparece algo.
La Tabla 3 muestra el porcentaje de componentes COTS que tenían disponibles
estos tipos de información según los datos obtenidos en nuestro análisis:

N=96 Ficheros Ayuda Demo Diagramas UML

SI 86% 81% 10%

NO 14% 19% 90%

Tabla 3: Información para evaluación de COTS

La siguiente información analizada ha sido si es posible evaluar de alguna forma los
atributos de calidad que proponemos en el modelo de calidad para componentes
software tomando como base la información ofrecida en la página de cada
componente mostrada por el vendedor o recogiéndola de los ficheros de ayuda,
manuales y demostraciones que se pueden descargar desde dicha página.
Hemos analizado las posibilidades de que la información ofrecida nos permita
realizar alguna métrica para los atributos propuestos, y en este sentido hemos
evaluado si la información era adecuada o no. Las siguientes tablas muestran los
resultados obtenidos, donde hemos mantenido la clasificación de atributos
mensurables en tiempo de ejecución (Tabla 4) y mensurables durante todo el ciclo
de vida (Tabla 5).
En estas tablas, la columna “SI” indica el porcentaje de COTS donde la información
facilitada por el fabricante permite valorar alguna métrica relacionada con el atributo.
Un valor de 0% en dicha columna, indica que ninguno de los COTS analizados
proporciona información para evaluar ese atributo. Las subcaracterísticas y atributos
con un porcentaje del 50% o superior se resaltan en negrita.

 8

 Característica Subcaracterística Atributo SI(%)
Precisión 0 Precisión
Exactitud Computacional 0
Cifrado de Datos 5
Capacidad de Control 0

Funcionalidad

Seguridad

Capacidad para Auditar 5
Secuenciable 0
Persistente 5
Transaccional 10

Fiabilidad Recuperabilidad

Tratamiento de Errores 40
Tiempo de Respuesta 0
Capacidad de Emisión 0

Comportamiento
Temporal

Capacidad de Recepción 0
Requisitos de Memoria 81

Eficiencia

Utilización de
Recursos Utilización de Disco 95

Tabla 4 Información Disponible para Evaluar los Atributos de Calidad de Tiempo de Ejecución

5 Conclusiones y Recomendaciones
La mayoría de los atributos de tiempo de ejecución son muy difíciles de evaluar

dado la ausencia casi total de información relativa a los mismos. La excepción es la
subcaracterística de Utilización de Recursos debido a que las necesidades de disco
y memoria aparecen directamente en la página del vendedor. Otro atributo con un
porcentaje bajo (40%) pero significativo en este contexto es el Tratamiento de
Errores dado que suele aparecer información relacionada en los manuales o guías.
El resto de atributos que tienen un porcentaje de COTS pequeño pero superior a
cero aparecen debido a que su propia funcionalidad esta relacionada con el atributo,
por ejemplo, uno de los componentes analizados proporcionaba persistencia a otros
componentes o aplicaciones.
La situación es diferente en los atributos de ciclo de vida, donde observamos dos
grupos de subcaracterísticas. Un grupo donde la evaluación es muy difícil debido a
la ausencia de información relacionada con sus atributos o con un porcentaje de
COTS donde existe información muy bajo (20% o menor). En este grupo aparecen
Conformidad Funcional, Madurez, Facilidad de Aprendizaje, Facilidad de Prueba y
Reemplazabilidad. En algunas de estas características, como Facilidad de
Aprendizaje, la falta de información se explica porque los atributos propuestos deben
evaluarse por terceras casas o por expertos independientes. Igualmente ocurre en el
caso de los estándares y de la certificación. Más llamativo es el caso de la
evolucionabilidad y volatilidad de las versiones, que son unos datos fácilmente
reseñables por los fabricantes. También es destacable la falta de elementos de
prueba en la gran mayoría de COTS analizados.
El segundo grupo de subcaracterísticas esta formado por aquellas cuyos todos sus
atributos o la mayoría de ellos presentan un porcentaje del 50% o superior de COTS
con información relativa a los mismos. En este grupo podemos incluir las
subcaracterísticas de Idoneidad, Interoperatividad, Facilidad de Comprensión,
Operatividad y Cambiabilidad.
Las subcaracterísticas de Idoneidad, Operatividad y Cambiabilidad se pueden
evaluar conociendo las interfaces, métodos, propiedades y eventos, este tipo de
información se puede extraer cuando el fabricante de COTS proporciona el manual o

 9

una ayuda detallada lo cual aparece aproximadamente en la mitad de los casos
analizados. Esta forma de obtener la información necesaria para la evaluación no es
obviamente la ideal pero al menos se puede obtener aunque con un trabajo
laborioso.

Característica Subcaracterística Atributo SI (%)
Cobertura 55
Exceso 55

Idoneidad

Cobertura de la Implementación 55
Interoperatividad Compatibilidad de los Datos 95

Conformidad con Estándares 0

Funcionalidad

Conformidad
Certificaciones 0
Volatilidad 5
Evolucionabilidad 10

Fiabilidad Madurez

Fallos eliminados 15
Periodo para usar correctamente 0
Periodo para configurar
correctamente 0
Periodo para administrar
correctamente 0

Facilidad de
Aprendizaje

Periodo para dominar 0
Documentación de Usuario 65
Sistema de Ayuda 65
Documentación Computacional 0
Formación 30

Facilidad de
Comprensión

Cobertura de la Demostración 90
Interfaces Ofrecidas 55
Interfaces externas utilizadas 50
Índice de Complejidad 50
Esfuerzo para operar 0
Esfuerzo para configurar 50

Facilidad de Uso

Operatividad

Esfuerzo para administrar 0
Modificabilidad 55
Índice de Modificabilidad 55

Cambiabilidad

Capacidad de Control de Cambio 55
Auto-Test de Arranque 0

Mantenibilidad

Facilidad de Prueba
Batería de Pruebas 5

Portabilidad Reemplazabilidad Compatibilidad hacia atrás 20
Tabla 5 Información Disponible para Evaluar los Atributos de Calidad de Tiempo de Ejecución

Los datos sobre compatibilidad aparecen en la página inicial, lo cual da un alto
porcentaje de COTS que suministran esta información.
La subcaracterística de Facilidad de Comprensión muestra que algunos de sus
atributos se pueden evaluar y otros no. Entre los primeros están los relativos a las
demostraciones (95%) y los de ayuda y documentación (65%), los que carecen de
información relativa son los relativos a la documentación procesable
automáticamente y a la formación.

A la vista de estos resultados, la información que los vendedores ofrecen
directamente en la página inicial de cada producto debe recoger una mayor cantidad
de datos que permita iniciar una evaluación de los atributos de calidad. En este
sentido, parece de gran interés la inclusión de los datos de valorables (asset values)
que ofrece componentsource. Aunque esto podría ser un primer paso, estaríamos en

 10

una valoración y evaluación manual de los posibles candidatos. El objetivo debe ser
que esta información pueda evaluarse de forma automática lo cual facilitaría la
selección de componentes.
La necesidad de disponer de información para evaluar componentes no puede
hacernos perder de vista la dificultad que tiene para los fabricantes y vendedores
proporcionarla, por tanto, otra meta debe ser el consensuar métricas fáciles de medir
y cuyos datos se pueden obtener sin necesidad de complicados métodos y
operaciones. Si observamos que ningún fabricante de COTS suministra información
relativa a un atributo de calidad, debemos reflexionar si dicho atributo es necesario o
se puede reemplazar por otro que sea más fácil de valorar.
Por último, pensamos que para conseguir una verdadera ingeniería del software de
componentes es necesario disponer de métricas que cuantifiquen sus atributos de
calidad. El panorama descrito en este artículo no es muy alentador en este sentido
pero para resolver este conflicto a largo plazo podemos basarnos en dos ideas. En
primer lugar, es difícil conseguir un acuerdo sobre temas demasiado genéricos. Por
ello, es preciso definir y consensuar modelos de calidad para productos específicos,
en nuestro caso para componentes software. Y en segundo lugar, quizás la
evaluación de los atributos de calidad de los componentes debería realizarse por
entidades independientes, al menos hasta que los fabricantes de componentes
software alcance la madurez que existe en la industria de componentes hardware
donde los propios fabricantes ofrecen para sus productos catálogos (data sheet) con
los valores de sus atributos de calidad. Hoy en día parece una utopía disponer de
este tipo de catálogos para componentes software pero si realmente deseamos
hacer una “ingeniería” del software basada en componentes que produzca productos
de alta calidad ésta debe ser la tendencia.

Referencias
[Azuma, 2001] M. Azuma “SQuaRE: the next generation of the ISO/IEC 9126 and 14598 international standards

series on software product quality”. In ESCOM (European Software Control and Metrics
conference), April 2001.

[Bass et al., 1999] L. Bass and P. Clements y R. Kazman. Software Architecture in Practice. 6ª edición.
AddisonWesley, 1999.

[Bertoa y Vallecillo, 2002] M. F. Bertoa y A. Vallecillo. "Quality Attributes for COTS Components". In Proc. of
the 6th ECOOP Workshop on Quantitative Approaches in Object-Oriented Software Engineering
(QAOOSE 2002). Málaga, Spain, June 2002. Disponible en:
http://www.lcc.uma.es/~av/Publicaciones/02/COTSmetrics.doc

[ISO, 1999] ISO/IEC 14598-1 “Information Technology – Software Product Evaluation – Part 1: General
overview”. May, 1999.

[ISO, 2001] ISO/IEC 9126-1:2001 “Software Engineering – Product Quality – Part 1: Quality model”.
June, 2001.

[Preiss et al., 2001] O. Preiss, A. Wegmann, y J. Wong. “On Quality Attribute Based Software Engineering”, In
Proc. of the 27th Euromicro Conference, Warsaw, Poland, September 2001. IEEE CS Press.

[Sedigh et al., 2001] S. SedighAli, A. Ghafoor y R.A. Paul. “Software Engineering Metrics for COTS based
Systems”. IEEE Computer, 34(5):4450, May 2001.

[Seppanen y Helander, 2001] V. Seppanen y N. Helander. “Original Software Component Manufacturing:
Survey of the StateofthePractice”. 27th Euromicro Conference, pp. 138-145. Varsovia, Polonia,
September 2001.

[Sweeney et al., 2001] L.E. Sweeney, E.V. Kortright y R.J. Buckley. “Developing an RMODP based architecture
for the defense integrated military human resources system”. J. Cordeiro and H. Kilov (eds.)
Proceedings of WOODPECKER’01, pp. 110-124. Setúbal, Portugal, July 2001.

[Szyperski, 1998] C. Szyperski. Component Software. Beyond Object Oriented Programming. AddisonWesley
Longman, 1998.

