Atributos de Calidad para Componentes COTS: Una valoracion
de la informacion ofrecida por los vendedores.

Manuel F. Bertoa, José M. Troya y Antonio Vallecillo
Dpto. Lenguajes y Ciencias de la Computacion. Universidad de Malaga.

{bertoa,troya,avi@cc. uma. es

Resumen

La necesidad de desarrollar aplicaciones software complejas en periodos
de tiempo cada vez mas cortos esta produciendo importantes cambios en la
forma de construirlas, siendo el desarrollo de software basado en componentes
(DSBC) uno de los mecanismos mas efectivos para conseguir este objetivo. Esta
nueva disciplina se basa en componentes software comerciales, construidos y
probados previamente, que se conocen como componentes COTS
(Commercial-Off-The-Shelf). Esto permite construir una aplicacién buscando y
ensamblando componentes, desarrollados por terceros y cuyo codigo no se
puede modificar, que combinados adecuadamente satisfacen los requisitos del
sistema.

Trabajos recientes de calidad software proponen un modelo de calidad
especifico para componentes, sefialando las caracteristicas y atributos de
calidad mas relevantes para este tipo de producto software. Para cada atributo
existen diversas métricas que lo pueden cuantificar y que permiten describir y
medir no solo su funcionalidad sino también sus aspectos extrafuncionales. Por
tanto, un punto importante del DSBC debe ser la documentacion de los
componentes. Sin embargo, la informacién que necesitan los desarrolladores
para poder valorar y seleccionar un componente no suele estar disponible ni en
los repositorios software ni en los sitios de los vendedores de componentes
COTS.

En este trabajo valoramos y analizamos la informacién que los principales
vendedores de componentes COTS ofrecen de sus productos, tratando de
adecuar esta informacion con las métricas definidas para un modelo de calidad
de componentes software. Nuestro objetivo ha sido estimar la diferencia
existente entre la informacidbn que se necesita para realizar la seleccion y
valoracion de componentes y la informaciébn que ofrecen los principales
vendedores de componentes software. Ademas, se ofrecen algunas
recomendaciones y sugerencias para tratar de disminuir estas diferencias.

1 Introduccion

El Desarrollo de Software Basado en Componentes (DSBC) aparece como una
nueva disciplina que ayuda a los desarrolladores de software a realizar sus
productos con menores esfuerzos tanto humanos como econdmicos. Su principal
caracteristica es utilizar componentes software ya desarrollados, que son
combinados adecuadamente para satisfacer los requisitos del producto. Construir
una aplicacion se convierte por tanto en la busqueda y ensamblaje de piezas
prefabricadas, desarrolladas en su mayoria por terceras casas, y cuyo codigo no
puede modificarse. Bajo este nuevo planteamiento, cobran especial interés los
procesos de busqueda y seleccion de los componentes apropiados para construir las
aplicaciones.

Los principales esfuerzos de la comunidad de software en estos temas se han
basado hasta ahora en los aspectos funcionales de los componentes, es decir, en la



funcionalidad que ofrecen. Sin embargo, por lo general se han venido obviando
muchos de los aspectos de calidad que intervienen a la hora de seleccionar
componentes. Este tipo de aspectos, que llamaremos “extra-funcionales”, cada vez
acapara mas la atencion de los arquitectos e ingenieros del software. Por un lado,
los requisitos extrafuncionales —por su naturaleza global- pueden afectar a varias
partes del sistema, y por ello tendran prioridad si entran en conflicto con los
requisitos funcionales.

Anadido a todo esto, podemos encontrar una ausencia casi total de métricas que
permitan dar una estimacion mas objetiva de estos atributos. Este hecho se ve
afectado por la situacion actual de los estandares internacionales relativos a la
calidad del producto software. Las normas ISO 9126 [ISO, 2001] e ISO 14598
[1ISO, 1999], encargadas de especificar estos temas, se encuentran ahora mismo en
proceso de revision. El proyecto SQuaRE [Azuma, 2001] es el encargado de tratar
de hacerlas converger, eliminando algunas de las lagunas e inconsistencias que
presentan. Por otro lado, es importante sefialar que los estandares internacionales
proporcionan guias y modelos de calidad para temas muy generales y su aplicacion
suele centrarse en temas de un gran espectro. Por tanto, no suelen estar pensadas
para ofrecer soluciones en temas muy concretos, en particular para los relativos al
DSBC y componentes COTS.

La siguiente causa de dificultad es la falta de informacion que suministran los
vendedores de componentes software acerca de este tipo de atributos. Una visita
virtual a los portales de los principales vendedores lo pone en evidencia, como
ocurre con Componentsource (www.componentsource.com), Flashline
(www.flashline.com) o WorldComp (www.wrldcomp.com). Precisamente, el objetivo
de este articulo se centra en obtener una visidbn general de la informacion que
ofrecen los principales vendedores de componentes COTS y las posibilidades que
ofrece esta informacion para ser utilizada en la evaluacion de los atributos de calidad
de un componente software dentro de un modelo de calidad especifico para
componentes.

El documento esté estructurado en seis secciones. Tras esta introduccién, la seccién
2 hace una breve descripcion del Desarrollo de Software Basado en Componentes.
Después, la seccién 3 propone un modelo de calidad para componentes software
referenciando sus atributos de calidad. En la seccién 4, se presentan los datos
obtenidos en el analisis de un muestra de componentes ofertados por los principales
vendedores de COTS. Por ultimo, la seccion 5 analiza los resultados encontrados y
plantea algunas recomendaciones y trabajos futuros.

2 Desarrollo de Software Basado en Componentes (DSBC)

Antes de empezar, necesitamos definir qué es un componente software. En
este articulo vamos a adoptar la definicion que da Szyperski, donde un componente
es “una unidad de composicién de aplicaciones software que posee un conjunto de
requisitos, y que ha de poder ser desarrollado, adquirido, incorporado al sistema y
compuesto con otros componentes, de forma independiente en tiempo y espacio”
[Szyperski, 1998].

Una de las principales ventajas del desarrollo de software basado en componentes
se basa en la “reutilizacion” de los mismos. De esta forma, los componentes se
disefian y desarrollan con el objetivo de poder ser reutilizados en otras aplicaciones,
reduciendo el tiempo de desarrollo, mejorando la fiabilidad del producto final (al usar
componentes ya probados previamente), y siendo mas competitivos en costes.



Aunque hasta ahora la reutilizacion suele suceder principalmente en el ambito
interno de las organizaciones, el uso de los componentes comerciales comienza a
extenderse. De esta forma se habla de componentes COTS, que han sido definidos
como una clase especial de componentes software, normalmente de grano grueso,
gue presentan las siguientes caracteristicas [Bass et al., 1999]:

— Son vendidos o licenciados al publico en general

- Los mantiene y actualiza el propio vendedor, quien conserva los derechos de
la propiedad intelectual

— Estan disponibles en forma de multiples copias, todas idénticas entre si
— Su coédigo no puede ser modificado por el usuario

La disponibilidad y uso cada vez mayor de este tipo de componentes esta
impulsando notablemente la creacion de un mercado global de componentes COTS,
gue esta pasando de ser la utopia de hace unos afios a una realidad cada vez mas
cercana. La tecnologia basica de componentes comienza a estar los suficientemente
madura (a través de plataformas de objetos distribuidos como EJB, CORBA o .NET)
como para que numerosas empresas la adopten en sus nuevos desarrollos y
sistemas de informacién. Incluso el gobierno y el ejército norteamericano han
anunciado su uso, y han empezado a apostar por la utilizacion de componentes
comerciales como Unica via de mantener sus costes de desarrollo y mantenimiento
de software bajo control [Sweeney et al.,, 2001]. Asimismo, estan empezando a
proliferar las empresas que venden con éxito componentes software al mercado
general, como pueden ser componentsource, flashline, worldcomp, etc. [Seppanen y
Helander, 2001].

3 Modelo de Calidad de Componentes

En general, no existe un consenso a la hora de definir y clasificar las
caracteristicas de calidad que debe presentar un producto software. Por tanto,
hemos basado nuestra propuesta en los estandares internacionales,
fundamentalmente el ISO 9126.

Siguiendo su terminologia, entendemos por caracteristica de calidad de un producto
software a un conjunto de propiedades mediante las cuales se evalla y describe su
calidad. Una caracteristica se puede refinar en multiples niveles de
subcaracteristicas.

Llamaremos atributo a una propiedad de calidad a la que puede asignarsele una
métrica, donde una métrica es un procedimiento que examina un componente y
produce un dato simple, un simbolo (p.e. Excelente, Si, No) o un nimero. Hay que
tener en cuenta que no todas las propiedades que son mensurables (p.e. la
“demostrabilidad”).

Un modelo de calidad es el conjunto de caracteristicas y subcaracteristicas, y de
coémo estas se relacionan entre si. Por supuesto, el modelo de calidad a utilizar va a
depender del tipo de producto a evaluar, en nuestro caso los componentes software.

Nuestro principal objetivo es detectar los atributos que pueden describir los
proveedores (externos o internos) de componentes COTS en la informacion que
suministran acerca de los mismos y que, por tanto, permitirian facilitar su valoracion
y seleccion por parte de los disefiadores y desarrolladores de productos software.



Partiendo del modelo de calidad general de ISO, vamos a tratar de particularizarlo
realizando distintos tipos de clasificaciones.

1. En primer lugar, necesitamos discriminar entre aquellas caracteristicas que
tienen sentido para los componentes aislados (caracteristicas locales) o bien
deben ser valoradas a nivel de la arquitectura software de la aplicaciéon (que
llamaremos caracteristicas globales). Por ejemplo, la “tolerancia a fallos” es una
tipica caracteristica que va a depender de la arquitectura de la aplicacion,
mientras que la “madurez” es mas propia de los componentes.

2. El instante en el cual una caracteristica puede ser observada o medida, permite
establecer otra clasificacion de las caracteristicas de un producto. Asi, tenemos
dos posibles categorias dependiendo de si la caracteristica es observable en
tiempo de ejecucién (p.e. el rendimiento) o durante el ciclo de vida del producto
(p.e. la mantenibilidad) [Preiss et al., 2000].

3. Como se menciona en los estandares de 1SO, es importante identificar los
usuarios a los que se dirige el modelo. En nuestra propuesta, los usuarios son
fundamentalmente los arquitectos software, que necesitan evaluar los
componentes COTS que van a formar parte de su aplicacion. Asi, las interfaces
de los componentes objeto de nuestro estudio son mas las interfaces
programaticas (es decir, las APIs que definen las formas de acceder desde otros
programas a los servicios que ofrecen los componentes), que las interfaces de
usuario.

4. Para componentes COTS, es fundamental distinguir entre métricas internas y
externas. Las internas miden los atributos internos del producto final o de los
productos intermedios (p.e. la especificacion o el cédigo fuente) durante el disefio
y la codificacion. Las externas son las que realizan las mediciones en funcién del
comportamiento del sistema durante las pruebas y la operacion del componente.
Por tanto, debido al caracter de caja negra de los componentes COTS, son las
métricas externas las que interesan. Esto no quita que algunas de las
caracteristicas internas den una medida indirecta de las externas, e incluso que
puedan tener efectos sobre la arquitectura final. Asi por ejemplo, el tamafio de un
componente puede ser importante a la hora de tener en cuenta los requisitos de
espacio de la aplicacioén.

Por dltimo, es importante resefiar que ademas de las caracteristicas de calidad en
un componente, hay otro conjunto de caracteristicas no relacionadas directamente
con la calidad como pueden ser el precio, la asistencia técnica, las condiciones de
licencia, etc., que también son necesarias a la hora de valorar el componente mas
adecuado, pero que quedan fuera del ambito de este articulo.

Como hemos indicado anteriormente, no todas las caracteristicas de un producto
software son aplicables a un componente COTS. La Tabla 1 muestra el modelo de
calidad que proponemos para este tipo de producto software. Basicamente se trata
del modelo de calidad de 1SO, donde desaparecen algunas subcaracteristicas de
Mantenibilidad y Portabilidad y las subcaracteristicas Tolerancia a Fallos, Estabilidad
y Analizabilidad. Es importante observar que algunas de ellas cambian de sentido,
como detallamos a continuacién (las caracteristicas que cambian su sentido
aparecen en negrita en la Tabla 1).



Caracteristica Subcaracteristica Subcaracteristica

(tiempo ejecucidn) (ciclo de vida)
Funcionalidad Idoneidad
Precision
Interoperatividad
Conformidad
Seguridad
Fiabilidad Madurez

Recuperabilidad

Facilidad de Uso Facilidad de Aprendizaje
Facilidad de Comprension
Operatividad

Eficiencia Comportamiento Temporal
Utilizacion de Recursos

Mantenibilidad
Cambiabilidad
Facilidad de Prueba

Portabilidad

Reemplazabilidad

Tabla 1. Modelo de Calidad para COTS

Funcionalidad. Esta caracteristica mantiene el mismo sentido para los
componentes que para un producto software. Podriamos expresarla como la
capacidad del componente para proporcionar las funciones que satisfagan las
necesidades establecidas o implicitas cuando se usa bajo las condiciones
especificadas.

Fiabilidad. Es aplicable directamente a los componentes, y fundamental para su
reutilizacion. La subcaracteristica de Madurez la medimos en funcién de los cambios
qgue sufren las versiones comerciales y la velocidad a la que aparecen. La
Recuperabilidad, en funcion de una serie de atributos que pueden estar presentes o
no en su disefio, indicando los métodos que se utilizan para implementarlos.

Facilidad de Uso. Esta caracteristica, y todas sus subcaracteristicas cambian de
sentido, dado que un componente no sera utilizado por un usuario final directamente
sino por los disefiadores y desarrolladores de aplicaciones software. La facilidad de
uso real de un componente debe interpretarse como la capacidad del componente
para ser utilizado en la construcciéon de un producto o sistema software. En este
sentido buscaremos atributos que midan la facilidad de uso del componente durante
el disefio de las aplicaciones.

Eficiencia. Vamos a respetar la definicion y clasificacién que hace la ISO de esta
caracteristica (en Comportamiento Temporal y Utilizacidon de Recursos), aunque la
mayoria de las propuestas de otros autores prefieren hablar de Rendimiento
(Performance) y usan otra subclasificacion. En cualquier caso, los atributos que
vamos a definir para medir estas caracteristicas son aplicables de forma
independiente al nombre y clasificacion que se utilice.

Mantenibilidad. La facilidad de mantenimiento o mantenibilidad mide la capacidad
de un producto software de ser modificado, entendiendo por modificacion cualquier
correccién, mejora o adaptacion del software. En este sentido, y aunque las



modificaciones internas no seran realizadas por el usuario del componente
(desarrollador), si necesitard probar el componente antes de incluirlo en su
aplicaciébn o cambiar alguno de los parametros que se pueden particularizar. Por
ello, las subcaracteristicas Cambiabilidad y Facilidad de Prueba son las que deben
ser medidas para los componentes.

Portabilidad. Esta caracteristica se define como la capacidad del producto software
para poder ser reutilizado en distintos entornos. En COTS, esa es la esencia misma
de los componentes, que son diseflados y desarrollados especificamente para ser
reutilizados. (Es importante observar que en la Ingenieria del software Basada en
Componentes, reutilizar significa no sélo usar mas de una vez, sino usar en distintos
contextos [Szyperski, 1998]).

Las tres primeras columnas de la Tabla 4 muestran los atributos de calidad para
componentes COTS mensurables en tiempo de ejecucion. Similarmente, las tres
primeras columnas de la Tabla 5 muestran los atributos de calidad mensurables
durante todo el ciclo de vida. Una descripcion detallada del modelo de calidad para
componentes y de los atributos de calidad se puede encontrar en [Bertoa y Vallecillo,
2002].

4 Analisis de la Informacién Ofrecida por lo Vendedores de COTS

Para tener una vision global de la informacion que ofrecen los vendedores de COTS
hemos analizado una muestra de 96 componentes de varios vendedores de COTS,
siendo la muestra mas significativa (64) la de componentsource. EI método de
eleccion de los componentes de la muestra consistio en seleccionar la mitad de las
categorias que aparecen en el catalogo del vendedor y escoger para cada una de
ellas dos componentes. Uno, el mas vendido, indicado en una lista de los 5 més
vendidos dentro de cada categoria, y el segundo de forma aleatoria entre los
componentes de cada categoria. Si este coincidia con el anterior o era del mismo
fabricante, seleccionamos el siguiente en la lista con el objetivo de abarcar un
numero mayor de fabricantes.

La primera dificultad detectada es que la informacién necesaria para evaluar los
atributos de calidad no esta disponible de forma facil. Es necesario buscarla entre
los ficheros de ayuda, los manuales o las demostraciones que ofrecen los
fabricantes. Por tanto, cualquier intento de realizar una evaluacion mas o menos
automatizada es practicamente imposible.

No obstante, en la pagina de cada producto aparece actualmente un conjunto de
datos, denominados datos valorables (asset values) como Lineas de Cddigo,
Tiempo dedicado a I1+D o un factor de madurez de la empresa (man months skill
factor). El grado de cumplimentacion de estos tres datos que ofrece
componentsource se resume en la Tabla 2 para los componentes analizados.

N=64 Man Months R&D Man Months Skill Lines of Code
Factor
Si 22% 20% 20%
NO 78% 80% 80%

Tabla 2. Porcentaje de fabricantes COTS que dan informacion sobre “datos valorables”



El siguiente conjunto de informacién que hemos analizado es el tipo de informacién
para la evaluacion de los productos que ofrecen los desarrolladores de COTS. En la
muestra analizada aparecen tres tipos de ficheros con informacién relevante:
Ficheros de Ayuda y/o Manuales; Productos de evaluacion; y Diagramas UML.

Los Ficheros de Ayuda ofrecidos van desde algunas paginas de publicidad del
producto hasta el manual completo o guias de usuario. Hemos considerado este tipo
de ficheros como adecuados cuando la informacién que aportan puede utilizarse
para evaluar alguno de los atributos del modelo de calidad.

Los productos de evaluacién (o demos) se presentan también con diversos formatos,
proporcionando la funcionalidad completa durante un corto periodo de tiempo (p.e.:
30 dias) o limitando algunas funcionalidades o capacidades. En cualquier caso,
aunque la informacion que ofrece una demo, desde el punto de vista de una
evaluacion inicial de los atributos de calidad, no es muy adecuada ya que obliga a la
instalacion del producto y a un analisis laborioso de sus funcionalidades y atributos
de calidad, si nos parece importante resaltar la posibilidad de probar el producto.

Por ultimo, los diagramas UML se muestran como un fichero independiente o de
forma menos detallada dentro del manual o del fichero de ayuda, por ejemplo,
proporcionando sélo un diagrama de objetos. En cualquier caso, dado que es una
informacion poca habitual pero quizas la mas interesante para evaluar los
componentes, hemos recogido este tipo de informacion cuando aparece algo.

La Tabla 3 muestra el porcentaje de componentes COTS que tenian disponibles
estos tipos de informacién segun los datos obtenidos en nuestro analisis:

N=96 Ficheros Ayuda Demo Diagramas UML
SI 86% 81% 10%
NO 14% 19% 90%

Tabla 3: Informacidn para evaluacién de COTS

La siguiente informacién analizada ha sido si es posible evaluar de alguna forma los
atributos de calidad que proponemos en el modelo de calidad para componentes
software tomando como base la informacion ofrecida en la pagina de cada
componente mostrada por el vendedor o recogiéndola de los ficheros de ayuda,
manuales y demostraciones que se pueden descargar desde dicha pagina.

Hemos analizado las posibilidades de que la informacion ofrecida nos permita
realizar alguna métrica para los atributos propuestos, y en este sentido hemos
evaluado si la informacion era adecuada o no. Las siguientes tablas muestran los
resultados obtenidos, donde hemos mantenido la clasificacion de atributos
mensurables en tiempo de ejecucion (Tabla 4) y mensurables durante todo el ciclo
de vida (Tabla 5).

En estas tablas, la columna “SlI” indica el porcentaje de COTS donde la informacion
facilitada por el fabricante permite valorar alguna métrica relacionada con el atributo.
Un valor de 0% en dicha columna, indica que ninguno de los COTS analizados
proporciona informacion para evaluar ese atributo. Las subcaracteristicas y atributos
con un porcentaje del 50% o superior se resaltan en negrita.



Caracteristica | Subcaracteristica Atributo SI(%)

Funcionalidad | Precision Precision 0
Exactitud Computacional 0

Seguridad Cifrado de Datos 5

Capacidad de Control 0

Capacidad para Auditar 5

Fiabilidad Recuperabilidad Secuenciable 0
Persistente 5

Transaccional 10

Tratamiento de Errores 40

Eficiencia Comportamiento Tiempo de Respuesta 0
Temporal Capacidad de Emision 0

Capacidad de Recepcion 0

Utilizacion de Requisitos de Memoria 81

Recursos Utilizacion de Disco 95

Tabla 4 Informacién Disponible para Evaluar los Atributos de Calidad de Tiempo de Ejecucién

5 Conclusiones y Recomendaciones

La mayoria de los atributos de tiempo de ejecucién son muy dificiles de evaluar
dado la ausencia casi total de informacion relativa a los mismos. La excepcion es la
subcaracteristica de Utilizacion de Recursos debido a que las necesidades de disco
y memoria aparecen directamente en la pagina del vendedor. Otro atributo con un
porcentaje bajo (40%) pero significativo en este contexto es el Tratamiento de
Errores dado que suele aparecer informacién relacionada en los manuales o guias.
El resto de atributos que tienen un porcentaje de COTS pequefio pero superior a
cero aparecen debido a que su propia funcionalidad esta relacionada con el atributo,
por ejemplo, uno de los componentes analizados proporcionaba persistencia a otros
componentes o aplicaciones.

La situacion es diferente en los atributos de ciclo de vida, donde observamos dos
grupos de subcaracteristicas. Un grupo donde la evaluacion es muy dificil debido a
la ausencia de informacién relacionada con sus atributos o con un porcentaje de
COTS donde existe informaciéon muy bajo (20% o menor). En este grupo aparecen
Conformidad Funcional, Madurez, Facilidad de Aprendizaje, Facilidad de Prueba y
Reemplazabilidad. En algunas de estas caracteristicas, como Facilidad de
Aprendizaje, la falta de informacion se explica porque los atributos propuestos deben
evaluarse por terceras casas 0 por expertos independientes. Igualmente ocurre en el
caso de los estandares y de la certificacion. Mas llamativo es el caso de la
evolucionabilidad y volatilidad de las versiones, que son unos datos facilmente
resefiables por los fabricantes. También es destacable la falta de elementos de
prueba en la gran mayoria de COTS analizados.

El segundo grupo de subcaracteristicas esta formado por aquellas cuyos todos sus
atributos o la mayoria de ellos presentan un porcentaje del 50% o superior de COTS
con informacion relativa a los mismos. En este grupo podemos incluir las
subcaracteristicas de Idoneidad, Interoperatividad, Facilidad de Comprension,
Operatividad y Cambiabilidad.

Las subcaracteristicas de Idoneidad, Operatividad y Cambiabilidad se pueden
evaluar conociendo las interfaces, métodos, propiedades y eventos, este tipo de
informacion se puede extraer cuando el fabricante de COTS proporciona el manual o



una ayuda detallada lo cual aparece aproximadamente en la mitad de los casos
analizados. Esta forma de obtener la informacion necesaria para la evaluacion no es
obviamente la ideal pero al menos se puede obtener aunque con un trabajo
laborioso.

Caracteristica Subcaracteristica Atributo Sl (%)
Funcionalidad Idoneidad Cobertura 55
Exceso 55
Cobertura de la Implementacion 55
Interoperatividad Compatibilidad de los Datos 95
Conformidad Conformidad con Estandares 0
Certificaciones 0
Fiabilidad Madurez Volatilidad 5
Evolucionabilidad 10
Fallos eliminados 15
Facilidad de Uso | Facilidad de Periodo para usar correctamente 0
Aprendizaje Periodo para configurar
correctamente 0
Periodo para administrar
correctamente 0
Periodo para dominar 0
Facilidad de Documentacion de Usuario 65
Comprensién Sistema de Ayuda 65
Documentacién Computacional 0
Formacion 30
Cobertura de la Demostracion 90
Operatividad Interfaces Ofrecidas 55
Interfaces externas utilizadas 50
indice de Complejidad 50
Esfuerzo para operar 0
Esfuerzo para configurar 50
Esfuerzo para administrar 0
Mantenibilidad Cambiabilidad Modificabilidad 55
indice de Modificabilidad 55
Capacidad de Control de Cambio 55
Facilidad de Prueba | Auto-Test de Arranque 0
Bateria de Pruebas 5
Portabilidad Reemplazabilidad Compatibilidad hacia atrés 20

Tabla 5 Informacion Disponible para Evaluar los Atributos de Calidad de Tiempo de Ejecucién

Los datos sobre compatibilidad aparecen en la pagina inicial, lo cual da un alto
porcentaje de COTS que suministran esta informacion.

La subcaracteristica de Facilidad de Comprension muestra que algunos de sus
atributos se pueden evaluar y otros no. Entre los primeros estan los relativos a las
demostraciones (95%) y los de ayuda y documentacion (65%), los que carecen de
informacion relativa son los relativos a la documentacion procesable
autométicamente y a la formacion.

A la vista de estos resultados, la informacion que los vendedores ofrecen
directamente en la pagina inicial de cada producto debe recoger una mayor cantidad
de datos que permita iniciar una evaluacion de los atributos de calidad. En este
sentido, parece de gran interés la inclusion de los datos de valorables (asset values)
que ofrece componentsource. Aunque esto podria ser un primer paso, estariamos en



una valoracion y evaluacion manual de los posibles candidatos. El objetivo debe ser
gue esta informacion pueda evaluarse de forma automatica lo cual facilitaria la
seleccion de componentes.

La necesidad de disponer de informacion para evaluar componentes no puede
hacernos perder de vista la dificultad que tiene para los fabricantes y vendedores
proporcionarla, por tanto, otra meta debe ser el consensuar métricas faciles de medir
y cuyos datos se pueden obtener sin necesidad de complicados métodos y
operaciones. Si observamos que ningun fabricante de COTS suministra informacion
relativa a un atributo de calidad, debemos reflexionar si dicho atributo es necesario o
se puede reemplazar por otro que sea mas facil de valorar.

Por ultimo, pensamos que para conseguir una verdadera ingenieria del software de
componentes es necesario disponer de métricas que cuantifiquen sus atributos de
calidad. El panorama descrito en este articulo no es muy alentador en este sentido
pero para resolver este conflicto a largo plazo podemos basarnos en dos ideas. En
primer lugar, es dificil conseguir un acuerdo sobre temas demasiado genéricos. Por
ello, es preciso definir y consensuar modelos de calidad para productos especificos,
en nuestro caso para componentes software. Y en segundo lugar, quizas la
evaluacion de los atributos de calidad de los componentes deberia realizarse por
entidades independientes, al menos hasta que los fabricantes de componentes
software alcance la madurez que existe en la industria de componentes hardware
donde los propios fabricantes ofrecen para sus productos catalogos (data sheet) con
los valores de sus atributos de calidad. Hoy en dia parece una utopia disponer de
este tipo de catalogos para componentes software pero si realmente deseamos
hacer una “ingenieria” del software basada en componentes que produzca productos
de alta calidad ésta debe ser la tendencia.

Referencias

[Azuma, 2001] M. Azuma “SQuaRE: the next generation of the ISO/IEC 9126 and 14598 international standards
series on software product quality”. In ESCOM (European Software Control and Metrics
conference), April 2001.

[Bass et al., 1999] L. Bass and P. Clements y R. Kazman. Software Architecture in Practice. 62 edicion.
AddisonWesley, 1999.

[Bertoa y Vallecillo, 2002] M. F. Bertoa y A. Vallecillo. "Quality Attributes for COTS Components". In Proc. of
the 6th ECOOP Workshop on Quantitative Approaches in Object-Oriented Software Engineering
(QAOOSE 2002). Malaga, Spain, June 2002. Disponible en:
http://www.lcc.uma.es/~av/Publicaciones/02/COTSmetrics.doc

[1SO, 1999] ISO/IEC 14598-1 “Information Technology — Software Product Evaluation — Part 1: General
overview”. May, 1999.

[I1SO, 2001] ISO/IEC 9126-1:2001 “Software Engineering — Product Quality — Part 1: Quality model”.
June, 2001.

[Preiss et al., 2001] O. Preiss, A. Wegmann, y J. Wong. “On Quality Attribute Based Software Engineering”, In
Proc. of the 27th Euromicro Conference, Warsaw, Poland, September 2001. IEEE CS Press.

[Sedigh et al., 2001] S. SedighAli, A. Ghafoor y R.A. Paul. “Software Engineering Metrics for COTS based
Systems”. IEEE Computer, 34(5):4450, May 2001.

[Seppanen y Helander, 2001] V. Seppanen y N. Helander. “Original Software Component Manufacturing:
Survey of the StateofthePractice”. 27" Euromicro Conference, pp. 138-145. Varsovia, Polonia,
September 2001.

[Sweeney et al., 2001] L.E. Sweeney, E.V. Kortright y R.J. Buckley. “Developing an RMODP based architecture
for the defense integrated military human resources system”. J. Cordeiro and H. Kilov (eds.)
Proceedings of WOODPECKER’01, pp. 110-124. Setdbal, Portugal, July 2001.

[Szyperski, 1998] C. Szyperski. Component Software. Beyond Object Oriented Programming. AddisonWesley
Longman, 1998.

10



