
A Model Driven Approach for the Integration of External Functionality in
Web Applications. The Travel Agency System

 Victoria Torres, Vicente Pelechano, Marta Ruiz, Pedro Valderas
Departamento de Sistemas Informáticos y Computación

Universidad Politécnica de Valencia
Camí de Vera s/n, Valencia-46022, España

{vtorres, pele, mruiz, pvalderas }@dsic.upv.es

Abstract

Nowadays, it is getting more and more common to
develop Web applications where part of the
functionality is carried out by different systems. These
systems provide functionality developed in different
technologies that are integrated to build a complete
web application. To deal with the integration issue that
allows us to build this kind of Web applications,
current Web Engineering methods should provide the
mechanisms that facilitate this integration with third
business parties during the modeling process. This
paper presents a model driven method to achieve
integration with external parties at a high level of
abstraction. The method provided is an extension to
the OOWS approach for the construction of this new
kind of Web applications. The Travel Agency System
has been taken as a case study to clearly understand
how the whole method is applied.

1. Introduction

Web applications cannot be longer conceived as
isolated applications. Moreover, the different
possibilities in which business partners can provide
their functionality (CORBA, J2EE or .NET) motivate
us to propose a method that helps in the construction of
more opened and collaborative Web Applications that
integrate functionality from different sources.

There are several ways in which web applications
can be built integrating functionality provided by
external parties. For instance, a web application could
require a concrete external functionality to accomplish
a specific functional requirement or to provide some
information that complements the data handled by our
system. A more complex way could be when business
process supported by the web application makes use of
activities implemented by external business partners.

Web engineering methods are extending their
solutions to provide support and/or integrate
functionality and business processes into web
conceptual models. In this context, we can distinguish
approaches that deal with business process modelling
and integration into navigational models like OOHDM
[1], WSDM [2] or UWE [3] (that introduce process
definitions into navigational models, causing a
semantic overload of the navigational nodes because
activities and processes are living together with nodes
and links), other methods like WebML [5] and UML-
Guide [6] model business processes as some kind of
navigation; UML-Guide is based on the semantic web
technology (OWL) to specify state machines that are
used to express navigation and web service operation
calls. Both approaches introduce some kind of
syntactic mechanisms to include web service calls into
the navigational model. Finally, OO-H [4] and WIED
[7] (in the form of a companion notation to the
WebML), model business processes and navigational
models as separate concerns and notations. Only
WebML and UML-Guide are worried about how to
support integration of external functionality.

Our proposal introduces some contributions in this
context because we think that the integration of
business process in web application modelling should
follow a concern oriented approach preserving the role
and the notation of current business process modelling
techniques (for instance, UML activity diagrams) and
navigational modelling techniques as OO-H and WIED
states, but also focusing on solving the integration to
external parties problem in a model driven fashion
(following the MDA principles). We also want to
emphasize that we provide a methodological guide that
helps web designers in the construction process of this
new kind of web applications. Moreover, we think that
Web Engineering methods also should face up the
integration problem from two different points of view,
which are the consumer and the provider perspective.

On one hand, as consumers we need mechanisms that
help us to model Web Applications that use external
artifacts. On the other hand, as producers we need
mechanisms for generating artifacts that could be
exported and used by other applications.

In this context it is necessary to provide a
methodological guide that helps web developers in the
construction process of this new kind of web
applications. We think that the integration issue should
be tackled following a model driven approach.

The rest of the paper is structured as follows.
Section 2 provides an overview of the method,
explaining the set of models use it and the existing
dependencies between them. Moreover, we state how
this proposal fits into the MDA approach. Section 3
presents briefly the Travel Agency System (TAS) case
study. In the following sections, from 4 to 6 we present
the method, by means of the TAS case study. Section 7
shows the strategy followed to build Web Services that
make accessible the Broker Agent implemented in the
TAS. In section 8 we outline how we generate the
interaction with external functionality provided in
different technologies. In section 9 we show the user
interfaces generated from the specifications made in
the Navigational Model. Finally, section 10 draws
some conclusions and outlines further work.

2. An Overview of the Model-Driven
Method

This method provides an extension to the OOWS
[12] approach. This extension introduces the required
expressivity to capture the integration requirements
that are necessary to build distributed web
applications.

Following the MDA guidelines, this method has
been organized in three views: the Computation
Independent Model (CIM), the Platform Independent
Model (PIM) and the Platform Specific Model (PSM).
Our proposal, as can be seen in figure 1, introduces
new models for: requirements elicitation (Task
Definitions) and supporting integration (the Services
and the Business Process Models). To support
integration when modeling navigation we extend the
already defined Navigational Model and reuse those
existing models like the Dynamic, Structural,
Functional and Presentation.

Due to the fact that our proposal is based on an
existing method that provides a code generation tool
(OlivaNova CASE tool1), in this extended version, we
want to provide a solution for (1) producing

1 http://www.care-t.com

functionality for third party consumption and (2)
integrating functionality supplied by external
providers. In particular, we focus on the integration of
external services at the Business Process and
Navigational level.

Dynamic Model

Application Tier
(J2EE, .NET components)

PIM

Structural Model

Functional Model

Business
Process Model

Services Model

Navigational
Model

Presentation
Model

CODE

Task Definition

Task Taxonomy

CIM

Presentation Tier
(HTML, ASP, JSP, Servlets)

PSM
Services

Model
Navigation &
Presentation

Model

Integration Logic
(Own & External services –

skeletons & stubs)

OlivaNova
Trans. Engine

Fig. 1 Method Overview

In Fig. 1 we can see how the models proposed are

organized in each different level (CIM, PIM, PSM and
code).

3. Applying the Method to the TAS Case
Study

The TAS is a Web Application that sells

electronically travels to its customers. In particular, we
only concentrate on providing transportation services
(plains, trains, cars, boats or combinations of those) for
a trip. This service can be either provided by external
Broker Agents (implemented by other Travel
Agencies) that work in conjunction with our TAS or
implemented in our system. These Broker Agents use
the services provided by Transportation Companies to
supply an offer that matches with the customer
requirements. In case a trip cannot be supplied by any
Transportation Company, it is the Broker Agent which
has to split the trip and try to compose the complete
trip from split services. Once the customer has selected
an offer that matches with his/her requirements, the
TAS uses the services provided by the corresponding
Financial Company to proceed with the payment of the
selected offer. Finally, once a month, the TAS pays
external Broker Agents for the services they have
provided during the previous month.

In the following sections we are going to apply the
TAS case study to the method roughly presented in the
previous section. Moreover, we will also include how

we build the Broker Agent business logic and the
strategy followed to construct the Web Services that
provide the functionality implemented by our Broker
Agent.

4. Defining the CIM

The Computation Independent Model (CIM)
proposed by MDA is built mainly to bridge the
existing gap between those that are experts about the
domain and those that are experts on how to build the
artifacts that satisfy the requirements domain [12].
Then, according to MDA, a CIM must describe the
requirements of the system.

We specify the early requirements of a Web
application by means of a task model. This model is
built from the tasks that users must be able to achieve
when interacting with the application as well as from
the tasks that the system must perform. The
requirements specified when building the task model
are used in following stages for systematically
generating part of the PIM. This approach allows us to
provide a higher degree of traceability than those
requirement specification methods which transform
models manually.

We propose two steps to define the task model:
(1) Task identification: we identify the set of tasks that
the system together an actor must achieve to
accomplish each requirement. An actor represents a
user or any other system that interacts with the system
under development [10]. The set of identified tasks are
organized in a task taxonomy.

(2) Task description. To accomplish the goal defined
by each leaf task included in the task taxonomy, we
describe the set of actions that must be performed to
succeed in achieving that goal. This description is
made by using the UML activity diagrams [10].

 4.1 Task Identification

To identify the set of tasks that represent the web
application requirements we must detect, as a first step,
which actors can interact with the system. Then, for
each detected actor we must define a task taxonomy
that represents the tasks that this actor can achieve
when interacting with the system.
 In the TAS example, we only detect an actor: the
internet user. The task taxonomy associated to this
actor is shown in Fig. 2. For the construction of the
task taxonomy, we take as the starting point, a
statement of purpose that describes the main goal of
the web application. The statement of purpose is
considered the most general task of the system. From

this task, a progressive refinement is performed,
obtaining as a result more specific tasks. Tasks are
decomposed into subtasks by following structural or
temporal refinements. The Structural refinement
(represented by solid lines in Fig. 2) decomposes
complex tasks into simpler subtasks. The Temporal
refinement (represented by dashed lines in Fig. 2)
provides order constraints for the children tasks
according to the task logic. To define these temporal
constraints we propose the use of the temporal
relationships introduced by the ConcurTaskTree
approach (CTT) [11]. In Fig. 2 we can see the temporal
relationship Enabling (>>) which represents that after
being finished the first task the second is activated.
The rest of temporal relationships proposed by the
CTT approach are not explained in this work due to
space constraints.

Book
Transportation

Book
Accommodation

Arrange a
Tourist Package

Arrange an
Excursion

Arrange a
trip

>>

Scope of this
work

Manage User
Preferences Arrangement

Statement
of Purpose

Fig. 2 A Task Taxonomy of the TAS

The statement of purpose of this system is decomposed
into two tasks: Manage User Preferences and
Arrangement. At the same time, the task Arrangement
is divided into three tasks: Arrange a Trip, Arrange a
Tourist Package and Arrange an Excursion. Finally, to
arrange a trip the user must first Book Transportation
and then (>> Enabling relationship) Book
Accommodation. On the other hand, regarding to the
Broker Agent (BA), Fig. 3 depicts the task taxonomy
that represents the requirements of this system. In this
case, there is only an actor that can interact with the
BA system, which is the TAS system.

Statement of
purpose

Confirm
Temporary

Booking

Cancel
Temporary

Booking

Search
Offers

|=|

Proceed
Booking

Fig. 3 A Task Taxonomy of the Broker Agent

In the following section we introduce a strategy to
describe each identified tasks. To better understand
this strategy we show the description of one task of
each presented task taxonomy: Book Reservation
(from the TAS) and Search Offers (from the BA).

4.2 Task Description

In order to describe the set of tasks detected in the
previous stage we extend the traditional descriptions
which specify the system actions that are needed to
achieve each task. We introduce information about the
interaction between actors and the system, indicating
explicitly when (at which exact moment) it is
performed. To do this, we introduce the concept of
interaction point (IP). An IP can define two different
types of interaction:

(1) Output Interaction: the system provides actors
with information and/or access to operations which are
related to an entity2. Actors can perform several
actions with both data and operations: they can select
information (as a result the system provides them with
new information) or activate an operation (as a result
the system carries out with an action).

(2) Input Interaction: the system is waiting for the
user to introduce some data about an entity. The
system uses this information to correctly perform a
specific action (for instance, to carry out with an on-
line purchase with the provided data client). In this
case, the only action that the user must perform is to
introduce the required data.

In order to perform descriptions based on IPs we
propose the use of UML Activity Diagrams [10] as can
be seen in Fig. 4 where:
− Each node (activity) represents an IP (solid line) or a

system action (dashed line). In addition, IPs are
stereotyped with the Output or the Input keyword to
indicate the interaction type.

− In the Output IPs, the number of information
instances3 that the IP includes (cardinality) is
depicted as a small circle in the top right side of the
primitive.

− As far as the Input IPs, we said that the data
introduced by the user is taken by the system to
correctly perform a specific action. To capture that
this kind of IPs exclusively depends on a system
action (it does not take part in the general process of
the task), nodes that represent both elements (input
IP and system action) are encapsulated into dashed
squares.

2 Any object of the real world that belongs to the system domain
(e.g. customer, product, invoice, etc)
3 Given a system entity (e.g. customer), an information instance is
considered to be the set of data related to each element of this entity
(Name: Joseph, Surname: Elmer, Telephone Number: 9658789).

PurchaseOffer

<<input>>
Customer

<<ouput>>
Offer

*
<<input>>

Trip

EstadoAcción1dddGet Offers

1

2

3a

3b

3c

4

Fig. 4 Book Transportation Business Process

Fig. 4 shows the description of the task Book
Transportation. This task begins with the system
action Get Offers (1). This action temporally books the
offers that match with the trip description introduced
by the actor (in this case, the internet user). This
description is introduced by means of the Input IP
defined previously to the system action. Once this
action is finished, the task continues with an Output IP,
where the system provides the internet user with the
list of matched offers (2). From this IP the internet user
can either start the process again to refine his/her trip
description (3a), reject all the supplied offers and quit
(3b) or select one offer (3c). When the internet user
selects an offer the system performs the action
Purchase Offer (4). To perform this action the user
must introduce its client information by means of an
Input IP. Then the task finishes. Fig. 5 shows the
description of the Search Offers task. This task starts
with the system action Search Transportation. This
action searches transportation that matches with the
trip information provided by the actor (the TAS
system) through an Input IP. Next, the system (the
Broker Agent) temporally books the transportation to
finally conclude the task.

<<input>>
Trip

EstadoAcción1dddSearch
Transportation

Book Temporarily
Transportation

Fig. 5 Search Offers Business Process
In order to make task descriptions easy, details

about the information exchanged (in each IP) between
the user and the system are not described (we just
indicate the entity which the information is related to).
This information is specified by means of a technique
based on information templates that is next introduced.

4.2.1 Describing the system data

The information that might be stored in the system
is represented by means of a template technique that is

based on data techniques such as the CRC Card [12].
We propose the definition of an information template
(see Fig. 6) for each entity identified in the description
of a task. In each template we indicate an identifier, the
entity name and a specific data section. In this section,
we describe the information in detail by means of a list
of specific properties associated to the entity. For each
property we provide a name, a description and a data
type. In addition, we use these templates to indicate the
information shown in each IP. For each property we
indicate the IPs where it is shown (if there is any). To
identify an IP we use the next notation: Output (Entity,
Cardinality) for Output IPs and Input (Entity, System
Action) for Inputs IPs.

Fig. 6 Information Template for the Customer

entity
According to the template showed in Fig. 6, the

information that the system must store about a
Customer is (see the specific data section): his/her
name, address, email, birthday date, credit card number
(which is requested in the IP Input(Trip, Pre-Book
Offers) and the phone number.

5. Building PIM models from the CIM

Five models should be specified in order to describe
the web application at the OOWS PIM level:

(1) the structural view of the system
(2) the external functionality that our system will

consume
(3) the business process of the application
(4) the navigational view of the system
(5) the presentation view of the system.
Although there is not an explicit order in which

these models might be built, the existing dependencies
between them introduce some constraints about the
sequence in which some of these views should be built.

Model transformation is applied at this point. From
the requirements gathered previously, we proceed to
transform them into more detailed models of the web
app.

We want to note that CIM models did not specify
what part of the system was going to be provided by an
external business partner, if any. Nevertheless, we
should state at this stage (PIM modeling) which

functionality is going to be provided by external
parties.

In the following subsections we proceed to model
the structure, external functionality, business
processes, navigation and presentation views of the
TAS case study.

5.1 Structural Modeling

The Structural Model specifies by means of a UML

Class Diagram the system structure (its classes,
operations and attributes) and relationships between
classes (specialization, association and aggregation).

This model can be partly obtained (just classes and
attributes) from the Templates built at the requirements
step (see section 4.2.1). As Fig. 7 shows, we have
obtained for the TAS case study four classes
(Customer, Trip, Broker Agent and Line Trip) that
describe the part of the domain that needs to be fully
managed by our system.

-origin
-destination
-departureDate
-departureTime
-arrivalDate
-arrivalTime
-price

Trip
-name
-surname
-birthDate
-address
-email
-phoneNumber
-preferences
-discount

Customer
-origin
-destination
-departureDate
-departureTime
-arrivalDate
-arrivalTime
-transportationCompany
-price

Line Trip

+calculate_amount()

-identifier
-bank_account_number

Broker Agent

1 *

*
1

1 *

Fig. 7 TAS Structural Model

For instance, the TAS requires keeping customer
data (such as his/her name, surname, preferences for
travel searches and the kind of discount associated to
him/her) among others.

5.2 Services Modeling

To build Web applications that make use of external
artifacts (such as components, class libraries, Web
services, etc.), we need to represent them at the
modeling level. Following this approach we can work
with external functionality as if they were native
elements of our system. Therefore, we model those
external artifacts that are going to interact with our

system in a specific model called the Services Model.
This model has been conceived to specify in a
technology independent fashion the external providers
based on the functionality that they supply. This
specification helps us to easily handle external
functionality as if they were part of the native system
at high level of abstraction.

In this model we define the services supplied by
external providers as well as the set of operations (their
interfaces) that they offer. This definition allows us to
have a generic description of functionality that is
provided at the same time by different partners and in
different technologies. There are two main benefits of
having a generic representation of external
functionality. The former is that the modeling process
gets easier because we work with a generic
specification (note that we define adaptors to match
real external operations with those generic modeled in
this model). The latter is that adding or/and removing
providers do not have a collateral effect in the rest of
models that depend on the services model.

As can be seen in Fig. 8 we have modeled each
external system type (the Broker Agent, The Financial
Company and the Transportation Company) with the
set of operations that they provide.

Broker Agent

+search_offer(trip: Trip):Offer_list
+confirm_booking(offer: Offer)
+cancel_booking(offer: Offer)

Financial Company

+payment(creditCard,amount)

Transportation Company

+get_offer(trip: Trip):Offer_list
+confirm_booking(offer: Offer)
+cancel_booking(offer: Offer)
+temporary_booking(offer: Offer)

Airline Boat Ferry Car

Fig. 8 TAS Services Model

5.3 Business Process Modeling

The Business Process Model defines the set of
business processes (BP) that characterize the business
of the application. The BPs that are defined in this
model correspond to processes that describe the flow
and operations that made up the system actions (nodes
in the task description) detected at the CIM level. In
the case of distributed web systems, as it is the case
with the TAS, these BPs can be formed not only of
activities performed by our system but also from
activities carried out by external partners. Therefore,
these processes can be made up by internal
(implemented by our system) or/and external activities
(provided by business partners). To differentiate in this

diagram the external activities we mark them with the
external stereotype.

For the TAS we have specified two task
taxonomies, one to specify the interaction between the
user and the TAS system (see Fig. 2) and another to
specify the tasks that should perform the Broker Agent
that implements our system.
Associated to the first task taxonomy, and taking the
task description specified for the Book Transportation
leaf in the task tree, we proceed to specify/refine the
description of the process that defines the system
actions (Get Offers and Purchase Offer) included in
the Book Transportation Business Process.

<<External>>
FinancialCompany.payment()

Selected Offer

Credit Card
details

[error]

[ok]

<<External>>
BrokerAgent.confirmBooking()

<<External>>
BrokerAgent.CancelBooking() Rejected Offers

Purchase Offer
Credit Card details: CreditCard
Selected Offer: Offer
Rejected Offers: Offer_list
Payment Error: Error

Payment Error

Fig. 9 Purchase Offer Process

In particular, Fig. 9 depicts the definition of the
process for the Purchase Order system action. This
process accepts as input the credit card details, the
offer to be purchased and the list with the rejected
offers. With this information it will proceed with the
payment to the corresponding Financial Company. If
this activity is correctly performed, the process
continues by confirming the selected offer and
canceling the temporary booking of discarded offers.

Split Trip

<<External>>
Airline.Search_offer()

<<External>>
Train.Search_offer()

<<External>>
Boat.Search_offer()

<<External>>
Car.Search_offer()

Combine Offer

Requested
Trip

Offer List

<<External>>
TC.get_offer()

<<External>>
TC.Temporary_booking()

[no_offers]

[offer_match]

[offer_match] [offer_match] [offer_match] [offer_match]

<<External>>
TC.Temporary_booking()

Search Offers
Requested Trip: Trip
Offer List: Offer_list

Fig. 10 Search Offers Process

For the Broker Agent task taxonomy we have
defined two tasks, which are Search Offer and Proceed
Booking. Fig. 10 depicts the activity diagram that
defines the Search Offer process. This process accepts

as input a requested trip (including preferences and
constraints) and manages to get a set of offers that
match with the specified trip.

Fig. 11 defines the process in charge of paying
external Broker Agents for the services supplied to our
TAS. In this figure, the once-a-month accept time
event action generates an output (signal) once a month
that is received by the Pay Broker Agent process. At
this moment, the process is performed.

Once
a

Month

Date
Pay BrokerAgent
Date: date

BrokerAgent.Calculate_amount()

Order_money_transfer()

Fig. 11 Pay Broker Agent Process

5.4 Navigational Modeling

Until this point we have already specified the back-
end of the system (structure, application logic and
external functionality). Nevertheless, as our goal is to
build Web applications, it is necessary to specify the
front-end of the system. This is done through the
Navigational Model.

In the Navigational view we build two models:
(1) the user diagram, This model expresses what

kind of users can interact with the web
application and the system visibility that they
should have.

(2) the navigational model. This model defines
the system visibility for each kind of user in
terms of navigational constructs.

5.4.1 User Diagram

To define what kind of users can interact in the
system we build the User Diagram. This diagram
provides mechanisms to properly cope with additional
user management capabilities, such as the user
specialization that allows defining user taxonomies to
improve navigational specification reuse.

As can be seen in Fig. 12, for the TAS case study
we have specified two user types, an anonymous user
(Anonymous user) that do not need to provide
information about his/her identity to the system
(depicted with a question mark symbol) and a
registered user (Registered customer), who needs to be
identified to connect the system (depicted with a
padlock).

Registered
Customer

Anonymous
User

?

Fig. 12 TAS User Diagram

Once users have been identified, a structured and

organized system view for each type must be specified.
These specifications are shown next in the
Navigational Model.

5.4.2 Navigational Model

The Navigational requirements of the system are
defined in the Navigational model. In this model we
provide a structured and organized view of the system
for each user type defined previously in the User
Diagram. Navigation requirements are captured in two
steps: the “Authoring-in-the-large (global view) and
the “Authoring-in-the-small” (detailed view).

For the definition of the navigational global view
we take as reference the task taxonomy specified in the
requirements modeling step (see Fig. 2). Only that
leafs from the task tree whose associated interaction-
actor is the user are transformed into Navigational
Contexts4 in the Navigational map. In particular, those
leafs targeted with Enabling relationships are defined
in the Navigational Map as Sequence Contexts
(contexts that can only be accessed via a predefined
navigational path by selecting a sequence link). The
rest of navigational contexts are defined as Exploration
Contexts. Exploration contexts are accessible from any
node of the application. Fig. 13 shows the global view
of the system for the registered customer user type.

«context»
Home

E

Registered
Customer

H
«context»
Excursion

E

«context»
Preferences

E
«context»

Transportation

E
«context»

Tourist
Package

E

«context»
Accomodation

S

Fig. 13 TAS Navigational Map

Once the global view has been defined we should
provide a navigational description for each
navigational node (detailed view). Each navigational
context is defined as a view over one of the three

4 Navigational Contexts represent user interaction units that
provide a set of cohesive data and operations to perform
certain activity.

models presented in the previous sections: the class
diagram, the services model and the business logic
model. On one hand, a view over the class diagram
(class view) is defined in terms of the visibility of class
attributes, operations and relationships (class views
defined by OOWS). On the other hand, when these
views are built from operations (defined in the services
model) or processes (defined in the business logic
model) they are defined in terms of the data returned
by these operations/processes (we call it Functional
Views). These Functional Views are organized in three
sections as follows:

(1) One section to specify the operation/process
name, including its input and output
parameters.

(2) A second section to specify which data from
the data returned by the operation/process is
going to be shown in the context.

(3) Finally, in a last section we include the
Operations/Processes that can be performed
with the data contained in the context.

An example of a view defined over the business
process model is depicted in Fig. 14. The way in which
a Functional View will be provided graphically is
explained next:

(1) If the operation that defines the Functional
view requires a set of input parameters these
will be asked to the user by means of a input
form. If not, the operation is directly executed
without providing any data. In Fig. 14 the user
should provide data about the trip as well as
some constraints and preferences related to it.

(2) As a result of this invocation, this context
would filter the data returned by the operation,
showing only the data specified at the central
section of the Functional view (which are
origin, destination, dateDeparture, etc).

(3) Finally, the operations that can be invoked
using the data contained in this context are
located in the bottom section of the Functional
view. In the exemplified Transportation
context, the ProceedBooking activity is made
accessible to proceed with the booking of the
selected offer as well as the cancellation of
those rejected offers that were temporarily
booked. To accomplish this operation an input
form is provided to the user in order to fill in
the credit card details required for this
operation.

E
<<context>>

Transportation
«Functional View»

PreBookOffers(Trip,Constraints,Preferences)
:Offer_list

-origin
-destination
-dateDeparture
-dateArrival
-timeDeparture
-timeArrival
-price
+proceedBooking (creditCard, selectedOffer, rejectedOffers)

Fig. 14 Transportation Navigational Context

5.5 Presentation Modeling

Once the navigational model has been built, we
specify presentational requirements using the
Presentation Model. Presentation requirements are
specified by means of properties that are associated to
the primitives of the navigational context. This
specification is strongly based on the Navigational
Model. It allows us to specify the organization of data
included in the Navigational Model.

To define this model we make use of the basic
presentation patterns defined by the OOWS approach,
which are Information paging, Ordering criteria and
Information Layout. Fig. 15 shows the presentation
defined for the Transportation context. It defines by
means of the Ordering criteria that the data contained
in the context must be presented ordered ascendant by
price. It also defines the layout in which data must be
organized. We decided to show the offer list following
the register pattern.

E
<<context>>

Transportation

Pattern: register
Order by: price (ASC)

<<Functional view>>
PreBookOffers():Offer_list

Fig. 15 Transportation Presentation Context

6. Building the PSM for the Services Model

At the PSM level Services Models should be

defined as many as different technologies our
application is going to interact with. For instance, we
should have a Services Model for Web Services in case
our application needs to interact with partners that
provide their functionality by means of this
technology.

The PSM for Services Models represent the specific
technological aspects of the different technologies. To
build these models we take the specific interface
specifications that they provide (WSDL for WS or IDL
for CORBA).

Services Model

Services Model
(for Web Services)

Services Model
(for CORBA)

Services Model
(for J2EE)

...

PIM

PSM

Fig. 16 Services Model at PIM and PSM levels

Once the PSMs are built, in order to solve the

differences that arise when integrating various
applications (different interfaces, different protocols,
different data formats, etc.) we should make use of
adapters. These adapters should define the mappings
between the operations defined at the PIM (abstract
representation) and the ones included at the PSM
(specific representation defined by providers). In Fig.
17 we show two Web Services imported from two
different travel agencies (BalearicTripsWS and
OceanicTripsWS). Both provide a set of operations
that fulfil the ones modelled in our PIM Services
Model. However, we still need to link the operation/s
from each service with the generic ones. For instance,
the search_offer operation defined for the Broker
Agent at the PIM Services Model is fulfilled by the
searchOffers operation from the OceanicTripsWS
and by the getOffers and temporaryBooking
operations from the BalearicTripWS.

...
<operation name="SearchOffers">

<input message="tns:SearchOffersRequestMsg"/>
<output message="tns:SearchOffersResponseMsg"/>

</operation>
...

...
<operation name="getOffers">

<input message="tns:getOffersRequestMsg"/>
<output message="tns:getOffersResponseMsg"/>

</operation>
...

<<Ext-WebServices>>
OcanicTripsWS

- http://webservices.oceanictrips.com/…

+searchOffers(trip:Trip):Offer_list
+confirmBooking(offer:Offer)
+cancelBooking(offer:Offer)

<<Ext-WebServices>>
BalearicTripsWS

- http://webservices.balearictrips.com/…

+getOffers(trip:Trip):Offer_list
+temporaryBooking(offer:Offer)
+confirmBooking(offer:Offer)
+cancelBooking(offer:Offer)

Fig. 17 An excerpt of two Imported Web Services

7. Generating a Web Service for the
Broker Agent

In order to make available to external parties the

Broker Agent implemented in our system, we are
going to generate a Web Service (WS) that provides
access to its functionality.

<<External>>
Transportation_Company.Cancel_Booking()

Offer
Cancel Booking
Offer: offer

Split Trip

<<External>>
Airline.Search_offer()

<<External>>
Train.Search_offer()

<<External>>
Boat.Search_offer()

<<External>>
Car.Search_offer()

Combine Offer

Requested
Trip

Offer List

<<External>>
TC.get_offer()

<<External>>
TC.Temporary_booking()

[no_offers]

[offer_match]

[offer_match] [offer_match] [offer_match] [offer_match]

<<External>>
TC.Temporary_booking()

Search Offers
Requested Trip: Trip
Offer List: Offer_list

<<External>>
Transportation_Company.Confirm_Booking()

Offer

Confirm Booking
Offer: offer

<wsdl:portType name="ApplicationLogicSoap">
 <wsdl:operation name="search_offer"/>

<wsdl:input message="tns:searchOfferSoapIn" />
 <wsdl:output message="tns:getOfferSoapOut" />
 <wsdl:operation name="confirm_booking"/>

<wsdl:input message="tns:confirmBookingSoapIn" />
 <wsdl:output message="tns:bookOfferSoapOut" />

<wsdl:operation name="cancel_booking"/>
<wsdl:input message="tns:cancelBookingSoapIn" />

 <wsdl:output message="tns:cancelOfferSoapOut" />
 </wsdl:portType>

Fig. 18 Application Logic WSDL for the Broker

Agent
For the construction of the WSDL definition of the WS
we take the business processes defined for the internal
Broker Agent in the Business Processes Model. This
model was made up of three processes which are going
to be included in the WS. These are search_offer,
cancel_booking and confirm_booking. These
processes definitions include the necessary information
for building the WSDL definition (including the input
and output parameters of each process).
A graphical schema that defines how to obtain the
WSDL definition is provided in Fig. 18.

8. Generating the Interaction with
External Parties

Depending on the technology that a provider uses to

export its functionality, we should provide an
appropriate solution for each case. As Fig. 19 shows,
for each instance from each PSM Services Model we
should build the required client artifact in charge of
interacting with the corresponding service provider.

Services Model

Services Model
(for Web Services)

Services Model
(for CORBA)

Services Model
(for J2EE)

...

PIM

PSM

Code

Stub Java Classes

...

Client stubs Stub Java Classes

Fig. 19 Generating the appropriate Interaction

Based on the interfaces supplied by their respective
providers we can generate the corresponding clients to
fulfill the interaction with the external partner.

For instance, when functionality is provided
following the Web Services model we generate from
the associated WSDL definition the necessary client
stubs to consume the supplied operations via SOAP,
REST or XML-RPC depending on the characteristics
of the available WS.

9. Generating the Web Interface

Web interfaces are generated taking as input the

information modeled in the Navigational and
Presentation Model. For the running example, we have
modeled in section 5.4 the Transportation context as a
functional view for the PreBookOffer operation.

The web interface that implements the
Transportation context includes (as the top of Fig. 20
shows) direct access to those Navigational Contexts
that we have defined as Exploration Contexts
(Preferences, Transportation, Tourist Packages and
Excursions).

The set of input parameters of this operation define
the information that is required to the user in order to
provide the corresponding data (an offer list provided
by external broker agents). In Fig. 20 we can see how
the input parameters (trip details, constraints and
preferred transportation) are included in the
Transportation context to allow the user to specify the
parameters for the PreBookOffer operation.

Fig. 20 Web Form for the Transportation Context

When this operation is executed, the context is

shown as a Web page (see Fig. 21) that includes the
offer list gathered from the Broker Agents. In Fig. 21
we can identify the register pattern applied to the
retrieved offer list from the Broker Agents that work
with our system.

Fig. 21 Web Page with the Offer list

10. Conclusions and Further Work

In this work we have presented through the TAS
case study the set of models that need to be built in
order to develop a Web application that integrates
functionality from external parties.

This approach is being incorporated to the OO-
Method CASE tool (the software automatic production
environment that gives support to the OO-Method
[13]).

As further work we have planned to define the
transformations that generate automatically the Web
Services not only to provide the business logic of the
application, moreover we plan to provide the
information gathered also in the Navigational and
presentation models.

In order to define transformations between models
defined at CIM and PIM level we follow a strategy
based on graph transformations. After completing the
preliminary PIM models obtained from this first
transformation, we plan to use the OlivaNova tool to
obtain the application code for a specific platform.

10. References

[1] D. Schwabe, and G. Rossi, “An Object Oriented
Approach to Web-Based Application Design”, Theory and
Practice of Object System 4(4), Wiley and Sons, New York,
1998, ISSN 1074-3224.

[2] O. De Troyer and C. Leune, “WSDM: A user-centered
design method for Web sites”, In Proc. of the 7th
International World Wide Web Conference, 1998.

[3] N. Koch and M. Wirsing, “Software Engineering for
Adaptive Hypermedia Applications”, In 3rd Workshop on
Adaptive Hypertext and Hypermedia, 2001.

[4] N. Koch, A. Kraus, C. Cachero and S. Meliá,
“Integration of Business Processes in Web Application
Models”. Journal of Web Engineering. Vol. 3, No. 1 (2004)

[5] M. Brambilla, S. Ceri,, S. Comai, P. Fraternali and I.
Manolescu, “Model-driven Development of Web Services

and Hypertext Applications”, SCI2003, Orlando, Florida,
July 2003

[6] P. Dolog, “Model-Driven Navigation Design for
Semantic Web Applications with the UML-Guide”. In
Maristella Matera and Sara Comai (eds.), Engineering
Advanced Web Applications

[7] R. Tongrungrojana and David Lowe, “WIED: A Web
Modelling Language for Modelling Architectural-Level
Information Flows”. Journal of Digital Information, Vol 5
Issue2.

[8] J. Fons, V. Pelechano, M. Albert and O. Pastor,
“Development of Web Applications from Web Enhanced
Conceptual Schemas”, Proc. Of the International Conference
on Conceptual Modelling, 22nd Edition, ER'03, Chicago,
EEUU, 2003, pp. 232-245.

[9] MDA Guide Version 1.0.1.

[10] Object Management Group. Unified Modeling
Language (UML) Specification Version 2.0 Final Adopted
Specification. www.omg.org, 2003.

[11] F. Paternò, C. Mancini and S.Meniconi,
“ConcurTaskTrees: a Diagrammatic Notation for Specifying
Task Models”, INTERACT’97, Chapman & Hall, 1997, pp.
362-369.

[12] Wirfs-Brock, B. Wilkerson, and L. Wiener, “Designing
Object–Oriented Software.”, Prentice–Hall, 1990.

[13] O. Pastor, J. Gómez, E. Insfrán and V. Pelechano, “The
OO-Method Approach for Information Modelling: From
Object-Oriented Conceptual Modeling to Automated
Programming”, Information Systems Elsevier Science, 2001,
Vol. 26, Number 7, pp. 507-534

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

