
Model Integration Through Mega Operations

Th. Reiter, E. Kapsammer, W. Retschitzegger

W. Schwinger

Department of Information Systems

Johannes Kepler University Linz

Department of Telecooperation

Johannes Kepler University Linz

{reiter | ek | werner}@ifs.uni-linz.ac.at wieland.schwinger@jku.ac.at

Abstract

With the advent of the Model Driven Architecture,

models are replacing code as the major artifact in

software development. A critical success factor for this

is the possibility to derive models from each other in

terms of transformations. Existing approaches, such as

the forthcoming QVT-standard, will provide a proper

foundation for transforming models on a fine-grained

level. They, however, do not provide appropriate

abstraction mechanisms for different integration

scenarios, such as integrating models representing

cross-cutting concerns or integrating models even from

different domains. This paper proposes so called mega

operations representing an abstraction mechanism

which allow to specify model integration at the meta-

level, thus forming the prerequisite to automatically

derive a set of directives carrying out the actual

integration at the model level. To cope with different

integration scenarios, tight as well as loose integration

of models is supported on top of a QVT-like language.

1. Introduction

The OMG has initiated the Model Driven Architecture

(MDA), a software design methodology emphasizing

the construction of models and the subsequent

generation of executable code on basis of those models

[23]. Thus models are replacing code as the major

artifact in software development [4]. One of MDA’s

main benefit is the abstraction of core business

functionality from implementation specific details

resulting in platform independent models (PIM) and

platform specific models (PSM).

The derivation of a model from another model is

carried out through a transformation - ideally

automated. In order to standardize such a model

transformation language, several proposals for a

Query/Views/Transformations (QVT)-language have

been submitted to the OMG [12]. Model

transformations as envisaged by QVT focus on

transforming a model ma at the level M1 conforming to

a meta-model Ma at the level M2 into a model mb

conforming to a meta-model Mb, where Ma and Mb may

potentially be the same.

QVT definitely represents a major building block

technology for basic model transformations in the

MDA. It does not provide, however, appropriate

abstraction mechanisms for different kinds of model

integration scenarios, which are highly needed in

practice and well-known from other research areas such

as federated information systems [29], [32],

megaprogramming [31], web service composition and

[19] and aspect-oriented programming [18]. Such

integration scenarios would require a series of basic

model transformations which will simply not scale up

when manually specified for complex models.

Following, for example, the basic principle of

separation of concerns in the modeling realm would

avoid the construction of large, monolithic domain

models which are difficult to handle and comprehend.

At the same time, these models, each of them

describing a certain cross-cutting concern of a whole

domain (e.g., security aspects and transactional aspects

of a web-based tourism information system), need to be

tightly integrated into one coherent model representing

the entire domain, as required for MDA.

Integration is not only needed in the case of models

representing aspects of the same domain, but also in

case of models covering different domains. For

example, it would be highly desirable to integrate web-

based reservation systems covering different domains

like transportation (e.g, car rental) and accommodation

(e.g., hotel booking) in order to allow them to

interoperate providing new services for customers. This

scenario requires for loose integration, i.e.,

synchronizing both domain models in certain ways by

explicitly representing the model’s interrelationships,

while providing their autonomy.

Although these two scenarios look quite differently

at a first sight, they bear several commonalties in mind.

Both call for integrations which can be defined in an

abstract and thus, scalable way, without burden the

modeler with transformation primitives. Integration

should not have to be defined repeatedly each time

when models should be integrated, but rather be

specified once at a meta-level, thus facilitating reuse of

integration knowledge. Finally, in order to prevent ad-

hoc integration of models, the actual integration at the

model level should be governed at the meta level and

performed fully automated.

To deal with these requirements and based on our

experience with various web-based model integration

scenarios (cf. [15], [16], [20], [26], [28]) we introduce

so-called mega operations1 providing abstraction

mechanisms for model integration, thus allowing

modelers to develop web systems of several

interrelated models. Mega operations offer a set of

operators for dealing with model heterogeneity as well

as synchronization and provide the possibility to

specify integration constraints. Specified at the level of

meta-models that are MOF-based [24], a set of

integration directives can be automatically derived,

carrying out the actual integration at the model level.

To fulfill the needs of the integration scenarios

outlined above, integration done by mega operations

are required to follow two strategies. Facilitating the

integration of aspect models into a coherent domain

model, a so called weaving mega operation is

proposed, achieving tight model integration.

Integrating independent domain models requiring, e.g.,

synchronization and loose coupling to preserve their

autonomy is supported by a so called sewing mega

operation. These mega operations are based on a

common architecture using primitive QVT-

transformations underneath.

This paper introduces these two mega operations in

Section 2 and 3, together with a set of appropriate

operators for each of them. In Section 4, an architecture

supporting these mega operations is outlined. After a

detailed discussion of the benefits of our approach with

respect to other closely related approaches in Section 5,

1 The term “mega operation” is influenced by the notion of

megaprogramming - a DARPA research program

conducted in the late 1980's and early 1990's (cf. [5], [31])

- and megamodel which is defined to be a model, whose

elements represent models [4].

we conclude the paper pointing out further research

issues.

2. Weaving

Weaving provides for a tight integration of models.

This means that a model ma conforming to a meta-

model Ma and a model mb conforming to a meta-model

Mb, can be woven to produce a model mab which in turn

conforms to a woven meta-model Mab (cf. Fig. 1).

Figure 1. The Weaving Mega Operation

Note that the term weaving is adopted from aspect-

oriented programming (AOP) [18], where it describes

the process of weaving code representing a cross-

cutting-concern into a base program. Transferring this

basic idea into the modeling realm, but differently to

the concept of weaving introduced by Bézivin et al. [3]

(cf. Section 5), our weaving mega operation

encompasses two steps:

(1) The weaving of aspect meta-models each of them

describing a certain cross-cutting concern

produces a woven meta-model (cf. Fig. 2)

(2) The subsequent weaving of aspect models,

produces a woven model (cf. Fig. 3).

These two steps run automatically, provided that a

particular weaving specification defines how to execute

the weaving mega operation (cf. below).

Instead of only recording the semantic relationships

between model elements, creating a woven model is

necessary in case further processing or code generation

mechanisms require so.

Furthermore, an advantage of defining a woven

meta-model prior to the weaving of models is the

ability to perform conformance checks with respect to

the woven meta-model. Furthermore, having a meta-

model for any given model is beneficial for defining

transformations in the sense of MDA.

«Metamodel»

M a

«Model»

m a

«Metamodel»

M b

«Model»

m b

«Model»

m ab

«Metamodel»

M ab

In the following we use a simplistic, though still

sufficient running example to illustrate our basic ideas,

stemming from the well-known domain of petri nets

[25].

The meta-model MPetri describes some basic

structural aspects of a petri net consisting of places and

transitions connected by arcs, whereas the meta-model

MMark represents the aspect of markings, constituting

places and marks (cf. Fig. 2).

The first step of the weaving mega operation - meta-

model weaving - results in a woven meta-model

MPetriMark, representing a petri net with certain markings.

Figure 2. Meta-Model Weaving

The second step deals with the weaving of models

(cf. Fig. 3). Governed by the new woven meta-model

MPetriMark, the woven model mPetriMark is produced, which

consists of model elements from both source models

mPetri and mMark.

Figure 3. Model Weaving

Applying weaving mega operations as described

above may yield the following benefits:

� Weaving allows the composition of domain meta-

models, and thus enables the re-use of previously

existing domain knowledge.

� Weaving allows several teams to model

independently and weave their models as needed.

� Weaving allows the evolution of a domain, as new

concerns can be woven in the form of aspect

models, and thus supports incremental

development of models.

� Weaving supports scalability, as there are no

monolithic meta-models and models impairing

comprehensibility.

� Weaving allows libraries of models to be built up

for later re-use.

� Weaving makes modeling an activity of

assembling pre-existing “components”.

The following subsections discuss the pre-requisites

for putting the weaving mega operation into use, in

terms of the weaving specification, comprising weaving

operators and model integration constraints.

2.1. Weaving Operators

This subsection discusses several operators which are

essential for defining weaving operations. Such

operators need to address the reconciliation of

overlapping concepts and allow basic model re-

organization (cf., e.g., [30]). The set of operators

comprises overrides, references, prune, and

rename and does not claim to be complete.

Overrides. In case that two meta-models overlap in

the form of elements representing the same concept, a

weaving specification has to denote how to reconcile

these model elements. Adopted from [30], but in

contrast to them applied at a meta-level (cf. Section 5),

we make use of an overrides operator which

specifies that one meta-model element (qualified by

“::”) and its properties at the left hand side, take

precedence over another meta-model element at the

right-hand side.

With respect to the example shown in Fig. 3, the

overrides operator expresses that meta-model

element Place of the meta-model MMark replaces its

pendant within the meta-model MPetri.

MMark::Place overrides MPetri::Place;

References and Inherits. If two meta-models do

not conceptually overlap, a references operator

M Petri

Place
id : Integer
name : String

Transition
id : Integer
name : String

Arc
id : Integer
name : String

M Mark

Place
id : Integer
name : String

Mark
id : Integer
name : String

overrides

M PetriMark

Place
id : Integer
name : String

Transition
id : Integer
name : String

Arc
id : Integer
name : String

Mark
id : Integer
name : String

Weaving

m Mark

m PetriMark

m Petri

place
id = '1'
name = 'A'

place
id = '1'
name = 'X'

Weaving

transition

transition

place
id = '2'
name = 'B'

place
id = '3'
name = 'C'

place
id = '4'
name = 'D'

Arc
Arc

arc
Arc
Arc arc

Mark

place
id = '3'
name = 'Y'

mark transition

transition place
id = '4'
name = 'D'

Arc
Arc

arc
Arc
Arc arc

place
id = '1'
name = 'X'

place
id = '3'
name = 'Y'

Mark mark

place
id = '2'
name = 'B'

denotes to connect meta-model elements via a new

association. This operator also allows to specify the

multiplicities of the association established between

two meta-model elements. In our example, this

expresses the fact that a place is able to hold an

arbitrary number of marks.

MMark::Mark references(*,1) MPetri::Place;

Similar to the references operator, but naturally

not allowing for specifying multiplicities, we use an

inherits operator to connect model elements via

inheritance relationships.

Prune and Rename. As the previously introduced

weaving operators “enrich” meta-models with

elements, only, they cannot deal with the renaming or

the deletion of possibly obsolete model elements, as

portrayed in [30].

Therefore, a prune operator serves to rid all

unnecessary meta-model elements in a meta-model.

The example below shows the pruning of the obsolete

Mark element.

MMark::Mark prune;

Renaming of meta-model elements can be done by

applying a rename operator. As opposed to the

previously mentioned weaving operators, prune and

rename are unary in terms of meta-model elements.

The example below shows the name change of the

Place element.

MPetri::Place rename(‘State’);

2.2. Model Integration Constraints

Besides weaving operators, a weaving specification

shall contain certain constraints, called model

integration constraints (MIC). MICs are used to restrict

the application of a weaving operator when integrating

at the model level, thus forming some kind of

precondition.

A MIC can be annotated for each application of a

weaving operator. This means that the application of

the operator at the model level is only carried out for

those model elements, meeting the corresponding

constraint. Thus, the MIC acts like a “filter”, sorting

out all invalid weaving operations and is indicated after

the keyword “MIC:” .

As shown in Fig. 3, only the Place model elements

with id=‘1’ and id=‘3’ from the model mMark

override the Place model elements in the mPetri model

with the matching values. For this, the previous

example of the overrides operator is extended by the

following MIC-specification:

MIC: MMark::Place.id == MPetri::Place.id;
MMark::Place overrides MPetri::Place;

2.3. Performing Meta-Model Weaving and

Subsequent Model Weaving

A weaving operation can be reduced to a set of QVT

transformations on the meta-model as well as on the

model level. For the generation of the woven meta-

model QVT transformations, derivable from the

weaving specification, can be specified on the

transformation’s meta-level (M3) and applied to meta-

models. In this way QVT populates the woven meta-

model with model elements stemming from the meta-

models to be woven. Likewise the subsequent weaving

of models is specified in QVT on the transformation’s

meta-level (this time on M2) and applied to the model

level. The actual QVT transformations to apply depend

on the weaving operators involved and their attached

MICs resulting in a certain transformation behavior.

According to the latest QVT 2.0 proposal [26] and

to the best of our knowledge, Fig. 4 depicts an example

transformation which could be derived from a weaving

as shown in Fig. 2 and Fig. 3. Assuming that a

transformation executed beforehand has populated the

mPetriMark model with the model elements from mPetri, the

execution of the transformation below in the direction

of the mPetriMark model, would enforce the overriding of

place model elements and the creation of the

according mark model elements.

Figure 4. Example QVT Transformation

 id = ip
 name = np

 id = ip
 name = np

mt:Mark

 id = im
 name = nm

 ms:Mark

 id = im
 name = nm

Mark2PetriMark

C E

mark :
Mark

petrimark :
PetriMark

ps.id = pt.id;
when

 «domain» «domain»

ps:Place pt:Place

3. Sewing

As already mentioned, the weaving mega operation

provides for a tight integration of models, by

composing a coherent domain model from aspect

models. Besides that, a loose coupling of models is

required to integrate independent models pertaining to

different domains and to keep them autonomous at the

same time.

Therefore, apart from weavings, we see the

necessity to introduce another mega operation called

sewing. Sewing seems an appropriate analogy, as loose

coupling can be seen as a form of stitching the involved

models together, and thereby connecting without

modifying them.

Analogous to weaving, a model ma conforming to a

meta-model Ma and a model mb conforming to a meta-

model Mb can be sewn to produce a set of mediators

[32] realizing the integration, by “supervising” the

sewn model elements (cf. Fig. 5).

Similar to a weaving specification, a sewing

specification consists of operators annotated with

MICs, and thus defines how to execute a sewing mega

operation (cf. below). Specifying sewings on meta-

models prior to the sewing of models, is deemed

necessary to enable a meta-modeler to clearly define

which model elements are valid to be sewn, and to

henceforth rule out the ad-hoc creation of possibly ill-

defined sewings.

Figure 5. The Sewing Mega Operation

Continuing our running petri net example, let’s

imagine that we would like to have a graphical user

interface (GUI) for a petri net simulation (cf. Fig. 6).

The mega operator sewing could establish (similar to

the model-view-controller paradigm) a loose coupling

between the name attribute of the Place meta-model

element belonging to the petri net model, and the

title attribute of a TextField meta-model element

belonging to the GUI model.

A tight coupling in the form of weaving the GUI

model and the petri net model would not be adequate in

this situation, as different domains are involved and

weaving would simply entangle the different domain

concepts.

Figure 6. Meta-Model Sewing

As shown in Fig. 7, the application of a sewing

mega operation at the meta-level results in the

establishment of mediators between model elements,

guided by MICs.

Figure 7. Model Sewing

Applying sewing mega operations as described

above may yield the following benefits:

� Sewing integrates models, but still allows them to

exist independently without affecting their

structure and thus keeping their autonomy.

� Sewing serves to keep models synchronized.

m GUI

Container

m Petri

Transition Arc

window

Label

container Button

textfield
title = 'A' textfield

title = 'B'
textfield

title = 'C' textfield
title = 'D'

place
name = 'D'

place
name = 'X'

Arc Arc Arc Arc arc
transition

place
name = 'Y'

place
name = 'B'

button

Label
Label
label

: Mediator

'synchronizes'

: Mediator

«Metamodel»

M b

«Metamodel»

M a

«Model»

m a

«Model»

m b

Mediators

M GUI

M Petri

Transition Arc

Window

Label

Container

Button
TextField

title : String

Place

name : String

synchronizes

� Sewing integrates models pertaining to different

domains without entangling their concepts.

The following subsections discuss sewing operators

together with their corresponding MICs and realization

in terms of mediators.

3.1. Sewing Operators

The particular behavior of mediators depends on the

specific operators in the sewing specification. The

following subsection introduces such operators, namely

synchronizes and depends, which are useful for

the sewing of models. Such operators enforce to

supervise the sewn model elements by observing their

states and appropriately propagate changes.

Synchronizes. In case that, for instance, attributes

of two model elements should be kept synchronized, a

synchronizes operator can be used to denote that

fact. With respect to the previous example (cf. Fig. 6

and Fig. 7) the synchronizes operator together with

a MIC is employed as follows:

MIC: MGui::TextField.title ==

 MPetri::Place.name;

MGui::TextField.title synchronizes

MPetri::Place.name;

According to the MIC, synchronizations are

established between TextField model elements and

Place model elements, only, if having equal values for

their title and name attributes, respectively. Applied

on the model level (cf. Fig. 7), changing the value of

the title attribute would lead to a change in the value

of the name attribute.

Depends. The depends operator is used to denote

that the existence of one model element depends on the

existence of another. If two teams are working on two

separated, though related models, it can be useful to

establish such correspondences between the related

model elements. Thus, if one team decides to delete a

model element, the related model element should

immediately be deleted as to avoid inconsistencies

among the teams’ models. The example below shows a

sewing specification for the meta-model element

TextField depending on the meta-model element

Place.

MIC: MGui::TextField.title ==

MPetri::Place.name;
MGui:TextField depends MPetri::Place;

It has to be noted, that sewing is focused on

integrating existing models, not on creating them anew

from another model, as QVT allows. Sewings therefore

have a narrower domain and aim at simplifying certain

integration tasks that would probably be more

cumbersome to express using QVT alone.

3.2. Sewing realized by Mediators

The application of a sewing operator does not result in

a newly produced, integrated model per se, as it is the

case with weaving, where heterogeneities in the form of

conceptual overlap can be eliminated through the

establishment of woven meta-models and models. On

the contrary, sewing has to handle, or better to say,

transparently resolve existing overlap throughout sewn

models. Thus, the outputs of the sewing mega-

operation are mediating entities producing the desired

integration behavior.

On the model level, mediators can manifest as QVT

transformations propagating attribute changes or

creating and deleting model elements accordingly.

 Operators other than the two previously introduced

depends and synchronizes, which would for

instance allow model elements to be transparently

connected via associations and generalizations across

model boundaries, could be realized using the Java

Metadata Interface (JMI) [10] and the Eclipse

Modeling Framework (EMF) [9]. They provide an

infrastructure for the generation of programming

interfaces to instantiate and manipulate models as Java

run-time objects. Such programs resulting from sewn

models have to be adapted in a way, as to reflect the

semantics and the mediating behavior of the specific

operator. In case that it is not possible to influence the

model code generation, an elegant solution would be to

utilize an aspect-oriented approach and weave the

necessary code fragments for the mediator pattern into

the model code. The aspect code necessary would be

derived from the sewing specifications.

However, when finally code is to be produced from

models, the mediating behavior also has to be realized

on the system level, specific to a certain platform.

Sewings can of course manifest as models themselves,

which describe the respective semantics and the

integration behavior imposed on models. The

generation of platform specific “bridge” code

facilitating a loose coupling on the system level is thus

rendered a common task like any other model driven

development, as integration of heterogeneities is taken

care of on the model level. The mediation on the

system level could for instance be carried out by a web

service, connected to different systems generated from

sewn models.

4. Architecture

This section proposes a first sketch of an architecture

for the implementation of a mega-operation toolkit and

briefly discusses relevant technologies. Fig. 8 shows a

GUI component as means for handling a Mega-

Operations Controller, which orchestrates the toolkit’s

components as required. A MOF repository serves as

basis for storing meta-models and models. To access

and manipulate them programmatically, programming

interfaces like JMI or EMF Java mappings can be used.

Although EMF and JMI provide the necessary

infrastructure for manipulating models, they are not

capable of model transformations in the sense of QVT.

Hence, a QVT-like model transformation tool such as

Marius
2
, which has been developed in the course of a

former cooperation between the University of Linz and

the University of South Australia, is employed for

model transformation. Enforcing constraints on models

can be accomplished by an Object Constraint Language

(OCL) checker like [1].

Figure 8. Architecture for Mega Operations

As already mentioned, the weaving mega operation

can essentially be expressed as a series of QVT-like

transformations, as can the sewing mega-operation

concerning the model level. Thus, weaving and sewing

specifications are parsed and input into a QVT

generator, which can be seen as the toolkits core

component, “compiling” weavings and sewings into

QVT-code. The resulting code is in turn executed by a

QVT-engine upon models stored in the repository to

achieve the integration of models. A code generation

component serves to create bridge code realizing the

sewing mega-operation’s loose coupling on the system

level. The therefore necessary “glue” code can be

incorporated into the code derived from models either

directly through customisation of the generated code or

through an aspect weaver like AspectJ [18].

2 The name Marius stems from Gaius Marius, a Roman

consul and general, best known for initiating a series of

reforms 107 B.C., completely restructuring the

organization equipment and tactics of the Roman army.

5. Related Work

This section gives an overview on other approaches

most relevant with respect to our idea of mega

operations. For this, the main focus of each approach is

summarized briefly, followed by clearly pointing out

similarities and differences to our own approach.

Table 1 summarizes the results by giving an

overview on operators supported as well as whether the

approach deals with arbitrary MOF-based models

either on the M1 or the M2 level and if the

specification on M2 is used for model integration on

M1.

Table 1. Comparison of Related Approaches

o
v
e
rr

id
e

s

re
fe

re
n

c
e

in
h

e
ri

ts

p
ru

n
e

s
 /

 r
e
n

a
m

e
s

s
y
n

c
h
ro

n
iz

e
s

d
e

p
e
n

d
s

AMMA 3 3 3 3 3

Rondo 3 3 3 3

Model Composition

Semantics
3 3 3

Model Composition

Directives
3 3 3 3

GME 3 ~ 3 3 3

C-SAW 3 3

Domain Composition

Approach
~ 3

Legend: 3 ...

...

~ ...

 not explicitly supported

 explicitly supported

 not applicable

A
p

p
ro

a
c

h

M
O

F
-b

a
s
e
d

M
2

 m
e

ta
-l

e
v
e

l

M
1

 m
o

d
e

l-
le

v
e

l

M
IC

s

Operators

M
e

ta
-l

e
v
e

l
b

a
s
e

d
 i
n

te
g

ra
ti
o

n Operators

Weaving Sewing

AMMA. Bézivin et al. [3], [4], [21] are developing

the Atlas Model Weaver (AMW) as part of the AMMA

model engineering platform, which is soon to be

released under the Eclipse GMT project [8]. The AMW

aims at supporting modelers to establish semantic links

between elements of different models or meta-models,

which can serve as input for further tools. Model

weaving in the sense of Bézivin et al. seems to be a

manual operation specifying links between elements of

different models or meta-models. The set of links

produced by such a weaving operation is represented

by a weaving model. A weaving model appears to be

similar to a weaving specification in our approach,

which specifies operators linking meta-model elements.

Generation Rules
Parser for

Weaving Sewing

Specifications

GUI

Mega-Operations Controller

Weaving Sewing

QVT Generator

Sewing

Operator

Sewing
Operator

Sewing
OperatorSewing

Operator

Sewing
Operator

Weaving
Operators

Constraint
Language

QVT-Engine

MOF-ModelsMOF-ModelsMOF-Models

MOF-Repository

Code Generation

Our approach, however, extends the notion of weaving

from an activity that establishes semantic links between

meta-models, to a mechanism that actually interprets

operators specified between meta-model elements and

carries out operations accordingly. These operations

involve the automatic generation of a new woven

metamodel, which is an integration of the original

metamodels. Furthermore, we provide a mechanism to

automatically integrate models into a new woven model

conforming to the new woven meta-model. In our

understanding, weaving is treated as a distinct

abstraction mechanism for the integration of both,

models and meta-models.

Rondo. Within the Generic Model Management

initiative, Bernstein et al., [2], [22] work on merging

meta-data in the form of relational schemata and XML

schemata. Rondo is an implementation thereof,

providing model management operators that enable

modelers to deal with models rather than model

elements. Similar to our weaving and sewing operators,

these operators include a match operator, which

automatically establishes semantic correspondences

between similar schema elements and a merge operator

allowing to combine different model elements.

In contrast to them, however, we explicitly focus on

MOF-models in the sense of MDA, keeping a later

code-generation step following model integration in

mind. Furthermore, in our approach, a meta-modeler is

able to specify the integration of models and meta-

models on a meta-level, instead of providing generic

model management operators to manipulate models.

Model Composition Semantics. Clark [7]

introduces a composition mechanism for UML class

diagrams. This approach deals with the composition of

models representing different separated concerns.

Overlapping concepts are identified in these models

and thus merged as specified by a composition

relationship, following so-called merge and override

strategies. Merge integration for example applies when

equivalent classes appear in multiple design models,

and conflicts need to be reconciled among these.

Override integration can be used to substitute obsolete

parts of a design with new modeling constructs. Based

on these basic integration behaviours, composition

patterns [6] are introduced as an extension to UML

templates.

This approach, however, focuses on UML models,

only, and does not provide for deletion of obsolete

model elements after a weaving is performed, as

required for our approach.

Model Composition Directives. Based on [7],

Straw et al. [30] propose so called composition

directives for composing UML class diagrams. These

basically include name rewriting, adding and deleting

of model elements, change of references, and control of

execution order. Inspired by aspect-oriented

programming concepts, so-called primary models are

composed with aspect models, which represent a cross-

cutting-concern to be interwoven.

Although composition directives are comparable to

our weaving operators, their primary focus seems to be

on model weaving but not on meta-model weaving. We

believe that our mega operations could in turn be

transformed into composition directives at the model

level. Since we avoid an ad-hoc integration of models,

with our mega operations, licit integrated models can

be generated, only.

GME. The Generic Modeling Environment (GME)

proposed by Karsai et al. [17] is a modeling and meta-

modeling toolkit based on UML notation and a GME-

specific meta-metamodel. GME allows for the

composition of meta-models similar to our approach.

The composition mechanisms comprise an equivalence

operator creating a union of two model elements,

similar to the merge semantics in [7] and two different

inheritance operators, realizing implementation

inheritance and interface inheritance.

One major difference to our approach is that GME

is not based on the MOF standard. Furthermore, we

believe that our approach goes beyond the

functionalities for meta-model composition in the GME

by introducing model integration constraints, allowing

even fine-grained integration of models.

C-SAW. C-SAW, developed as a plug-in for the

above-mentioned GME by Gray et al. [13], [14], is a

so-called cross-cutting-concern weaver. Aspects are

specified using the Embedded Constraint Language

(ECL), which is a superset of OCL, additionally

providing imperative constructs for model

manipulation.

The transformation capabilities of ECL are,

however, limited to models of the same meta-model

and it lacks support for abstract integration mechanisms

as supported by our approach.

Domain Composition Approach. Estublier et al.

[9] propose a UML profile to allow the composition of

separately designed domain models, as required when

facing the federation of immutable components off the

shelf. UML associations and association classes are

specialized by dedicated stereotypes to express feature

correspondence and concept overlapping.

In principle, this approach is similar to our sewing

mega operation. In contrary to this UML-based

approach, our sewing mega operation is applicable to

arbitrary MOF models. In addition, it seems that their

focus lies not on tight integration of models, as done by

our approach.

6. Conclusion and Outlook

This paper proposes mega-operations for model

integration and shows the benefits that can be gained

thereof. Apart from QVT-like mappings, which can be

seen as the base requirement to the MDA approach, the

introduced mega-operations weaving and sewing

provide abstraction mechanisms to cope with complex

modeling scenarios, allowing for a tight and loose

coupling, respectively. Thus, enhanced scalability and

further re-use capabilities of a model-driven approach

are gained.

Future work will especially concentrate on clearly

defining the integration behavior enforced by weaving

and sewing operators.

Therefore, on the one hand the proposed operators

have to be specified in detail, and on the other hand,

further operators have to be conceived. Detailing

would, e.g., include clarifying different reconciliation

behaviors of the overrides operator, propagation

behavior of the synchronizes operator, as well as

detecting and resolving conflicts arising from the

application of the mega-operations.

With respect to both, weaving and sewing, a clear

syntax and means for representing the mega-operations

as MOF models have to be developed.

Furthermore, an important issue to resolve will be to

find ways to derive platform specific implementations

for mediators.

Finally, a prototypical implementation for mega-

operations shall be developed. Experiments with this

prototype should yield valuable insight into the

applicability of mega-operations as devised in this

paper.

References

[1] D. Akehurst, O. Patrascoiu, “OCL 2.0-Implementing

the Standard for Multiple Metamodels”, Proc.s of the

UML'03 workshop, Electronic Notes in Theoretical

Computer Science, November 2003.

[2] P. A. Bernstein, “Applying Model Management to

Classical Meta Data Problems” Proc. of the Conf. on

Innovative Database Research (CDIR03), Asilomar,

California, Jan. 2003, pp. 209-220.

[3] J. Bézivin, F. Jouault, P. Valduriez, “First Experiments

with a ModelWeaver”, OOPSLA & GPCE Workshop,

Vancouver, October 2004.

[4] J. Bézivin., F. Jouault, P. Valduriez, “On the Need for

Megamodels”, OOPSLA & GPCE Workshop,

Vancouver, October 2004.

[5] B. Boehm, B. Scherlis, “Megaprogramming”,

Proceedings of the DARPA Software Technology,

Conference, 1992.

[6] Clarke, S., Walker, R.J. “Composition Patterns: An

Approach to Designing Reusable Aspects”,

Proceedings of International Conference on Software

Engineering (ICSE), Toronto, Canada, 2001.

[7] S. Clarke. “Extending standard UML with model

composition semantics”, Science of Computer

Programming, Elsevier Science, Volume 44, Issue 1,

July 2002, pp. 71-100.

[8] Eclipse Foundation, Generative Model Transformer

(GMT), http://www.eclipse.org/gmt/, 2005.

[9] Eclipse Foundation, Eclipse Modeling Framework

(EMF), http://www.eclipse.org/emf, 2005

[10] Java Community Process, Java Metadata Interfaces

(JMI), 2002, http://java.sun.com/products/jmi/

[11] J. Estublier, A. D. Ionita, G. Vega, “A Domain

Composition Approach”, Proc. of the International

Workshop on Applications of UML/MDA to Software

Systems (UMSS), LasVegas, USA, June 2005.

[12] T. Gardner, C. Griffin, J. Koehler, R. Hauser, “A

review of OMG MOF 2.0 Query / Views /

Transformations Submissions and Recommendations

towards the final Standard”, Object Management

Group (OMG), ad/2003-08-02.

[13] J. Gray, T. Bapty, S. Neema, A. Gokhale, “Generating

Aspect-Code from Models”, OOPSLA Workshop on

Generative Techniques for Model-Driven Architecture,

Seattle, WA, November 2002.

[14] J. Gray, T. Bapty, S. Neema, D. C. Schmidt, A.

Gokhale, B. Natarajan, “An Approach for Supporting

Aspect-Oriented Domain Modeling”, Generative

Programming and Component Engineering (GPCE),

Springer-Verlag LNCS 2830, Erfurt, Germany,

September, 2003, pp. 151-168.

[15] G. Kappel, E. Kapsammer, W. Retschitzegger

“Integrating XML and Relational Database Systems”,

World Wide Web Journal (WWWJ), Kluwer Academic

Publishers, Vol. 7(4), December 2004, pp. 343-384

[16] E. Kapsammer, W. Schwinger, W. Retschitzegger,

“Bridging Relational Databases to Context-Aware

Services”, Proc. Of the CAiSE Workshop on

Ubiquitous Mobile Information and Collaboration

Systems (UMICS), Springer LNCS, Porto, Portugal,

June 2005.

[17] G. Karsai, M. Maroti, A. Ledeczi, J. Gray, and J.

Sztipanovits, “Composition and Cloning in Modeling

and Meta-Modeling Languages”, IEEE Transactions

on Control System Technology, special issue on

Computer Automated Multi-Paradigm Modeling,

March 2004, pp. 263-278.

[18] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, L.

Videira, J.-M. Loingtier, J. Irwin, “Aspect-Oriented

Programming”, Proc. Of the European Conference on

Object-Oriented Programming (ECOOP), Springer

LNCS 1241, Finland, 1997.

[19] J. Koehler and B. Srivastava, „Web service

composition: Current solutions and open problems.”,

Proc. of the ICAPS, Workshop on Planning for Web

Services, Trento, Italy, June 2003.

[20] G. Kramler, E. Kapsammer, G. Kappel, W.

Retschitzegger, “Towards Using UML 2 for Modelling

Web Service Collaboration Protocols”, Proc. of the

First Int. Conference on Interoperability of Enterprise

Software and Applications (INTEROP-ESA), Geneva,

Switzerland, February 2005.

[21] D. Lopes, S. Hammoudi, J. Bézivin, F. Jouault,

“Mapping Specification in MDA: From Theory to

Practice”, First International Conference on

Interoperability of Enterprise Software and

Applications (INTEROP-ESA), Geneva, Switzerland,

February 2005.

[22] S. Melnik, “Generic Model Management: Concepts

and Algorithms”, Springer LNCS 2967, 2004.

[23] Object Management Group, “MDA Guide”, Version

1.0.1, June 2003 [http://www.omg.org/docs/omg/03-

06-01.pdf]

[24] Object Management Group (OMG), “MOF 2.0 IDL

Specification”, July 2004, [http://www.omg.org/cgi-

bin/apps/doc?ptc/04-07-01.pdf]

[25] C. A, Petri, “Fundamentals of a Theory of

Asynchronous Information Flow”, Proc. of IFIP

Congress 62, Amsterdam: North Holland Publ. Comp.,

1963, pp. 386-390.

[26] QVT-Merge Group, “Revised Submission for MOF 2.0

Query/View/Transformation RFP(ad/2002-04-10)”,

Version 2.0, ad/2005-03-02, March 2005

[27] Th. Reiter, “Transformation of Web Service

Specification Languages into UML Activity

Diagrams”, Master Thesis, Dept. of Information

Systems, Johannes Kepler University Linz, March

2005.

[28] M. Schrefl, M. Bernauer, E. Kapsammer, B. Pröll, W.

Retschitzegger, T. Thalhammer, “Self-Maintaining

Web Pages”, Information Systems (IS), International

Journal, Vol. 28/8, Elsevier Science Ltd., 2003, pp.

1005-1036

[29] A.P. Shet, J.A. Larson, “Federated Database Systems

for Managing Distributed, Heterogeneous and

Autonomous Databases”, ACM Computing Surveys,

Vol. 22, No 3., Sep. 1990, pp. 182-236.

[30] G. Straw, G. Georg, E. Song, S. Ghosh, R. France, and

J. M. Bieman, “Model Composition Directives”, 7th

UML Conference, Lisbon, Portugal, October, 2004.

[31] G. Wiederhold, P. Wegner, S. Ceri. “Toward

Megaprogramming”, Communications of the ACM,

November 1992.

[32] G. Wiederhold, “Mediators in the Architecture of

Future Information Systems”, IEEE Computers, Vol.

25, No. 3, March 1992, pp. 38-49.

