
Towards an Operation Model for Generated Web
Applications

Mihály Jakob Holger Schwarz Fabian Kaiser Bernhard Mitschang
University of Stuttgart
Universitätsstraße 38

70569 Stuttgart, Germany

{mihaly.jakob, holger.schwarz, fabian.kaiser, bernhard.mitschang}@ipvs.uni-stuttgart.de

ABSTRACT
This paper describes a new approach for the development of data-
intensive web applications that depend on non-trivial data
manipulation. E-Commerce web sites, on-line auction systems
and large enterprise web portals fall into this category, as they
require comprehensive data access, data processing and data
manipulation capabilities. However, existing methodologies
mainly concentrate on modeling content, navigation and
presentation aspects of read-only web sites. Approaches that
consider modeling data operations incorporate them into existing
models resulting in a less clear design. We argue that existing
models are not sufficient to express complex operations that
access or modify web application content. Therefore, we propose
an additional Operation Model defining operations for data-
intensive web applications. We also propose the utilization of a
web application generator to create an Operation Layer based on
this Operation Model.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Design Tools and Techniques –
Object-oriented design methods

D.2.11 [Software Engineering]: Software Architectures –
Domain-specific architectures

H.4 [Information Systems Applications]: General

H.5.4 [Information Interfaces and Presentation]: Hypertext /
Hypermedia – Architectures, Navigation, User issues

General Terms

Design, Languages

Keywords
Web application design, Operation modeling, Data-intensive
applications, Code generation, Object-orientation

1. INTRODUCTION
The development of data-intensive web sites has been the subject
of many research approaches in the field of web application
engineering. These web sites mainly focus on making large
amounts of data available on the web and in some cases, they also
provide simple data entry functionality. Most research approaches
model web applications with different models for content,

navigation and presentation. These models are useful as they
provide an incremental methodology for building web
applications in a systematic way. Furthermore, they can be used
for automatic generation of web application code.
However, present-day web applications are not only based on
large amounts of data. They also require powerful operations that
determine the manner of content provision and allow data
manipulation. E-commerce web applications, for example, often
rely on advanced functionality like a shopping cart, powerful
search options or personalized recommendations. To serve
customers optimally, product listings have to be adequately
filtered and sorted. On-line auction systems allow users to add
new auction items to the system and to alter these items if
necessary. These operations not only change simple content
objects of the underlying web application but also add and modify
relations between objects and extend the user interface by creating
new pages that can be navigated to. Thus, present-day web
applications have to provide at least operations for

• adding content objects or new relationships between
content objects,

• altering existing content objects or existing relationships
between content objects,

• deleting existing content objects or existing relationships
between content objects,

• filtering and sorting content objects according to specified
criteria.

These operations represent an important part of the web
application’s application logic that cannot be easily expressed
with common models for content, navigation or presentation.
Furthermore, the separation of content, application logic and
presentation is an important paradigm that should be incorporated
into the web application development process. For this reason,
data operations should be modeled by means of a separate model
instead of incorporating them into existing models.
In this paper, we introduce a new model, the Operation Model
that defines operations of a web application. As a first step this
model provides operations that allow complete read and write
access to the web application’s content. In the future we intend to
use this model to facilitate user specific access to content and
extend it to provide composite transactional operations. The
Operation Model along with other well-established models build
the basis for the automatic generation of complete web
applications.
The rest of the paper is organized as follows: In Section 2 we
briefly describe how data-intensive web sites are usually modeled.
We also show by an example how WebML introduces operations

MDWE’06, July 11–14, 2006, Palo Alto, CA, United States of America.
Copyright 2006 ACM 0-000000-000-0/00/0000…$5.00.

into the application logic of web applications and point out some
limitations of this approach. In Section 3 we emphasize important
requirements for a solution that circumvents these shortcomings.
We propose a new model, the Operation Model, and show how it
can be used in conjunction with other well-established models to
achieve maximum flexibility and a clear web application design.
Section 4 depicts how the described models can be used for the
generation of web applications. Finally, we conclude the paper
and discuss open research issues in Section 5.

2. STATE-OF-THE-PRACTICE IN WEB
APPLICATION MODELING
Large web applications require a thorough conceptual modeling
of their content, application logic, navigation and presentation in
order to keep the development process manageable and the
resulting application maintainable. A formal language should be
used to describe content objects, object relationships as well as
their operational and presentational features. First, this ensures a
uniform specification of the developed system. Secondly, it
allows the generation of application source code and the
generation of a user interface for the designated target system. An
overview of well-established models for web application
development is depicted in Figure 1.
The Content Model defines content objects and their relations.
The Composition & Navigation Model describes the composition
of web pages and the navigation structure of the web application.
Finally, the Presentation Model defines the positioning and the
visual appearance of web page components.
Over the last decade, numerous approaches for web application
development have been proposed. Some of them like OOHDM
[12], Araneus [11], AutoWeb [6], OO-HMethod [7], WebML
[3][4][5], UWE [9][10] and W2000 [1][2] are complex design
methodologies describing web applications with different models.
Although the models in use are sometimes named differently, they
usually possess modeling constructs for content, navigation, page

composition and presentation aspects. Most of these
methodologies concentrate on the modeling of data-intensive web
sites that do not support operations. The two exceptions are
WebML and W2000.

Figure 1 . Established Web Application Development Models

The navigation model of WebML provides constructs for defining
operations that create, delete and modify content objects and
create or delete binary relations. Figure 2 depicts a simple
WebML example. The Content Model comprises constructs
modeling the entities Employee and Department. The
Composition & Navigation Model shows the modeling of an
Employee Page, an Edit Employee page and a Department Page
as well as the operations update employee and assign employee to
department. A simple navigation link points from the Employee
Page to the Edit Employee Page and, after a successful
modification (indicated by the OK-edge), back to the Employee
Page. The Department Page contains basic information about the
department and lists all employees of the system.

Figure 2 . WebML Example

Presentation
Model

Content
Model

Person
• FirstName
• LastName
• …

Dept.
• Name
• Task
• …

Job
• Name
• Hours
• …

Composition /
Navigation
Model

Dept.
Page

Emp.
Page

Home
Page

Presentation
Model

Content
Model

Person
• FirstName
• LastName
• …

Dept.
• Name
• Task
• …

Job
• Name
• Hours
• …

Person
• FirstName
• LastName
• …

Dept.
• Name
• Task
• …

Job
• Name
• Hours
• …

Person
• FirstName
• LastName
• …

Person
• FirstName
• LastName
• …

Dept.
• Name
• Task
• …

Dept.
• Name
• Task
• …

Job
• Name
• Hours
• …

Job
• Name
• Hours
• …

Composition /
Navigation
Model

Dept.
Page

Emp.
Page

Home
Page

Dept.
Page
Dept.
Page

Emp.
Page
Emp.
Page

Home
Page
Home
Page

Composition /
Navigation
Model

Content
Model

Employee
FirstName
LastName
…

Employee
FirstName
LastName
…

Department
Name
Task
…

Department
Name
Task
…

0:N1:1

Employee
Update

Unit
OK

Employee PageEdit Employee
Employee
Entry Unit

?

Employee
Entry Unit

?
A

Assign
Employee

Unit

Employee

Employee2Department

A
OK

Department’s
Employees

Department’s
Employees

Department’s
Employees

Employee
[Dept=CurrDept]

Department
Info

Department
Info

Department Page

Department

All
Employees

Employee

All
Employees

All
Employees

Employee

Employee
Unit

Employee

Employee
Unit

Employee

After selecting an employee from the All Employees index, the
assign employee operation is used to assign it to the department
and navigation returns to the same page following the OK-edge.
Additionally, a multi-data unit shows all employees of the current
department. Note, that WebML also provides so-called KO-edges,
which are used to specify the navigation step after an operation
failure. We omit these edges for the sake of simplicity. To keep
the example small, we omit the Presentation Model as well.
The WebML approach for modeling operations has some
limitations. First, the integration of operations into the navigation
model makes this model less intuitive as some edges in the
navigation graph represent navigational links whereas others
represent data flow. For example, the edge labeled with the letter
A between the Employee Entry Unit and the Employee Update
Unit indicates the provision of parameter values from an entry
form to the corresponding processing method. In contrast to that,
the edge between the Employee Unit and the Employee Entry Unit
just indicates a standard navigation step from one page to another.
Secondly, connections between the two models are established
only by naming and not in a visual manner. Thus, name-matching
is required to determine where the data for the All Employees
index or for the Department’s Employees listing comes from.
Another approach to model functional requirements of web
applications is taken by W2000. High-level UML diagrams are
used for this purpose, e.g., use-case diagrams define users and
their possible actions, whereas interaction diagrams define object
interactions. Although this approach also defines operations for
web applications, implementation and code generation aspects are
not considered in the W2000 approach, which is an important
difference compared to our approach.

3. OPERATION MODEL
As a conclusion drawn from the shortcomings presented in the
previous section, we specify the following requirements for a
proper solution:

• A separate model is required that specifies operations as
part of the application logic of a web application to ensure

the separation of operation logic from content and
navigational concerns.

• Navigational and data-flow edges should not be combined
in the same model. This avoids confusion and provides an
intuitive way for the modeling of application logic.

• Modeling constructs of different models should be linked in
a visual manner to provide an enhanced overview of the
developed web application.

We propose an Operation Model that defines operations allowing
complete read and write access to web application data. This
model should serve as a mediator between the Composition &
Navigation Model and the Content Model of the web application
thereby ensuring the clear separation of content, operations and
navigational concerns. Figure 3 shows an Operation Model
example for an Employee entity.

Figure 3 . Operation Model

On the left side of the entity, we list basic operations that provide
access to the data of this entity. These operations may only occur
once and are self-explaining. On the right side of the entity, we
list operation types that provide access to relationships between
the Employee entity and other entities. Each operation type may
occur several times as the entity can participate in arbitrary
relationships. For example, if the Employee entity is participating
in a relationship works in with the Department entity, the
operations GetDepartment, AddDepartment, and so forth can be
specified. These operations can be defined for all relationships of
the Employee entity thereby resulting in multiple occurrences for
each operation type. Figure 4 shows how the Operation Model
interacts with both the Composition & Navigation Model and the
Content Model.

Figure 4 . Operation Model Interactions

There are two types of connections between the Composition &
Navigation Model and the Operation Model. The first type is a so-

called Context Edge (labeled with the letter C) defining the
context for each page. The context is always a certain entity of the

Operation
Model

EmployeeEmployee

Edit
Add

Delete

Edit
Add

Delete

GetRelated

AddRelated

UpdateRelated

DeleteRelated

GetRelated

AddRelated

UpdateRelated

DeleteRelated

Operation
Model

EmployeeEmployee

Content
Model

Employee
• FirstName
• LastName
• …

Employee
• FirstName
• LastName
• …

Department
• Name
• Task
• …

Department
• Name
• Task
• …

Composition /
Navigation
Model

Department Page

…

Edit

works inworks in

Employee
List

Employee Page

Employee
ViewEdit

Edit Employee

Employee
Edit View

Save

Employee
Assign View

Assign

DepartmentDepartment
AddEmployee

…

GetEmployee

Department
View

1:1 0:N

S
S

CCC

Get

system that determines the scope of an operation. For example,
Figure 4 shows two pages with the context Employee and one
page with the context Department. The second type of connection
between the Composition & Navigation Model and the Operation
Model is a dashed Data-Flow Edge indicating an operation call.
Note, that these edges are directed showing whether the data of
the web application is accessed or modified.
Analogously to Figure 2 the Composition & Navigation Model of
the example in Figure 4 defines an Employee Page, an Edit
Employee page and a Department Page. An Edit button on the
Employee Page allows the navigation to the Edit Employee Page.
This page provides the Employee Edit View and a Save button.
The effect of providing values on this page and pushing the Save
button is twofold. First, it results in sending data to the Edit
operation of the Employee entity that is modeled in the Operation
Model. Secondly, it initiates the navigation back to the Employee
Page following the Success Edge (labeled with the letter S). The
Department Page provides three main elements. First, the
Department View that covers basic information about the
department. Secondly, an Employee List that shows the
department’s employees accessing the GetEmployee operation in
the Operation Model. Thirdly, the Employee Assign View, which
allows to assign an employee to a department. A list of all
employees that is required for the latter view could come from the
GetEmployee operation of an EmployeeCatalog entity. For the
sake of simplicity, we omit this entity in Figure 4. When the user
pushes the Assign button on the Department Page, the
AddEmployee operation in the Operation Model is activated
which in turn assigns an employee to the department. Note, that
so-called Failure Edges that usually point to an Error Page are
omitted as well.
Similar to the connections between the Composition & Navigation
Model and the Operation Model there are also edges between the
Operation Model and the Content Model. These edges show
which entities or relationships are accessed by a certain operation.
As basic operations are always associated with a single entity,
their connection to the Content Model is indicated by the multi-
directional edge between the entity constructs of both models.
The Employee entity of the Operation Model is connected to the
Employee entity of the Content Model. This shows what data is
accessed by these operations. The situation is somewhat different
when it comes to the modeling of operations that access
relationships. Various operations of a certain entity may reference
different relationships thus this connection is indicated by edges
between operations of the Operation Model and relationships of
the Content Model. For example, the GetEmployee operation is
connected to the relationship works in thereby delivering data for
the Employee List of the Department Page.
As a conclusion, we summarize the advantages of our approach.
First, edges in the Navigation Model clearly represent the
navigation structure of the developed web application. Secondly,
the separate Operation Model clearly defines operations and
associates them with the modeling constructs of the Composition
Model. However, to achieve this enhanced overview a minor
requirement has to be met. Each page has to be assigned to an
entity that builds the page’s context. As depicted in Figure 4, we
indicate the context of a web page by a so-called Context Edge
between the Content & Navigation Model and the Operation
Model.

4. WEB APPLICATION GENERATION
The model-based development of web applications shows many
benefits. One aspect is the clear structure of the developed web
application that results from the usage of well-established models
and standard modeling constructs. However, an equally important
aspect is the ability to generate substantial parts of the web
application based on existing formal definitions. Therefore,
models and modeling constructs require equivalent definitions in
a machine-readable formal language and translation between both
formats should always be possible. Figure 5 depicts the generation
process for web applications based on XML as a machine-
readable format.

Figure 5 . Web Application Generation

In [8] we describe a web application generator that uses XML
definitions as input to generate ready-to-use web applications that
support powerful operations for content manipulation. Based on
different models the web application generator is able to generate
corresponding layers for each of the used models. However, the
direct usage of XML for model definition has one important
disadvantage. The connection between different models has to be
established by naming. Using the example from Figure 4, this
means that the XML definition for the Employee Assign View in
the Composition & Navigation Model has to reference the
AddEmployee method’s XML definition in the Operation Model
by its name. Analogously the XML definition of the
AddEmployee method has to refer to the works in relation in the
Content Model. To abstract from such naming concerns we propse
to use a graphical notation, like the one presented in this paper, as
the first model in the web application development process. This
allows to establish connections between different models by edges
and to translate them into the appropriate namespace later on.

5. SUMMARY AND FUTURE WORK
In this paper we presented an approach for modeling and
generating data-intensive web applications that rely on advanced
operations. We introduced a new model, the Operation Model,
which allows the definition of operations that build a bridge
between the content and the user interface of a web application.
An advantage of this approach is an enhanced overview of the
web application modeling process supported by a further
separation of concerns. We proposed that the Operation Model
should be used for the generation of an Operation Layer of the
resulting web application.
An important topic for our future research is the definition of a
User Model that can be used in conjunction with existing models
to define user specific navigation, operations and content

W
eb

 A
pp

lic
at

io
n

G
en

er
at

or

Web Application

G
U

I

Content Layer

Operation Layer

Presentation Layer

Composition

Navigation
& Layer

Web Application

G
U

I

Content Layer

Operation Layer

Presentation Layer

Composition

Navigation
& Layer

Composition

Navigation
&

Composition

Navigation
& Layer

XML

Composition
&

Navigation
Model

Content
Model

Operation
Model

Presentation
Model

XML

Composition
&

Navigation
Model

Content
Model

Operation
Model

Presentation
Model

G
ra

ph
ic

al
 M

od
el

s

presentation. We believe that the modeling of users should be
based on roles and access rights that can be associated with
modeling constructs of existing models. Therefore, user modeling
is an orthogonal aspect regarding content access, operations and
navigation.

6. ACKNOWLEDGMENTS
This work was conducted in the context of the project nova-net,
which is funded by the German Federal Ministry of Education
and Research (BMBF).

7. REFERENCES
[1] L. Baresi, F. Garzotto and P. Paolini. Extending UML for

Modeling Web Applications. In Proc. of HICCS34, Maui,
Hawaii, USA, Januar 2001.

[2] L. Baresi, F. Garzotto and P. Paolini. From Web Sites to
Web Applications: New Issues for Conceptual Modeling. In
Proc. of WCM2000, Salt Lake City, USA, October 2000.

[3] A. Bongio, S. Ceri, P. Fraternali and A. Maurino. Modeling
Data Entry and Operations in WebML. In Proc. of
WebDB2000, Dallas, USA, May 2000.

[4] S. Ceri, P. Fraternali and A. Bongio. Web Modeling
Language (WebML): a Modeling Language for Designing
Web Sites. In Computer Networks Vol. 33, No. 1-6, p. 137-
157, June 2000.

[5] S. Ceri, P. Fraternali and M. Matera. Conceptual Modeling
of Data-intensive Web Applications. In IEEE Internet
Computing, Vol. 6, No. 4, p. 20-30, July 2002

[6] P. Fraternali and P. Paolini. Model-driven Development of
Web Applications: the AutoWeb System. In ACM
Transactions on Information Systems Vol. 18, No. 4, p. 323-
382, October 2000.

[7] J. Gomez, C. Cachero and O. Pastor. Extending a Conceptual
Modelling Approach to Web Application Design. In Proc. of
CaiSE2000, Stockholm, Sweden, June 2000.

[8] M. Jakob, H. Schwarz, F. Kaiser and B. Mitschang.
Modeling and Generating Application Logic for Data-
intensive Web Applications. To appear in Proc. of ICWE
2006, Palo Alto, USA, July 2006.

[9] N. Koch and A. Kraus. The Expressive Power of UML-based
Web Engineering. In Proc. of IWOOST02, Cyted, 2002.

[10] A. Kraus and N. Koch. Generation of Web Applications
from UML Models Using an XML Publishing Framework.
In Proc. of IDPT 2002, Pasadena, USA, June 2002.

[11] P. Merialdo, P. Atzeni and G. Mecca. Design and
Development of Data-Intensive Web Sites: The Araneus
Approach. In ACM Transactions on Internet Technology Vol.
3, No. 1, p. 49-92, Februry 2003

[12] D. Schwabe, G. Rossi and S. Barbosa. Systematic Hypermedia
Application Design with OOHDM. The 7th ACM Conference
on Hypertext, Washington, USA, March 1996

