Globalizing Modeling Languages: Issues and Challenges

Antonio Vallecillo
Universidad de Málaga, Spain
Dagstuhl, October 2014
Q1: What is your definition of “Globalization of Modeling Languages”

The definition given in the original GEMOC paper [1]:
“The use of multiple languages to support coordinated development of diverse systems aspects”

However, I see it is more adequate to define what Multi-Viewpoint Modeling is/should be about:
“The combination of multiple languages to support coordinated specification, analysis and development of diverse systems aspects”

Thus, in my view, “Globalizing a Modeling Language” means “Making a Modeling Language amenable for integration into a (standard) Multi-Viewpoint Modeling environment”

Notes:
- Globalized MLs need to be combinable and integrable
- Interfaces at different levels should be defined
- Standardization should play a key role here
Q2: What are we doing in this area?

RM-ODP
- A mature framework for the specification of systems, using viewpoints (ISO & ITU-T standard!)
- Five viewpoints and their Viewpoint Languages (VPL)
- Explicit correspondences between the VPL
Q2: What are we doing in this area?

RM-ODP

- A mature framework for the specification of systems, using viewpoints (ISO & ITU-T standard!)
- Five viewpoints and their Viewpoint Languages (VPL)
- Explicit correspondences between the VPL
例：診療所ODPシステム仕様
Correspondence Metamodel (UML4ODP)

FIGURE 7.2: The elements of a correspondence specification.
Establishing correspondences
Q2: What are we doing in this area?

- Working on RM-ODP
 - Editor of the new version of the standards (2010-13)
 - Editor of ISO 19793 “Use of UML for ODP systems specification” (2009, 2013)
 - Book on ODP [2]
 - Research on the specification of correspondences [3]
 - A tool for ODP systems specifications using UML4ODP (the official MagicDraw plugin for ODP) [4]
 - Editors for the 5 viewpoints and for the correspondences
 - Model validators
 - Simulations supported for the Computational Viewpoint

- Working on the combination of DSMLs
 - How to combine DSMLs, issues and challenges [5]

Q3: Top 3 research challenges

- **Combination/Integration/Unification of languages**
 - Has to be at the same level of abstraction!
 - Needs establishing correspondences between them (at all levels: Abstract Syntax, Concrete Syntax and Semantics)
 - Needs to deal with heterogeneous (and not always combinable, see [5]) semantics
 - Correspondences between metamodels, and between models

- **Specification/Visualization of correspondences**
 - In an efficient, correct, usable and maintainable manner
 - Both implicit and explicit (see [3] and [4])

- **Reasoning about the information expressed across the different models**
 - Emergent properties!

ALL MUST BE TOOL-SUPPORTED (otherwise useless!)