
Services, contracts, policies and eCommunities
– Relationship to ODP framework

Lea Kutvonen and Janne Metso

Department of Computer Science, University of Helsinki, Finland
Lea.Kutvonen@cs.Helsinki.FI

Abstract— Agility for inter-enterprise collaborations requires
development of interoperability and B2B middleware services. In
the Pilarcos and web-Pilarcos projects, such middleware solutions
have been researched and developed, in close relationship to the
ODP reference model and complementary standards. Although it
has been claimed that ODP reference model has not reached its
audience, most of the topical trends – service oriented computing
(SOA, SOC), inter-enterprise business process management, vir-
tual organizations management, and Web Services – reflect the
same foundations.

This paper discusses the issues around the concepts of services,
eCommunities, and contracts as they are visible in the web-
Pilarcos architecture. The contribution is directed two ways:
for enhancing the concept related to service within the ODP
framework, and for showing how the web-Pilarcos architecture
applies the distinct concept of service type for gaining improved
interoperability control over what is available for example with
Web Services.

I. INTRODUCTION

The web-Pilarcos architecture provides middleware level
services for establishing and controlling inter-enterprise col-
laborations (virtual organizations) also called eCommunities.
The eCommunities involve a set of autonomous enterprise-
application level services, and are controlled by eCommunity
contracts.

The eCommunity contracts capture metainformation about
the community structure (roles and responsibilities of the
participants, behaviour in terms of interactions between the
roles) in the form of an agreed business network model,
agreed policies restricting that model behaviour, and informa-
tion about the current participants (technical such as access
information, and business oriented such as cost of service,
trustworthiness of the partner). The eCommunity contract also
provides for controlled methods for renegotiating the contract
and making changes to partnerships, policies, technical details,
etc. The contracts capture information from all ODP reference
model viewpoints, ranging from enterprise (and business or
legal) concerns to engineering (and technology) aspects.

The web-Pilarcos middleware architecture [1] applies many
of the topical patterns for interoperable systems: SOA (service
oriented architecture) [2] and Web Services [3] use similar
separation of service offers as announcements of available ser-
vices, and dynamic discovery of partners into compositions of
complex services. The architecture is also concerned with op-
erational time interoperability monitoring, and on mechanisms
allowing flexible, community-wide resolution of breaches.

This paper brings forth the concepts related to services,
service offers, and eCommunity contracts, continuing the
discussion [4] of applying ODP concepts to inter-enterprise
collaboration. The discussion hopefully enlightens the po-
tential expansions on these concepts in the ODP reference
model [5]–[8]. In addition, the required facilities for sup-
porting these concepts are outlined, showing some omissions
in Web Services arena. The paper is structured as follows.
Section II outlines the web-Pilarcos architecture and services.
The essential concepts of service, service offer, and eContract
are further discussed in Sections III and IV. As the architecture
can be heavily criticized on too high costs, the Section V
is included to show some practical measurements on the
eCommunity establishment phase.

II. THE B2B INTEROPERABILITY MIDDLEWARE

The web-Pilarcos architecture is designed to compose and
govern composition of services provided by autonomous en-
terprises. The architecture is a federated one (in contrast to
unified or integrated), assuming that services are developed
independently and their interfaces and properties are com-
pared during collaboration establishment and monitored for
conformance during the operational time of the collabora-
tion. (Unified model would make an assumption that the
services would be produced using a shared collaboration
model.) Figure 1 illustrates the setup. The B2B middleware
is to provide business-applications with concepts and practi-
cal infrastructure-level services for eCommunity management
through agents dealing with contracts, and transparently en-
suring interoperability using both statical and dynamic tech-
niques. The architecture does not provide a shared execution
platform or enactment of the business network models. Instead,
the business applications themselves are expected to include
a technique forwarding their internal/local workflows as trig-
gered either by peer requests or by internal triggers. A set of
metalevel protocols between middleware level agents for the
eCommunity management tasks is completely separate from
the application protocols.

The issues to be addressed are interoperability between
services and management of the lifecycle of the collaboration.
The lifecycle management involves

• population of the eCommunity in such a way that the
participating services are interoperable as discussed be-
low, and a negotiation cycle between participants to

collaboration

application services

internal process logic, capsuled information,
internal computational, engineering and technical solutions

B2B middleware communication services
with selectable transparencies

DOC middleware
contract
management

static
interopera−

eCommu−
nity moni−
toringbility tests

Fig. 1. Architecture overview.

agree or refine the suggested eCommunity properties; the
population process selects from a service offer repository
a suitable offer for each role in the business network
model suggested by the initiator (if the business network
model is not appropriate, the process fails);

• establishment of the eCommunity so that all participants
are technically prepared for providing services and have
done all necessary contract management chores;

• monitoring of potential breaches (non-conformance to the
behaviour specified by the contract) in the interactions
between participating services;

• monitoring the global, coarse-grain progression of the
collaborative work in the eCommunity;

• reacting by renegotiations and contract changes for
change requests initiated by involved parties;

• termination of the eCommunity either by the completion
of the collaboration goal, by breach resolution, or timely
termination of the contract.

In the management of eCommunities, interoperability is a
prominent issue [9], [10]. Interoperability, or capability to
collaborate, means effective capability of mutual communi-
cation of information, proposals and commitments, requests
and results. Interoperability covers technical, semantic, and
pragmatic interoperability. Technical interoperability means
that messages can be transported from one participant to
another. Semantic interoperability means that the message con-
tent becomes understood in the same way by the senders and
the receivers. This may require transformations of information
representation or messaging sequences. Finally, the pragmatic
interoperability captures the willingness of partners for the
actions necessary for the collaboration. The willingness to
participate involves both capability of performing a requested
action, and policies dictating whether the potential action is
preferable for the enterprise to be involved in. In the pragmatic
view, process-awareness in terms of collaborative business pro-
cess model is needed, augmented with nonfunctional aspects,
some of which are related to business policies.

At the pragmatic level, issues on the business strategies,
values, and rules become visible. Partially these are reflected
by using business network models as a founding element in the
eCommunity contracts [4]. In addition, policies and properties

embedded in to the eCommunity contracts and service offers
are used for carrying this kind of information. Technically,
most of those features appear as plain name-value pairs, but
development of the carried semantics requires large scale
ontology and metrics development at international consortia
appropriate for each industrial area separately. This theme is
further discussed in Section IV.

III. SERVICES AND SERVICE TYPES

We assume that business-application services are indepen-
dently implemented and deployed on the enterprises’ comput-
ing system. The implementations can be generated using MDA
style tools, using specifications of collaborations as a starting
point. However, existing legacy software can be used equally.

The available implementations establish the practical ca-
pabilities for a service in an enterprise. The enterprise can
well support multiple, slightly different implementations for
the same kind of service. Reasons for this multiplicity can
be strategic (different business rules embedded), or technical
(different platform and communication facilities used), or
evolutionary (old and new software used side by side till
the old can be made obsolete as clients have become able
to interoperate with the optional ones).

Thus, the service (implementation) refers to the compu-
tational composition of application software that provides a
complete business service, or supports a step in such.

The ODP reference model differentiates between types and
templates for objects [5, clauses 9.7 and 9.11]. This separation
is heavily used in our approach. The service templates are
only used within an administrative domain responsible of
executing a service. An administrative domain is a term
related to federations [6, clauses 10.3, 5.1.1, and 5.1.2] and
we use it for denoting a technologically consistent system
within an enterprise. Outside that administrative domain, the
service template has no relevance, but instead, a less restrictive
concept of service type is of importance.

The ODP reference model indicates two methods by which
objects can become known in a system, namely instantiation
and introduction [5, clauses 9.13 and 9.16]. Instantiation
is needed within the administrative domain responsible of
running a service, but at other domains, the presence of
that service is created though introduction. The introduction
process is required to reveal the type of object in question, i.e,
associate the object with a useful predicate it matches to.

In an inter-enterprise environment, or a SOA environment,
the service offer repositories (UDDI [11], ODP trading service
/ OMG trader [7]) reflect the introduction process. All service
offer repositories expect exporters of offers to define the
identity of the service, its service type reference, and access
information. The service type denotations vary, as well as the
level of control in their definition. In the (web-)Pilarcos case,
the service offers are expected to include in addition attributes
as defined by the service type and the middleware itself (in
relation to environment contract, see below).

In the web-Pilarcos architecture service types are stored
into a type repository, and only those previously defined type

descriptions can be associated with service offers. The service
type descriptions can be published either as part of a design
process or independently, by various enterprises in the global
network, and have to be verified before acceptance to the
repository [12], [13].

Service types are abstract descriptions of business service
functionality and they define functional and non-functional
properties for a class of business services. Functional part
of a service type comprises of an interface signature, an
interface protocol which describes the service behaviour and
additionally semantic annotations for exchanged documents
(messages). Engineering level information, such as binding of
a service instance into a specific communication protocol or
address, is not part of the service type. The non-functional
properties of a service type describe issues on business level
concerns, QoS requirements, and policies. The non-functional
aspects are given as service attributes (name-value pairs),
where each element denotes a semantic concept from a shared
ontology.

Technically, the service type defines
• the service interface signatures;
• associated to the interfaces, restrictions on the ordering

of invocations (a loose way of expressing a protocol,
only giving restrictions on the necessary ordering rela-
tionships)

• associated with the interfaces, information contents of the
messages; and

• set of attributes associated to the service, labeled either
optional or mandatory.

Thus the service type repository is actually defining an
application-area specific, service-type based ontology for in-
formation about the business and legal aspects of the service.
The attributes can reflect the cost of service, availability,
expectations on the business networks involved, and legislation
to be used for evaluating the service and managing breaches.
As some of the attributes are optional, this gives flexibility in
making service offers with different kind of business networks
in mind. Different collaborations will depend on different
attributes.

For example, Web Services technologies are still missing
type repository type of services. The benefit that is provided
lies in the trustworthiness of the type definition. For a repos-
itory, some quality requirements can be placed: static verifi-
cation of the models, persistent and continuous availability of
items, correctness of assertions on relationships between types,
etc.

Besides the attributes, the service offers are expected to
contain attributes that form an offer of environment con-
tract [12]. The environment contract [5, clauses 11.2.3 and
13.2] of ODP refers to commitments between an object and
its environment, i.e., prerequisites under which the service in
question can be provided. In the web-Pilarcos case, the envi-
ronment contract part of the service offers include selection of
binding type, channel type, and configuration parameters for
the abstract communication layer depicted in Figure 1. The
binding type defines what services the abstract communication

layer is expected to provide and what role-related interfaces for
communicating peers are provided. The channel type denotes
the architecture of the communication channel so that the
middleware is able to configure it appropriately. In addition,
requirements on shared computing or information repository
resources can be placed.

IV. ECOMMUNITIES AND BUSINESS SERVICES

In the eCommunity establishment process, the business level
commitment to the contract takes place, as well as the compu-
tational setup of the collaboration. There are two sources for
regulating information involved: the business network model,
and the service offers selected for the contract.

The business network model we use is a expansion of the
ODP enterprise description [14], [15]. Several, functionally
separate community descriptions are integrated by denoting
which of the roles have to overlap for the network. Each
functional community is defined in terms of roles comprising
of a role name, service type required, and free form constraints
on a) properties of the service offer to be selected to that role,
and b) rules to be used for monitoring the service behaviour
during the eCommunity operation. In the population process,
the service type requirement and selection criteria are used for
retrieving service offers. The environment contract and policy
requirements in the service offers further cause interdependent
requirements, thus making the matching process quite compli-
cated. Although this process is at first sight very expensive, it
stays within reason, due to the time-based and memory-space
restrictions on the searches. For further evidence, Section V
shows measurements done on top of a CCM platform.

At the level of eCommunity, the relationship between
the business environment and the provided service becomes
another aspect of the environment contract, thus forming
another defining aspect of the service itself. As the participants
in the eCommunity are in some extent dependent on each
others’ services, the commitments they make are made on the
premises that others fulfill their commitments according to the
contract too. Therefore, the concept of business service cannot
be fully defined in isolation, but is dependent on the business
network it is part of.

A business view of the service can be seen as a com-
putational service, associated with environmental constraints
from the providing enterprise’s computing environment, its
role in the business network in question, and the business and
computing restrictions set by its peers in the business network.

Because business network models gain such an important
role in interpretation of all service related concepts, the web-
Pilarcos architecture provides a repository for these models.
The benefits of the globally available set of verified models
(with related service types in the type repository) arise from
the facilities for reasoning from the process models, process-
level interoperability support in the middleware, and guidance
to the service markets.

Having captured all these aspects to the eCommunity con-
tract, we still cannot claim that the correct business behaviour
or legally correct interoperation is guaranteed. The models

provided for interoperability checking are just models in-
dicating the intention of the service provider. Even if the
models were used to generate the software elements from
those specifications, there would be uncertainties involved.
Therefore, monitoring of the behaviour conformance against
the model is essential. Depending on the level of distrust
and acceptable performance penalties, the conformance re-
quirements need to be selected appropriately. The monitoring
aspects are presented in [16], so they are not discussed here
further.

Mechanisms to enforce conformance to business needs and
interoperable computing requirements must involve dynamic
methods in addition to the traditional static analysis. One
of the essential reasons for this is the need for capturing
enterprise policies and business rules. Those can change any
time, disregard of the eCommunity contracts in use – thus
causing contradictions at operational time. Furthermore, the
ontologies for eCommunity contracts may omit some of the
locally important policies, and therefore be unaware of the
contradiction.

We use the following terms. Enterprise policies are used to
govern the resources and services of an enterprise. Enterprise
policies may oblige, permit, or prohibit access to some service
or information. Enterprise policies or eCommunity policies are
used to modify the basic business process models; negotiation
of a policy value is used to refine which alternative path
through the model is in use. Business rules are declarative
statements that define or constraint some aspect of business
service behaviour. Business rules may define different pricing
policies or service availability for different client categories.
A business rule typically affects the non-functional aspects or
information exchanged in a service interaction.

The above definition of business service did not explicitly
mention the policies. However, policies are an integral part of
the context of the business service, and is to be seen as part of
the environmental constraints. Therefore, policies come as a
time dependent and enterprise specific element into the picture.

Finally, a few words on another time dependent property.
One of the very essential properties of a business service is that
of trust. In the TUBE project [17], we are extending the web-
Pilarcos architecture with trust concepts. Decisions on trusting
a business service is made first at the establishment of an
eCommunity; business service trustworthiness is estimated by
reputation information and local experience of that enterprise
and that business service especially, and has to exceed a
treshold dependent on assumed risks and importance of the
eCommunity participation for that enterprise. As the correct
behaviour of the peers in the eCommunity are not completely
trusted even after this, the behaviour is monitored, and new
experience information and new reputation information is
generated by successes and breaches of conformance.

V. COST OF ECOMMUNITY ESTABLISHMENT

While Pilarcos middleware provides facilities for dynami-
cally forming eCommunities there is overhead cost from the
use of the middleware services. This cost has been estimated

by a series of performance measurements on the prototype
application and infrastructure services. First, the overall over-
head of Pilarcos middleware in terms of CPU load and effect
on response times seen by a client was considered. Second,
the main elements of the cost were factored out at the areas of
business network population, eCommunity establishment and
termination and adaptation of communication across the CCM
and EJB platforms. Third, some scalability tests were run to
see how the input rate of client requests affect the response
times. Because the Pilarcos middleware feasibility is much
dependent on the scalability of Pilarcos enhanced trading, a
set of separate measurements were done on the population
process alone.

The measurements were performed with a system that
included all the Pilarcos infrastructure services and an appli-
cation case. The application case does not include much of
application-specific processing, but is there mainly to generate
a meaningful mixture of requests to the middleware under
study.

In concrete terms, the Pilarcos prototype consists of Pilarcos
infrastructure service components and Tourist Information
Service application components that take advantage of the
Pilarcos services. The infrastructure services and most of
the application components have been implemented on two
new CORBA Component Model platforms, the Java-based
OpenCCM [18] and the C++-based MicoCCM [19]. In ad-
dition, one of the application domains is built on Enterprise
JavaBeans technology, running on the JBoss [20] application
server.

The sample case study is built around an idea of a portal
service, the Tourist Info, which provides traveller access to
vertical tourist services like travel information, hotel bookings,
and weather services. It is assumed that neither the portal
service nor the vertical services are free, and the traveller has
some electronic payment instrument (e.g. credit card) avail-
able. Figure 2 shows the business entities and the communities
formed by them. The example involves two business commu-
nities: a tourist info community and hotel info community.
The tourist info community contains three domains each with
their own role (tourist info client, tourist info service, payment
service) and describes the business community related to
providing the portal service. The hotel info community also
contains three domains each with their own role (hotel info
client, hotel info service, payment service) and describes the
business community related to providing the only implemented
vertical service (hotel bookings). The tourist info client and
the hotel info client represent the users of corresponding
services whereas the tourist info service and the hotel info
service represent the providers of the services. Payment service
represents a trusted third party used to mediate the transfer of
funds between the other entities in the community.

The measurement environment consists of seven 1GHz
Pentium III workstations with 512MB RAM memory. Work-
stations were connected with closed 100 Mbps Ethernet. The
operating system used in the workstations was CS Linux
with kernel 2.4.18. Different components of the Pilarcos

Payment Service

Tourist Info Client

Hotel Info
Client

Payment Service

Tourist Info
Service

Hotel Info Service

Fig. 2. Business entities and communities in the Tourist Info Service
case [21].

prototype were distributed to the workstations. The compo-
nents related to one domain were deployed in one machine
with the exception that in Hotel service -domain CCM and
EJB components were distributed to two separate machines.
Background clients used two additional machines and were
evenly distributed in them. Before measurements the system
was warmed up with 3000 measurement rounds done by the
client. The measurements themselves included 8000 rounds.
Each benchmark used one measurement client and two to six
background clients. Throughput optimization flags were used
for Java virtual machines. In all measurements the IBM Java
1.4.1-platform was used. For the Pilarcos trader measurements,
the client program was run on one workstation and the Pilarcos
trader on another. Java-based ORBacus trader 2.0.0 [22] was
running in compiled mode on the same workstation as the
Pilarcos trader.

Looking at the measurement results, the cost of Pilarcos
middleware use appears to be acceptable. As we consider a
“round” from a user, the application runs the following steps:

• ask the Pilarcos trader to populate a business network;
• tell the business network manager to create the commu-

nity; this actually involves the population and creation of
the second community in the application scenario;

• run a group of application scenario-specific operations
and requests for the servers;

• end the session and ask the business network manager to
terminate the communities.

The population, eCommunity establishment, and eCommu-
nity termination phases can be seen in Figure 3. Under normal
load conditions, the population process takes less than 25
milliseconds, eCommunity creation under 40 milliseconds (the
measured 100 ms includes two eCommunity creation opera-
tions and a population operation), and eCommunity termina-
tion about 20 milliseconds (again, the measured numbers cover
two terminate operations). Time consumption for getInfor-
mation and makeReservation operations are also noticeable
in the measurements. This is caused by the fact that the
execution process of these operations includes several service
calls between components residing in different domains.

For the measurements presented in Figure 3 the number of
request-making client computers were increased so that the
input rate of requests reached a level where saturation on one
of the computers was approaching. However, no unexpected

Fig. 3. Response times for the client [21].

behaviour on response times is seen here.
Figure 4 show that the Hotel Server domain is becoming a

bottleneck in the system as the load increases. Within the Hotel
Server domain the CCM platform running the infrastructure
services is a bit more loaded than the EJB platform running
the application components. This ratio depends, however, on
the computational complexity of the applications.

Fig. 4. Processor load in servers [21].

The conclusions from this behaviour are twofold. First,
additional measurements are needed in a more realistic and
complex environment where the network latencies are longer
(e.g. Internet). Second, in the current implementation the cost
of adapter creation is considerably high for interactively used
applications. A library-based solution has been planned but
was not yet available for measurements.

To support interpretation of the above measurement results,
Figure 5 shows the same application components running
without the help of Pilarcos middleware. The configuration of

application components is here fixed, and only OpenCCM is
used as a platform. Thus, the flexibility of finding appropriate
partners for the eCommunity is missed, and also heterogeneity
support. All application components have been selected be-
forehand and their locations are resolved by a name server at
the start-up time. The measurements show that the overhead
load is mostly visible in the new operations offered by the
Pilarcos middleware. An additional few milliseconds fixed cost
is visible on all operations.

Fig. 5. Time used in different phases seen by client with simulated load [21].

In general, the measurement on the full prototype software
provided results much like we expected. However, platforms
are not mature enough and caused scalability problems them-
selves, so scalability tests were not done as thoroughly as we
wished.

More thorough measurements could be done on the Pilarcos
trader. In this paper we only bring up a few comments, and
refer to [21], [23] for details.

The population process was able to provide one eCommu-
nity proposal in an average of 22 milliseconds. In addition,
transferring the request and the result over CORBA took an
average of 30 ms, raising the total to 52 ms. Most of the
transferring time was result of marshalling delays.

These times were not much affected by the number of
service offers in trader database. With offers distributed evenly
between the roles, no significant effect on the search time was
seen with database sizes of up to 2550 offers. This behaviour
was expected, since the population algorithm never needs to
search the entire offer database. Instead, the search time is
directly proportional to the number of requested eCommunity
proposals.

Search times grow in linear proportion to the number of
policies in service offers. In the baseline case there were 32
policies per offer, which is rather a high estimate.

The cost of marshalling is fairly high, because the eCom-
munity proposal data structure is designed for readability and
flexibility, not speed. It contains several nested sequences
and makes heavy use of the CORBA Any type, making
marshalling very resource consuming. The marshalling delay
could be significantly reduced by using known CORBA IDL

optimization techniques. For the rest of the results, only
the time spent in the search process is presented, since the
marshalling delay is constant and predictable.

One of the potential problems were cases where there are
very few acceptable service offers in the trader database.
However, we found that both the average response time and its
variation grow significantly with low match ratios, but are still
tolerable even at a match ratio of 5 %. Based on these results,
the practical usage area for the Pilarcos trader is with offer
match ratios at and above 5 %. Figure 6 shows this effect.

0

20

40

60

80

100

120

0 20 40 60 80 100

S
ea

rc
h

tim
e

(m
s)

Offer match ratio (percent)

First federation offer, average
Minimum and maximum

Fig. 6. Effect of offer match ratio on search time.

Figure 7 illustrates the effect of varying the number of
roles in the business network model. Again, the dependency
is linear, as expected. Based on these results, large network
models with up to ten roles would be practical; most probably,
for such large networks, other aspects than the population
process are more significant.

0

20

40

60

80

100

120

4 6 8 10 12

S
ea

rc
h

tim
e

(m
s)

Number of roles

First federation offer, average
Minimum and maximum

Fig. 7. Effect of number of roles on search time.

The above results were based on measurements on a stan-
dalone Pilarcos trader that includes its own offer database. We
also tried the effect of using ORBacus trader for storing the

service offers. The search times are nearly ten-fold compared
to the standalone case, with significantly larger variation.
These are results from the block-wise transfer of service offers
from the ORBacus trader. Transferring service offers between
the ORBacus trader and the Pilarcos trader takes more than
half of the ORBacus trader query time. When a CORBA trader
is used as a back-end, a significant speedup could be achieved
by collocating the Pilarcos trader and the CORBA trader in
the same process. This trial is interesting because it shows an
effect that is expected when using federated (linked) CORBA
traders.

VI. CONCLUSION

This paper discusses concepts of computational and business
services, and illustrates how business network models and
service types bring in an ontological route for enforcing appro-
priate properties to be brought in to the eCommunity contracts.
The properties spanning over all five ODP viewpoints capture
regulations and restrictions as well from business strategical
as from computing system perspective and bring them to the
operational environment to reflect the state of the eCommunity.

Infrastructure services like global service type repositories
and business network model repositories, and trust manage-
ment facilities are the latest contributions to the arena of inter-
enterprise interoperability and federated architectures.

A set of practical measurements on the prototype infras-
tructure services show, that the federated architecture model
is not infeasible in practice, and also illustrates that the basic
concepts for eCommunity management can be implemented
on current distributed computing platforms.

ACKNOWLEDGMENT

This article is based on work performed in the Pilarcos and
web-Pilarcos projects at the Department of Computer Science
at the University of Helsinki. The Pilarcos project was funded
by the National Technology Agency TEKES in Finland, Nokia,
SysOpen and Tellabs. In web-Pilarcos, active partners have
been VTT, Elisa and SysOpen. The work much integrates
with RM-ODP standards work, and recently has found an
interesting context in INTEROP NoE collaboration.

REFERENCES

[1] L. Kutvonen, T. Ruokolainen, J. Metso, and J. Haataja, “Interoperability
middleware for federated enterprise applications in web-Pilarcos,” in
INTEROP-ESA’05, 2005.

[2] M. P. Papazoglou and D. Georgakopoulos, “Service oriented computing,”
Oct. 2003.

[3] B. Benatallah, O. Perrin, F. Rabhi, and C. Godart, Web Service Com-
puting: Overview and Directions. Springer Verlag, 2004, ch. xx.

[4] L. Kutvonen, “Challenges for ODP-based infrastructure for managing
dynamic B2B networks,” in Workshop on ODP for Enterprise
Computing (WODPEC 2004), A. Vallecillo, P. Linington, and B. Wood,
Eds., 2004, pp. 57–64. [Online]. Available: http://www.lcc.uma.es/∼av/
wodpec2004/WODPEC2004-Proceedings.pdf

[5] Information Technology – Open Systems Interconnection, Data Man-
agement and Open Distributed Processing. Reference Model of Open
Distributed Processing. Part 2: Foundations, ISO/IEC JTC1, 1996,
iS10746-2.

[6] Information Technology – Open Systems Interconnection, Data Man-
agement and Open Distributed Processing. Reference Model of Open
Distributed Processing. Part 3: Architecture, ISO/IEC JTC1, 1996,
iS10746-3.

[7] IS13235 ODP Trading function., ISO/IEC JTC1, 1997.
[8] Information Technology – Open Systems Interconnection, Data Man-

agement and Open Distributed Processing. Reference Model of Open
Distributed Processing. ODP Type repository function, ISO/IEC JTC1,
1999, iS14746.

[9] L. Kutvonen, “Automated management of interorganisational applcia-
tions,” in EDOC2002, 2002.

[10] T. Ruokolainen and L. Kutvonen, “Interoperability in service-based com-
munities,” in First International Workshop on Enterprise and Networked
Enterprises Interoperability (ENEI2005), in conjuction with BPM2005,
2005, to appear.

[11] OASIS Consortium, Universal Description, Discovery and In-
tegration of Web Services (UDDI) 3, 2002, http://www.oasis-
open.org/committees/uddi-spec/tcspecs.shtmluddiv3.

[12] L. Kutvonen, “Trading services in open distributed environments,” Ph.D.
dissertation, Department of Computer Science, University of Helsinki,
1998.

[13] ——, “Relaxed Service-type matching and Transformation manage-
ment,” in Workshop on Enterprise Modelling and Ontologies for In-
teroperability, EMOI-INTEROP 2005, June 2005, poster paper accepted
for publication.

[14] IS15414 ODP Enterprise Language, ISO/IEC JTC1, 2003.
[15] Information Technology – Open Systems Interconnection, Data Man-

agement and Open Distributed Processing. ODP Enterprise Language,
Ammendments, ISO/IEC JTC1, 2003, pAM13235.

[16] J. Metso and L. Kutvonen, “Managing Virtual Organizations with
Contracts,” in COALA2005 workshop, June 2005, submitted manuscript.

[17] L. Viljanen, S. Ruohomaa, and L. Kutvonen, “The TuBE approach to
trust management,” in Proceedings of the 3rd iTrust internal workshop,
2004, to appear.

[18] “OpenCCM web-site (LIFL),” Dec. 2001, http://www.lifl.fr/OpenCCM.
[19] “MicoCCM web-site,” Dec. 2001, http://www.fpx.de/MicoCCM.
[20] “JBoss web site,” Jan. 2003, http://www.jboss.org.
[21] M. Vahaaho, J.-P. Haataja, J. Metso, T. Suoranta, E. Silfver, and

L. Kutvonen, “Pilarcos prototype II,” Department of Computer Science,
University of Helsinki, Tech. Rep. C-2003-12, Jan. 2003.

[22] ORBacus Trader, version 2.0.0, IONA Technologies, 2001,
http://www.iona.com/products/orbacus/trader.htm.

[23] M. Vahaaho, “Trading with architecture models (Arkkitehtuurikuvauksia
hydyntv meklaus),” Master’s thesis, Department of Computer Science,
University of Helsinki, Feb. 2003, in Finnish.

