

UML 2 Models for ODP Engineering/Technology Viewpoints – An Experiment

Daisuke Hashimoto Hiroshi Miyazaki Akira Tanaka

Technologic Arts Inc. Fujitsu, Ltd. Hitachi, Ltd.

hashimoto@tech-arts.co.jp miyazaki.hir-02@jp.fujitsu.com tanakaak@itg.hitachi.co.jp

Abstract

The advance of UML® 2.0 standardization work by OMG™

provides a good opportunity for ODP community to leverage

UML 2.0 to show the value of ODP. In this paper, we examine

issues in applying UML 2.0 to ODP Engineering and

Technology Viewpoint Languages, and show how we may be

able to use UML to represent those ODP Viewpoint

specifications.

1. Introduction

With the wide acceptance of Unified Modeling Language [2]

in the industry, there is a growing interest in applying UML to

represent ODP [1] viewpoint specifications. This direction is

beneficial to both sides, since ODP modelers will eventually be

able to get ODP modeling tool based on UML tools, and UML

modelers will get a robust way of organizing their UML models.

This comes from ISO/IEC and ITU-T’s joint project called “Use

of UML for ODP system specifications,” and also comes from

various “Enterprise Architecture [6]” practices where rows in

two-dimensional matrix are usually quite similar to ODP

viewpoints. The combination of UML and ODP with OMG’s

MDA initiative [3][4] will create a good foundation for systems’

lifecycle management. The content of this paper is a

work-in-progress level, based on INTAP’s technical report [5],

and is a result of elaborating current Committee Draft of “Use of

UML for ODP system specifications” standard by our group. In

this paper, we identify and examine issues in modeling

Engineering and Technology Viewpoints with UML 2.0, and

propose one possible UML 2 model diagrams for those

viewpoint specifications.

2. Engineering Viewpoint – Issues and

discussion for UML modeling

2.1 Target Architectural Diagrams

First we need to identify kinds of architectural diagrams to be

described in UML. Some candidates are found in RM-ODP Part

3, Clause 8 Figure 2 to 6. The following figures (R2 to R8) are

extracts from RM-ODP Part 3 standard document. In order to

avoid confusion, we will add “R” to refer to those diagrams.

Fig. R2 An example of a basic client / server channel

Fig. R3 An example of a multi-endpoint channel

Fig. R4 Example structure supporting a basic

engineering object

Fig. R5 Example structure of a capsule

Fig. R6 Example structure of a node

From those example figures, we can identify essential target

diagrams, which are Channel structure diagram (covering

Figure R2 and R3) and Capsule structure diagram (covering

Figure R4, R5, and R6).

In addition, to cover all the Engineering concepts, we will

need UML diagrams describing domains and templates.

2.2 Representation of Engineering Concepts

Engineering Object:

The issue is the choice of UML elements representing

Engineering Object, which includes at least Basic Engineering

Object (we will refer it as BEO in this paper), CapsuleManager,

ClusterManager, Stub, Binder, ProtocolObject, and Interceptor.

It could be modeled with UML Object (InstanceSpecification of

Class), UML Class, UML InstanceSpecification of Component,

or UML Component. In either case, UML 2’s Structured

Classifier will help us describe the internal structure of Channel

and Capsule.

Containers:

The next are containers such as Node, Nucleus, Capsule, and

Cluster. Those elements are defined as “a configurations of

(basic) engineering objects …” in RM-ODP Part 3. It may be

possible to use UML Node to represent ODP Node. However, if

we take this approach, only available UML diagram will be

Deployment Diagram, and UML 2 only allows certain types of

modeling elements (e.g. Node, Artifact) to be placed within a

Node. Note that it was possible to take this approach with UML

1.4, since it was legal to place Component within a Node. The

UML diagram we need has to have a capability to show the

internal and logical structure of ODP Node, similar discussion

regarding Class or Component in Engineering Object may also

apply.

Nucleus:

Nucleus may either be treated as Engineering Object or

container. It could be Engineering object, since it provides

Nucleus Services to all types of Engineering Objects. It could

also be considered as a container, in which Capsule and

Containers may reside within.

Channel:

Channel may either be treated as a container or a structured

Object or Class etc. The issue associated with Channel is that

both Channel and Capsule shares the same Engineering Objects

(Stub, Binder, and ProtocolObject) and we do not have

overlapping diagrams even in UML 2.0.

Template:

<X> Template is defined in RM-ODP Part 2 as “The

specification of the common features of a collection of <X>s in

sufficient detail that an <X> can be instantiated using it. <X>

can be anything that has a type.” The templates in Engineering

Viewpoint Language are Cluster template, Checkpoint, Cluster

checkpoint. However, the definitions of those Engineering

templates seem more like “snapshot” than the Part 2 definition

implies. The choice of UML model element for template has

impact on the choice of UML model element for Engineering

Object.

2.3 Interactions between Engineering Objects

In Computational Viewpoint, RM-ODP Part 3 provides

various concepts to deal with interactions with interface and

signature. In Engineering Viewpoint, however, we do not have

specific concepts for this purpose, and that makes it difficult to

model interactions between Engineering Objects. One

possibility is to consider “recursive application of viewpoints.”

If we can apply Computational Viewpoint Language to

interactions between BEOs, we will get a capability to specify

this. In that case, the modeling element will represent

Engineering Object with Computational aspects. The issue

becomes how to do this in UML. For instance, do we want to

allow UML Class or Component or InstanceSpecification

stereotyped as “«NV_BEO» «CV_Object»?”

In addition, if we are to allow “recursive application of

viewpoints” as described here, we would need to consider the

alignment of base classes for corresponding viewpoint profile.

2.4 Engineering Functions

In Engineering Viewpoint, there are functionalities defined as

a part of its language. Those are Checkpointing, Deactivation,

Cloning, Recovery, Reactivation, and Migration. Those are

different from other concepts, since they are representing

functions possibly including behaviors. One possibility is to

apply “recursive application of viewpoints” again, and make use

of Enterprise Viewpoint’s Objective and Process etc. concepts to

model those functions as «EV_Objective» with behaviors as

«EV_Process» expressed with Activity Diagram.

2.5 ODP functions

In RM-ODP Part 3, many ODP functions are described.

When defining ODP viewpoint specifications, those common

functions may need to be explicitly included. An example of

ODP function is ODP Trader, where the ODP Trader standard

defines Enterprise, Information, and Computational Viewpoint

specifications of itself. The issues are how we can identify,

reference, and include those functions in Engineering Viewpoint

specifications.

2.6 Domains

Domain concept in RM-ODP is defined as follows. <X>

Domain is “A set of objects, each of which is related by a

characterizing relationship <X> to a controlling object. Every

domain has a controlling object associated with it.” It is a set of

objects, rather than a configuration of objects. The issue is which

UML element is suitable for representing this “a set of objects”

concept.

Also, since the same Engineering Object may be a member of

several different kinds of domains at the same time (e.g.

NamingDomain_1, SecurityDomain_2, and PolicyDomain_3

etc.), UML element representing domain should allow sharing

of objects. If we choose Class, parts may be shared. If we

choose Component, it may become issues. If we choose

Package, we will need to use «import»/«access» etc. to have

access to those elements contained in other Packages.

Figure 1 Engineering objects and domains

2.7 Selective Transparencies

Computational Viewpoint specifications are defined in

distribution transparent manner, and the degree of distribution

transparency may be specified in a “transparency schema”

associated with “a specification that uses specific ODP functions

and engineering structures to provide the required form of

masking.” This may be considered as a mapping specification

from Computational Viewpoint to Engineering Viewpoint.

And, this implies that given one Computational Viewpoint

specification, there will be a variety of Engineering Viewpoint

specifications, each corresponding to different transparency

schema. Although this issue may be mainly related with

Computational Viewpoint, it has an impact on Engineering

Viewpoint specification and Engineering Viewpoint’s

correspondence to Computational Viewpoint specification.

2.8 Architectural Styles (or Engineering

Templates or Patterns)

Since the day RM-ODP Part 3 became International Standard,

five or more years have passed, and now there are various types

of commercial and open source middleware which in fact

implements most of the Engineering Viewpoint concerns, e.g.

CORBA ORBs, J2EE application servers. .NET, Web Services,

SOA, and Message Oriented Middleware, etc. Even more, there

are new types of middleware emerging for Grid and Utility

Computing, Wireless Networking, and Collaboration

Environment etc. Also, various best practices and architectural

styles (such as MVC) were developed and in use. Now may be

a good time to define architectural styles as Engineering

Templates and publish them for use in mapping Computational

Viewpoint specifications to Engineering Viewpoint

specifications. The issue is how to define those architectural

styles with UML.

3. Engineering Viewpoint – Possible UML 2

Models

3.1 Profile definition

The first step is to decide which UML element should be

used to represent Engineering Viewpoint Language, especially

Engineering Object. We also need to consider about related

templates. The choice we made in this paper is use of UML

Component for Engineering Objects. A Component is closer to

real world software component than Class, and UML 2 also

provides Component with structuring capability. The following

is a Class diagram showing partial UML 2 Profile definition.

The stereotypes have prefix NV_, which is a rule for defining

stereotype names for Engineering Viewpoint in Use of UML for

ODP system specifications standard. Most (not all) stereotypes

extend metaclass Component.

Figure 2 UML 2 Profile for Engineering Viewpoint
Language

3.2 Node configuration

 The computational to engineering correspondence, or model

transformation, is not within the scope of this paper. However, to

achieve this, we will at least need a transformation pattern and

mechanism. Assuming that there is one, the output N-tier

distributed system’s node configuration may look like the

following. In this case, there are a Node for user interaction, a

Node for front-end, a Node responsible for business logic, and

two Nodes for persistent data. In essence, BEOs derived form

computational objects and engineering objects for providing

specified transparency scheme will be deployed on those nodes.

Figure 3 Example Node Configurations

3.3 Node Structure Diagrams

As discussed before, we need to be able to model structure of

each Node. Sample structural UML Diagram is shown in Figure

4, which is a UML Component Diagram. We have a Node

containing two Capsules, one of which has two Clusters

containing two BEOs. There are BEOs (e.g. BEO_1AA) which

have access to the services provided by Cluster Manager, which

in turn has access to services provided by Capsule Managers.

Other BEOs (e.g. BEO_1AB) have access to a Stub for

communication, and the Stub interacts with a Binder, and the

Binder interacts with a Protocol Object.

Figure 4 Example UML 2 model for Node, Capsule,
Cluster, and BEO

Interesting observation is whether Capsule and Cluster should

have interfaces or not, since Capsule is a unit of resource

assignment, Cluster is a unit of activations/deactivations, and

they have associated Managers. If they have interfaces, then

what kind of interface should they be?

3.3 Channel Diagrams

A Channel may be represented with the following UML 2

diagram. The same Engineering Objects appear in Figure 4 and

Figure 5 (i.e., Stub, Binder, Protocol Object and Interceptor).

Figure 4 shows the structure, interfaces with ports, and services

in the hierarchy. Figure 5 shows membership of the Channel

Package. Those two diagrams complement with each other to

provide different views to the same set of Engineering Objects

that make up a part of Node and a Channel. In Figure 5, a

channel is defined as a package containing engineering objects,

which are the components necessary for enabling

communication between Nodes. There are three BEOs involved

(not shown): a BEO interacting with Stub_1, a BEO interacting

with Stub_2, and a BEO interacting with Stub_3. This channel

is defined to serve for those BEOs interacting with each other.

The structural aspect, e.g. Stub_1 interacts with Binder_1, is

described in structural diagram like Figure 4, and therefore this

channel diagram just defines the member engineering objects.

Figure 5 Example UML 2 model for Channel

 Figure 4 and 5 together cover most of the figures (R2 to R8)

from RM-ODP Part 3, except for control interfaces, which are

just one kind of interfaces we can add to engineering objects.

From other perspective, a channel diagram is a package

importing necessary member engineering objects from Node

structure packages for communication.

Figure 6 Example Channel

3.4 BEO configuration

 Like in computational viewpoint, it is sometimes necessary to

specify interactions between BEOs. One of the issues is that the

diagram will become complex if BEO configuration is placed in

Node Structure diagram (Figure 4). One possibility is to isolate

Clusters from the Node Structure and use component diagram

(in our case) to describe the interaction. We may need to use e.g.

double stereotypes to represent computational aspects of

engineering object, e.g. for interfaces, signatures, and

interactions for engineering objects. In Figure 7, a Cluster

contains two BEOs providing services through the Cluster’s

Port and Interface.

Figure 7 Example basic BEO Configuration

 Figure 8 shows a case where two BEOs in a same Cluster have

dependency, or interaction. If we need to specify this interaction,

interface, and signatures, we may need to borrow stereotype

elements from already defined Computational Profile.

Figure 8 Example BEO configuration including
computational aspects

3.4 Domains

Domain may be represented with the following UML 2

diagrams (Packages). One missing element is a Policy that

Controlling Object is enforcing. Since Policy concept, at least

the base class for it, should be aligned with other viewpoint (i.e.

Enterprise Viewpoint), and that is not concluded yet, we did not

include it in this diagram.

In Figure 9, CommunicationDomain_A is defined as a

package containing a CommunicationControllingObject,

ProtocolObject_1 to 3, and an Interceptor_A. Those objects

share the same communication protocol, and are able to

communication with each other. Note that not all

ProtocolObjects included in this package may be instantiated at

certain location in time.

Figure 9 Example Communication Domain

Also from different perspective, a CommunicationDomain can

be described as the package importing necessary member

engineering objects.

The following diagram shows CommunicationDomain package

containing only one engineering object (in this case it is a

controlling object) accessing other member engineering objects

from various Node structure packages.

Figure 10 Example Communication Domain (2)

3.5 Correspondence

From Engineering Viewpoint to Computational Viewpoint

Our assumption is that each BEO has one to one relationship

to corresponding Computational Object (from Engineering to

Computational, not vice versa). This could be expressed as

dependency from BEO sub-Package in Engineering Viewpoint

Package to Computational Objects in Computational Viewpoint

Package in UML. Note that the distribution support mechanism

part of Engineering Viewpoint Language model elements may

have one to one relationship with specified transparencies in

transparency schema.

From Engineering Viewpoint to Technology Viewpoint

This correspondence is closely related to OMG’s MDA

initiative where Platform Independent Model is transformed to

Platform Specific Model. In this case, Platform means real

software and hardware platforms. It is our expectation that when

MDA standards get mature, they will become an enabling

technology for specifying Viewpoint Correspondence.

Each Engineering Objects may be implemented with multiple

Technology Objects, and multiple Engineering Objects may be

implemented with one Technology Object. This could be

expressed also as dependency between two Viewpoint

Packages.

4. Technology Viewpoint – Issues and discussion

for UML modeling

4.1 Hardware, Software and Network

In UML Deployment Diagram, main modeling elements are

Node and Artifact. Typical representation of hardware elements

such as CPU and memory is by the use of tagged values to

Node, and we follow this approach. For operating systems and

middleware, UML 2 introduced new metaclass

ExecutionEnvironment to Node. We can add, if necessary, ODP

semantics to this model element. Software implementing BEOs

can be modeled as Artifact. CORBA Middleware and

POSIX-compliant Operating System, for instance, may be

modeled as or based on ExecutionEnvironment. Network like

the Internet and LAN can be modeled as a Node, although

hardware/software aspects of network can be treated differently.

The discussion may be regarding the extent for defining UML

Profile for Technology Viewpoint, since UML 2 provides a

similar set of modeling elements. Our approach is to define

minimal extensions and to see what is missing based on users’

experience.

4.2 Representation of Technology Concepts

Technology Object

Technology Objects, covering software, hardware and

network, may be represented with UML Artifact or Node

(including Node within Node).

Implementable standard may be considered as a part of

specification Technology Objects implements. It could be

modeled as UML Class or Component.

Implementation is defined as “a process of instantiation whose

validity can be subject to test.” A process may be represented

with UML Activity Diagram. Since “Process” concept has been

refined in Enterprise Language, we may need to refer to related

modeling elements in Engineering Viewpoint.

IXIT (Implementation eXtra Information for Testing) may be

represented with UML Comments as annotations to Technology

Viewpoint specifications. However, there may be a case where

an IXIT contains a lot of information and could not be described

within a UML Comment, we may need to introduce a

mechanism to refer external documents.

5. Technology Viewpoint – Possible UML 2

Models

5.1 Profile definition

The following is a diagram showing a partial UML 2 Profile

definition. In order to represent hardware, software, and network

as Technology Object, two base classes are used for Technology

Object. The stereotypes have prefix TV_, which is a rule for

defining stereotype names for Engineering Viewpoint in Use of

UML for ODP system specifications standard.

Figure 11 UML 2 Profile for Technology Viewpoint
Language

5.2 Node Configuration

 In technology viewpoint, we can show network components

and hardware components as well as software components. This

is the difference with Node Configuration of engineering

viewpoint.

Figure 12 Example Node Configuration

5.3 Node Structure Diagram

The following is an example diagram showing physical

structure of a node with hardware, software, and network

elements. In this diagram, there is a Node which is connected

with the Internet, and which hosts POSIX compliant operating

system and J2EE compliant middleware, and two applications

are introduced as Artifacts to run under those execution

environments.

Figure 13 Example Node Structure

5.4 IXIT

 IXIT stands for Implementation eXtra Information for Testing,

and is one of technology viewpoint concepts. Since this is

associated with technology objects, and since we do not have

formal way of modeling “extra information,” UML Comment is

used.

Figure 14 Example IXIT

5.5 Correspondence

From Technology Viewpoint to Engineering Viewpoint

Each Technology Object has one to one relationship to

corresponding Engineering Object. This could be expressed as

dependency from Technology Objects in Technology Viewpoint

Package to Engineering Objects in Engineering Viewpoint

Package.

6. Conclusions
There may be multiple ways to represent ODP viewpoint

specifications with UML 2.0. Regarding approaches, we

believe we have choices e.g. on class-based modeling vs.

component-based modeling and on class/component based

modeling vs. instance (object/component instance) based

modeling. In this paper we took component-based modeling

approach. And, if you compare the diagrams presented in this

paper with the diagrams in RM-ODP Part 3 (i.e. Figure R2 to

R8 in 2.1), we believe we have successfully demonstrated most

of the Engineering Viewpoint Specifications with UML 2.0 and

its Profiles. We also have demonstrated a possible UML Profile

for Technology Viewpoint, which also works. However, we

need to develop consistent UML Profiles for all the ODP

viewpoints to allow describe different viewpoint’s concern in

certain viewpoint’s specification. Another important point is

that the UML mapping should be practical and the results

should be accessible and usable. We hope that UML Profile for

ODP to be standardized soon and the profile data be developed,

published, and become openly available to interested parties,

that is, UML modelers and ODP modelers.

Acknowledgements
The work described here was mostly done within INTAP

Open Distributed Processing Committee, and includes some

ideas and discussions from International and Japanese

Committee for SC7/WG19. The authors would also like to

thank Mr. David Frankel for his contribution in [5] to this UML

and ODP work.

References

[1] RM-ODP, ITU-T Recommendation X.901 to X.904 and ISO/IEC

10746-1 to 4

http://isotc.iso.ch/livelink/livelink/fetch/2000/2489/Ittf_Home/ITTF.htm

??Redirect=1

[2] UML 2.0 Superstructure, OMG,

http://www.omg.org/cgi-bin/doc?ptc/2004-10-02

[3] Model Driven Architecture, Document number: ormsc/01-07-01

[4] MDA Guide, Document number: omg/03-06-01

[5] Applying EDOC and MDA to the RM-ODP Engineering and

Technology Viewpoints, INTAP Technical Report, David Frankel

Consulting, http://www.net.intap.or.jp/e/odp/odp-techguide.pdf

[6] Federal Enterprise Architecture Reference Model,

http://www.whitehouse.gov/omb/egov/a-2-EAModelsNEW2.html

