Chapter 1
A Primer on Memetic Algorithms

Ferrante Neri and Carlos Cotta

1.1 Introduction

Memetic Algorithms (MAs) are population-based metaheuristics composed of an
evolutionary framework and a set of local search algorithms which are activated
within the generation cycle of the external framework, see [23]. The earliest MA
implementation has been given in [52] in the context of the Travelling Salesman
Problem (TSP) while an early systematic definition has been presented in [48]. The
concept of meme is borrowed from philosophy and is intended as the unit of cultural
transmission. In other words, complex ideas can be decomposed into memes which
propagate and mutate within a population. Culture, in this way, constantly undergoes
evolution and tends towards progressive improvements. Strong ideas tend to resist
and be propagated within a community while weak ideas are not selected and tend
to disappear. In the metaphor, the ideas are the search operators: the fittest tend to
be employed while the inadequate ones are likely to disappear.

This chapter gives an initial description of MA frameworks explaining the lit-
erature context of their generation and success as well as their general structures.
More specifically, Section 1.2 analyzes the context where MAs have been intro-
duced and puts into relationship the algorithmic flexibility of the memetic paradigm
with the the No Free Lunch Theorem. Section 1.3 shows the outline of a general
MA implementation. Section 1.5 gives a quick overview on the MA application and
employment in literature. Finally, Section 1.6 explains the difference between MAs
and the general emerging trend of Memetic Computing.

Ferrante Neri
Department of Mathematical Information Technology, P.O. Box 35 (Agora), 40014, University of
Jyviskyld, Finland, e-mail: ferrante.neri@jyu.fi

Carlos Cotta

Departamento de Lenguajes y Ciencias de la Computacién, Escuela Técnica Superior de Inge-
nierfa Informatica, Universidad de Maélaga, Campus de Teatinos, 29071 Malaga, Spain e-mail:
ccottap@lcc.uma.es

2 Ferrante Neri and Carlos Cotta

1.2 The Need for Memetic Algorithms

In order to understand in depth the role and need of MAs, it is fundamental to con-
sider the historical context within which MAs have been defined. In 1988, when the
first MAs were defined, Genetic Algorithms (GAs) were extremely popular among
computer scientists and their related research was oriented towards the design of
algorithms having a superior performance with respect to all the other algorithms
present in literature. This approach is visible in many famous texts published in
those years, e.g. [21]. Unlike all the algorithms proposed at that time, a MA was
not a specific algorithm but was something much more general than an optimiza-
tion algorithm: since MAs consists of the concept of combining global and local
search algorithms, they represented a broad and flexible class of algorithms which
somehow contained the previous work on Evolutionary Algorithms (EAs) and thus,
constituted a new philosophy in optimization. Probably, due to their excessively
innovative contents, MAs had to face for about one decade, the skepticism of the
scientific community which repeatedly rejected the memetic approach as a valuable
possibility in optimization.

Since 1997, researchers in optimization had to dramatically change their view
about the subject. More specifically, in the light of increasing interest in general
purpose optimization algorithms, it has become important, in the end of 90’s to
understand the relationship between how well an algorithm a performs on a given
optimization problem f on which it is run on the the basis of the features of the prob-
lem f. A slightly counter intuitive result has been derived by Wolpert and Macready
in [73] which states that for a given pair of algorithms A and B:

Y P(xulf,A) =Y P(xulf,B) (1.1)
f f

where P(x,|f,A) is the probability that algorithm A detects the optimal solu-
tion for a generic objective function f and P(x,|f,B) is the analogue probability
for algorithm B. In [73] the statement eq. 1.1 is proved for both static and time-
dependent case and are named “No Free Lunch Theorems” (NFLT). In other words,
in 1997 it was mathematically proved that the average performance of any pair of
algorithms across all possible problems is identical. Thus, if an algorithm performs
well on a certain class of problems then it necessarily pays for that with degraded
performance on the set of all remaining problems as this is the only way that all
algorithms can have the same performance averaged over all functions [73]. Strictly
speaking, the proof of NFLT is made under the hypothesis that both the algorithms
A and B are non-revisiting, i.e. the algorithms do not perform the fitness evaluation
of the same candidate solution more often than once during the optimization run.
Although this hypothesis is de facto not respected for most of the computational in-
telligence optimization algorithms, the concept that there is no universal optimizer
had a significant impact on the scientific community.

It should be highlighted that a class of problems on which an algorithms performs
well is not defined by the nature of the application but rather by the features of the

1 A Primer on Memetic Algorithms 3

fitness function within the search space. For example an optimization problem is
characterized by:

e the shape and properties of a corresponding fitness landscape (see definitions
below),

e multi-modality,

e separability of the problem,

e absence or presence of a noise in the values of the objective function (optionally,
the type of noise),

e time dependency of the objective function (dynamic problems)

e shape and connectivity of the search domain

In evolutionary biology, the idea of studying evolution by visualizing the distri-
bution of fitness values as a kind of landscape was first introduced by Wright [74].

More formally, the fitness landscape (S, f,d) of a problem instance for a given
problem consists of a set of points S, a fitness function f which assigns values
(fitness) to solutions from S, and a distance measure d : S X § — R which defines
the spacial structure of the landscape. This rather abstract concept has proven to be
useful for understanding the functionality of various optimization methods, see [43]
and [44].

One of the most important properties of the fitness landscape is epistasis whose
concept has been borrowed from biology where it refers to the degree to which the
genes are correlated. As well known, a function is separable if it can be rewritten
as a sum of functions of just one variable. The separability is closely related to the
concept of epistasis. In the field of evolutionary computation, the epistasis measures
how much the contribution of a gene to the fitness of the individual depends on
the values of other genes. Nonseparable functions are more difficult to optimize as
the accurate search direction depends on two or more genes. On the other hand,
separable functions can be optimized for each variable in turn. However, epistasis
does not provide any piece of information on how the fitness values are topologically
related to each other. By knowing the epistasis of an optimization problem, it cannot
be established whether the fitness values form a smooth progression resulting in a
solitary optimum or whether they form a spiky pattern of many isolated optima [31].

The impossibility of understanding each detail of the fitness landscape depends
not only on the fitness function but also on the search algorithm [31] since an ob-
served landscape appears to be an artefact of the algorithm used or, more specifi-
cally, of the neighborhood structure induced by the operators used by the algorithm
[30]. The neighborhood structure is defined as a set of points that can be reached
by a single move of a search algorithm [22]. Closely related to the concept of the
neighborhood structure is the notion of a basin of attraction induced by this struc-
ture. More specifically, a basin of attraction of a local optimum x is the set of points
X of the search space such that a search algorithm starting from any point from X
ends in the local optimum x. A special note should be made regarding the land-
scapes with plateaus, i.e. regions in search domain where the function has constant
or nearly constant values. If a search method is trapped on such region it cannot get
any information regarding the gradient or even its estimates. Generally speaking,

4 Ferrante Neri and Carlos Cotta

this situation is rather complicated and special algorithmic components should be
used in this case. Finally, an important feature of a fitness landscape is the presence
or absence of symmetry. Special components can be included in the algorithms for
symmetrical problems.

In addition, two features can be mentioned which appear to be semi-defining
when distinguishing the classes of problems on which an algorithm performs well.
The first one is dimensionality of the problem. Two problems with high dimension-
ality of the search domain can be put into the same class, however an algorithm that
performs well for one of them might not necessarily work well for the other one. At
the same time, two specialized algorithms for these two problems will have some
common features intended to overcome difficulties arising from high dimensional-
ity. The second semi-defining feature is computational cost of a single evaluation of
the objective function. Clearly, two problems with computationally expensive ob-
jective functions can have different features mentioned above that will put them into
different classes. However, these problems are unsolvable (in practice) if treated
as computationally cheap functions, therefore algorithms for such problems should
have common type components which allow proper handling of the computational
cost.

There is generally a performance advantage in incorporating prior knowledge
into the algorithm, however the results of NFLT do not deem the use of unspecial-
ized algorithms futile. It is impossible to determine the fraction of practical prob-
lems for which an algorithm yields good results rapidly, therefore a practical free
lunch is possible. NFLT constitute, in a certain sense, the “Full Employment The-
orem” (FET) for optimization professionals. In computer science and mathematics,
the term FET is used to refer to a theorem that shows that no algorithm can opti-
mally perform a particular task done by some class of professionals. In this sense,
as no efficient general purpose solver exists, there is always scope for improving al-
gorithms for better performance on particular problems. Since MAs, as mentioned
above, represent a broad class of algorithms which combine various algorithmic
components, a suitable combination is necessary for a given problem. Since, during
the last decade, computer scientists had to observe the features of their optimiza-
tion problem in order to propose an ad-hoc optimization algorithm, the approach of
combining various search operators within the algorithmic design became a com-
mon practice. In this sense, the development of NFLT implicitly encouraged the use
and development of MAs, which became extremely popular and often necessary, in
computer science, at first, and in engineering and applied science, more recently,
thus constituting the FET for MAs.

1.3 A Basic Memetic Algorithm Template

As mentioned in previous sections, MAs blend together ideas from different search
methodologies, and most prominently ideas from local search techniques and
population-based search. Indeed, from a very general point of view a basic MA

1 A Primer on Memetic Algorithms 5

can be regarded as one (or several) local search procedure(s) acting on a set pop of
|pop| = 2 solutions which engage in periodical episodes of cooperation via recom-
bination procedures. This is shown in Algorithm 1.

Algorithm 1: A Basic Memetic Algorithm

function BasicMA (in P: Problem, in par: Parameters): Solution;

1
2 begin

3 pop < Initialize(par, P);

4 repeat

5 newpop; < Cooperate(pop, par, P);

6 newpop, < Improve(newpop, par, P);
7 pop < Compete (pop, newpop»);

s if Converged(pop) then

9 | pop < Restart(pop, par);

10 end if

11 until TerminationCriterion(par);

12 return GetNthBest(pop, 1);

13 end

This template requires some explanation. First of all, the Initialize procedure is
responsible for creating the initial set of |pop| solutions. While traditional evolu-
tionary algorithms usually resorted to simply generating |pop| solutions at random
(in some cases following a systematic procedure to ensure a good coverage of the
search space), MAs typically attempt to use high-quality solutions as starting point.
This can be done either using a more sophisticated mechanism (for instance, some
constructive heuristic) to inject good solutions in the initial population [71], or by
using a local-search procedure to improve random solutions (see Algorithm 2).

Algorithm 2: Injecting high-quality solutions in the initial population.

1 function Initialize(in par: Parameters, in P: Problem): Bag{Solution};
2 begin

3 pop < 0;

4 for j < I to par.popsize do

5 i + RandomSolution(P);

6 i < LocalSearch (i, par, P);

7 pop « popU{i};

8 end for

9 return pop;

10 end

As for the TerminationCriterion function, it typically amounts to checking a limit
on the total number of iterations, reaching a maximum number of iterations without
improvement, or having performed a certain number of population restarts.

6 Ferrante Neri and Carlos Cotta

Algorithm 3: The pipelined Cooperate procedure.

1 function Cooperate (in pop: Bag{Solution}, in par: Parameters, in P: Problem):
Bag{Solution};

2 begin

3 lastpop < pop;

4 for j < I to par.numop do

5 newpop < 0;

6 for k < I to par.numapps’ do

7 parents + Select (lastpop, par.arity’);

8 newpop < newpop U ApplyOperator (par.op’, parents, P);

9 end for

10 lastpop < newpop;

1 end for

12 return newpop;

13 end

The procedures Cooperate and Improve constitute the core of the MA. Starting
with the former, its most typical incarnation is based on two operators for selecting
solutions from the population and recombining them. Of course, this procedure can
be readily extended to use a collection of variation operators applied in a pipeline
fashion. As shown in Algorithm 3, this procedure comprises numop stages, each
one corresponding to the iterated application of a particular operator op/ that takes
arityin’ solutions from the previous stage, generating arityout’ new solutions.

As to the Improve procedure, it embodies the application of a local search pro-
cedure to solutions in the population. Notice that in an abstract sense a local search
method can be modeled as a unary operator, and hence it could have been included
within the Cooperate procedure above. However, local search plays such an im-
portant role in MAs that it deserves separate treatment. Indeed, there are several
important design decisions involved in the application of local search to solutions,
i.e., to which solutions should it be applied, how often, for how long, etc. See also
next section.

Next, the Compete procedure is used to reconstruct the current population using
the old population pop and the newly generated population newpop,. Borrowing
the terminology from the evolution strategy [65, 66] community, there exist two
main possibilities to carry on this reconstruction: the plus strategy and the comma
strategy. The latter is usually regarded as less prone to stagnation [1], with the ratio
|newpop|/|pop| ~ 6 being a common choice [2]. Since this option can be somewhat
computationally expensive if the fitness function is complex and time-consuming, a
popular alternative is using a plus strategy with a low value of |newpop|, analogous
to the so-called steady-state replacement strategy in GAs [72]. This option usually
provides a faster convergence to high-quality solutions, although care has to be taken
with premature convergence to suboptimal regions of the search space. This leads to
the last component of the template shown in Algorithm 1, the restarting procedure.

First of all, it must be decided whether the population has degraded or has not,
using some measure of information diversity in the population such as Shannon’s

1 A Primer on Memetic Algorithms 7

Algorithm 4: The Restart procedure.

1 function Restart (in pop: Bag{Solution}, in par: Parameters, in P: Problem):

Bag{Solution};
2 begin
3 newpop < 0;
4 for j < I to par.preserved do
5 i < GetNthBest(pop, j);
6 newpop <« {i};
7 end for
8 for j < par.preserved + 1 to par.popsize do
9 i <+ RandomSolution(P);
10 i < LocalSearch (i, par, P);
1 newpop < {i};
12 end for
13 return newpop;
14 end

entropy [14]. Once the population is considered to be at a degenerate state, the
restart procedure is invoked. Again, this can be implemented in a number of ways.
A very typical strategy is to keep a fraction of the current population, generating new
(random or heuristic) solutions to complete the population, as shown in Algorithm
4. The procedure shown therein is also known as the random-immigrant strategy
[9]. Another possibility is to activate a strong or heavy mutation operator in order to
drive the population away from its current location in the search space.

1.4 Design Issues

The general template of MAs depicted in the previous section must be instantiated
with precise components in order to be used for solving a specific problem. MAs
are commonly implemented as EAs endowed with a local search component, and
therefore the theoretical corpus available for the former can be used to guide some
aspects of the design process, e.g., the representation of solutions in terms of mean-
ingful information units [13, 64].

The most MA-specific design decisions are those related to the local search com-
ponent, not just from the point of view of parameterization (see below) but also with
the actual inner working of the component and its interplay with the remaining oper-
ators. This latter issue is well exemplified in the work of Merz and Freisleben on the
TSP [16]. They consider the use of the Lin-Kernighan heuristic [39], a highly inten-
sive local search procedure, and note that the average distance between local optima
is similar to the average distance between a local optimum and the global optimum.
For this reason, they introduce a distance-preserving crossover (DPX) operator that
generate offspring whose distance from the parents is the same as the distance be-
tween the parents themselves. Such an operator is likely to be less effective if a

8 Ferrante Neri and Carlos Cotta

less powerful local improvement method, e.g., 2-opt, was used, inducing a different
distribution of local optima.

Once a local search procedure is selected, an adequate parameterization must be
determined, i.e., how often it must be applied, how to select the solutions that will
undergo local improvement, and how long must improvement epochs last. These
are delicate issues since there exists theoretical evidence [37, 70] that an inadequate
parameter setting can turn the algorithmic solution from easily solvable to non-
polynomially solvable. Regarding the probability of application of local search, its
precise values largely depends on the problem under consideration [27], and its
determination is in many cases an art. For this reason, adaptive and self-adaptive
mechanisms have been defined in order to let the algorithm learn what the most
appropriate setting is. The term partial lamarckianism [10, 24, 59] is used to denote
these strategies where not every individual is subject to local search.

As to the selection of individuals that will undergo local search, most common
options are random-selection, and fitness-based selection, where only the best indi-
viduals are subject to local improvement. For example, Nguyen et al. [56] consider
an approach in which the population is sorted and divided into n levels (n being
the number of local search applications), and one individual per level is randomly
selected. Note that such a strategy can be readily deployed on a structured MA as
defined by Moscato et al. [4,7, 15, 41, 42], in which fitness-based layers are explic-
itly available. See also [6, 60, 61, 69] for other population management strategies.

1.5 Conclusions and Outlook

Memetic algorithms are a pragmatic, cross-disciplinary optimization paradigm that
has emerged in the last quarter of a century to become nowadays one of the most
widely used solving approaches. This is supported by a plethora of applications in
disparate fields ranging from machine learning and knowledge discovery to plan-
ning, scheduling and timetabling, from bioinformatics to electronics, engineering,
and telecommunications, or from economics to physics, just to mention a few. The
reader may check [11, 22, 49, 50, 51, 53, 54], for a survey of these applications and
pointers to the literature.

Throughout this chapter we have provided a brief introduction to the main is-
sues regarding the definition and design of a basic memetic algorithm. However,
it must be emphasized that the MA paradigm is very rich and has given rise to an
ample set of variations and more sophisticated MA models. Among these, we can
firstly cite multiobjective MAs (MOMASs). MOMAs are applied to problems which
exhibit multiple, partially-conflicting objectives, and in which the notion of Pareto-
dominance is therefore essential. Actually, MOMA approaches can be roughly clas-
sified into two major classes: scalarizing approaches [25, 26, 28, 29] (based on the
use of some aggregation mechanism to combine the multiple objectives into a sin-
gle scalar value), and Pareto-based approaches [33, 34] (considering the notion of

1 A Primer on Memetic Algorithms 9

Pareto-dominance for deciding transitions among neighboring solutions). MOMAs
will be dealt in more detail in chapter ?? in this volume.

Adaptive MAs also deserve special attention. As mentioned in Section 1.4, deci-
sions related to parameterization are essential in order to achieve an effective MA.
It is therefore not surprising that attempts have been made to let the algorithm find
by itself adequate values for these parameters [3, 40, 46, 47]. Furthermore, the term
“meta-lamarckian learning” [57] has been coined to denote strategies in which the
algorithm learns to select appropriate local search operators from a certain available
collection (note the relationship with hyperheuristics [12]). A further step is taken
in the so-called multi-memetic algorithms, in which each solution carries a gene
that indicates which local search has to be applied on it (either indicating which one
from a pre-existing collection, by parameterizing a general local search template, or
by using a grammar to define new operators) [35, 36, 38]. At an even higher level,
solutions and local-search operators can coevolve [67, 68]. Adaptive MAs will be
dealt in more detail in chapter ?? in this volume.

Last but not least, there exist nowadays a growing trend in combining MAs with
complete techniques such as branch-and-bound or branch-and-cut among others.
There are many ways in which such a combination can be done. For example, an
exact technique can be used as an internal operator of the MA [18, 63], as a post-
processing technique [32], run in parallel with the MA [17, 19, 62], and even com-
bine several of the previous approaches [20]. The combination of MAs with exact
techniques will be dealt in more detail in chapter ?? in this volume.

1.6 Memetic Algorithms and Memetic Computing

It is fundamental to clarify the difference between MAs and Memetic Computing
(MC) . As stated above, MAs are population-based evolutionary algorithms com-
posed of an evolutionary framework and a list of local search algorithms activated
within the generation cycle of the evolutionary framework, see [23]. While this book
refers to MAs, it is worthy to take into account that recently the term MC became
widely used amongst computer scientists. An early definition has been given in [58],
where MC is defined as “...a paradigm that uses the notion of meme(s) as units of
information encoded in computational representations for the purpose of problem
solving”. In other words, part of the scientific community tried to extend the concept
of meme for problem solving, see [55], to something broader and more innovative.
The fact that ad-hoc optimization algorithms can efficiently solve given problems is
a well-known result from literature. On the other hand, the ultimate goal in artificial
intelligence is the generation of autonomous and intelligent structures. In computa-
tional intelligence optimization, the goal is the automatic detection of the optimal
optimization algorithm for each fitness landscape, or, in other terms, the on-line (i.e.
during run-time) automatic design of optimization algorithms. MC can be seen then
as a subject which studies complex structures composed of simple modules (memes)

10 Ferrante Neri and Carlos Cotta

which interact and evolve adapting to the problem in order to solve it. This view of
the subject leads to a more modern definition of MC.

Definition 1.1. Memetic Computing is a broad subject which studies complex and
dynamic computing structures composed of interacting modules (memes) whose
evolution dynamics is inspired by the diffusion of ideas. Memes are simple strategies
whose harmonic coordination allows the solution of various problems.

In this light, MAs should be seen as a cornerstone and founding subset of MC.
Acknowledgements C. Cotta is supported by Spanish MICINN under project NEMESIS (TIN2008-

05941) and by Junta de Andalucia under project TIC-6083. F. Neri is supported by the Academy
of Finland, Akatemiatutkija 130600, Algorithmic Design Issues in Memetic Computing.

References

10.

11.

. Bick T (1996) Evolutionary Algorithms in Theory and Practice. Oxford Uni-

versity Press, New York NY

Béck T, Hoffmeister F (1991) Adaptive search by evolutionary algorithms. In:
Ebeling W, Peschel M, Weidlich W (eds) Models of Self-organization in Com-
plex Systems, no. 64 in Mathematical Research, Akademie-Verlag, pp 17-21
Bambha NK, Bhattacharyya SS, Teich J, Zitzler E (2004) Systematic integra-
tion of parameterized local search into evolutionary algorithms. IEEE Transac-
tions on Evolutionary Computation 8(2):137-155

Berretta R, Cotta C, Moscato P (2003) Enhancing the performance of memetic
algorithms by using a matching-based recombination algorithm: Results on the
number partitioning problem. In: Resende M, Pinho de Sousa J (eds) Meta-
heuristics: Computer-Decision Making, Kluwer Academic Publishers, Boston
MA, pp 65-90

Blesa MJ, et al (eds) (2008) Hybrid Metaheuristics 2008, Lecture Notes in
Computer Science, vol 5296, Springer-Verlag, Malaga, Spain

Boudia M, Prins C, Reghioui M (2007) An effective memetic algorithm with
population management for the split delivery vehicle routing problem. In:
Bartz-Beielstein T, et al (eds) Hybrid Metaheuristics 2007, Springer-Verlag,
Lecture Notes in Computer Science, vol 4771, pp 16-30

Buriol L, Franga P, Moscato P (2004) A new memetic algorithm for the asym-
metric traveling salesman problem. Journal of Heuristics 10(5):483-506

CEC (2005) IEEE Congress on Evolutionary Computation 2005, IEEE Press,
Edinburgh, UK

Cobb H, Grefenstette J (1993) Genetic algorithms for tracking changing envi-
ronments. In: Forrest S (ed) ICGA 1993, Morgan Kaufmann, San Mateo CA,
pp 529-530

Cotta C (2005) Memetic algorithms with partial lamarckism for the shortest
common supersequence problem. In: [45], pp 84-91

Cotta C, Fernandez A (2007) Memetic algorithms in planning, scheduling, and
timetabling. In: Dahal K, Tan K, Cowling P (eds) Evolutionary Scheduling,
Studies in Computational Intelligence, vol 49, Springer-Verlag, pp 1-30

11

12

12.

13.

14.

15.

16.

17.

19.

20.

21.

22.

23.

24.

25.

26.

References

Cowling P, Kendall G, Soubeiga E (2001) A hyperheuristic approach to sched-
ule a sales submit. In: Burke E, Erben W (eds) Selected papers from the Third
International Conference on Practice and Theory of Automated Timetabling
III, Springer-Verlag, Berlin Heidelberg, Lecture Notes in Computer Science,
vol 2079, pp 176-190

Davidor Y (1990) Epistasis Variance: Suitability of a Representation to Genetic
Algorithms. Complex Systems 4(4):369-383

Davidor Y, Ben-Kiki O (1992) The interplay among the genetic algorithm oper-
ators: Information theory tools used in a holistic way. In: Méanner R, Manderick
B (eds) PPSN 1992, Elsevier, Brussels, Belgium, pp 75-84

Franca PM, Mendes A, Moscato P (2001) A memetic algorithm for the total
tardiness single machine scheduling problem. European Journal of Operational
Research 132(1):224-242

Freisleben B, Merz P (1996) A genetic local search algorithm for solving sym-
metric and asymmetric traveling salesman problems. In: Proceedings of the
1996 IEEE International Conference on Evolutionary Computation, Nagoya,
Japan, IEEE Press, pp 616-621

Gallardo JE, Cotta C, Ferndndez AJ (2005) Solving the multidimensional knap-
sack problem using an evolutionary algorithm hybridized with branch and
bound. In: [45], pp 21-30

. Gallardo JE, Cotta C, Fernandez AJ (2006) A memetic algorithm with bucket

elimination for the still life problem. In: Gottlieb J, Raidl G (eds) Evolutionary
Computation in Combinatorial Optimization, Springer-Verlag, Berlin Heidel-
berg, Lecture Notes in Computer Science, vol 3906, pp 73-85

Gallardo JE, Cotta C, Fernandez AJ (2007) On the hybridization of memetic
algorithms with branch-and-bound techniques. IEEE Transactions on Systems,
Man and Cybernetics, part B 37(1):77-83

Gallardo JE, Cotta C, Ferndndez AJ (2009) Solving weighted constraint sat-
isfaction problems with memetic/exact hybrid algorithms. Journal of Artificial
Intelligence Research 35:533-555

Goldberg DE (1989) Genetic algorithms in search, optimization and machine
learning. Addison-Wesley

Hart W, Krasnogor N, Smith J (2005) Recent advances in memetic algorithms,
Studies in Fuzziness and Soft Computing, vol 166. Springer-Verlag

Hart W, Krasnogor N, Smith JE (2005) Memetic evolutionary algorithms. In:
[22], pp 3-27

Houck C, Joines J, Kay M, Wilson J (1997) Empirical investigation of the ben-
efits of partial lamarckianism. Evolutionary Computation 5(1):31-60
Ishibuchi H, Murata T (1996) Multi-objective genetic local search algorithm.
In: Fukuda T, Furuhashi T (eds) 1996 International Conference on Evolutionary
Computation, IEEE Press, Nagoya, Japan, pp 119-124

Ishibuchi H, Murata T (1998) Multi-objective genetic local search algorithm
and its application to flowshop scheduling. IEEE Transactions on Systems, Man
and Cybernetics - Part C: Applications and Reviews 28(3):392-403

References 13

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Ishibuchi H, Yoshida T, Murata T (2003) Balance between genetic search and
local search in memetic algorithms for multiobjective permutation flowshop
scheduling. IEEE Transactions on Evolutionary Computation 7(2):204-223
Jaszkiewicz A (2002) Genetic local search for multi-objective combinatorial
optimization. European Journal of Operational Research 137:50-71
Jaszkiewicz A (2004) A comparative study of multiple-objective metaheuristics
on the bi-objective set covering problem and the pareto memetic algorithm.
Annals of Operations Research 131(1-4):135-158

Jones T (1995) Evolutionary algorithms, fitness landscapes and search. PhD
thesis, University of New Mexico, USA

Kallel L, Naudts B, Reeves CR (2001) Properties of fitness functions and search
landscapes. In: Kallel L, Naudts B, Rogers A (eds) Theoretical Aspects of Evo-
lutionary Computing, Natural Computing Series, Springer, pp 175-206

Klau G, Ljubi¢ I, Moser A, Mutzel P, Neuner P, Pferschy U, Raidl G,
Weiskircher R (2004) Combining a memetic algorithm with integer program-
ming to solve the prize-collecting Steiner tree problem. In: Deb K, et al (eds)
GECCO 2004, Springer-Verlag, Seattle WA, Lecture Notes in Computer Sci-
ence, vol 3102, pp 1304-1315

Knowles J, Corne D (2000) A Comparison of Diverse Aproaches to Memetic
Multiobjective Combinatorial Optimization. In: Wu AS (ed) Proceedings of the
2000 Genetic and Evolutionary Computation Conference Workshop Program,
pp 103-108

Knowles J, Corne D (2000) M-PAES: A memetic algorithm for multiobjective
optimization. In: CEC 2000, IEEE Press, San Diego CA, pp 325-332
Krasnogor N (2004) Self-generating metaheuristics in bioinformatics: The pro-
tein structure comparison case. Genetic Programming and Evolvable Machines
5(2):181-201

Krasnogor N, Gustafson S (2004) A study on the use of “self-generation” in
memetic algorithms. Natural Computing 3(1):53-76

Krasnogor N, Smith J (2008) Memetic algorithms: The polynomial local search
complexity theory perspective. Journal of Mathematical Modelling and Algo-
rithms 7(1):3-24

Krasnogor N, Blackburne B, Burke E, Hirst J (2002) Multimeme algorithms
for proteine structure prediction. In: Merelo Guervés 1], et al (eds) PPSN 2002,
Springer-Verlag, Granada, Spain, Lecture Notes in Computer Science, vol 2439,
pp 769-778

Lin S, Kernighan B (1973) An Effective Heuristic Algorithm for the Traveling
Salesman Problem. Operations Research 21:498-516

Lozano M, Herrera F, Krasnogor N, Molina D (2004) Real-coded memetic algo-
rithms with crossover hill-climbing. Evolutionary Computation 12(3):273-302
Mendes A, Cotta C, Garcia V, Franga P, Moscato P (2005) Gene ordering in
microarray data using parallel memetic algorithms. In: Skie T, Yang CS (eds)
2005 International Conference on Parallel Processing Workshops, IEEE Press,
Oslo, Norway, pp 604-611

14

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

References

Mendes AS, Frangca PM, Moscato P (2002) Fitness landscapes for the total tar-
diness single machine scheduling problem. Neural Network World 2(2):165—
180

Merz P (2000) Memetic algorithms for combinatorial optimization problems:
Fitness landscapes and effective search strategies. PhD thesis, University of
Siegen, Germany

Merz P (2004) Advanced fitness landscape analysis and the performance of
memetic algorithms. Evolutionary Computation 12(3):303-326

Mira J, Alvarez J (eds) (2005) Artificial Intelligence and Knowledge Engineer-
ing Applications: a Bioinspired Approach, Lecture Notes in Computer Science,
vol 3562, Springer-Verlag, Berlin Heidelberg

Molina D, Herrera F, Lozano M (2005) Adaptive local search parameters for
real-coded memetic algorithms. In: [8], pp 888-895

Molina D, Lozano M, Herrera F (2008) Memetic algorithms for intense contin-
uous local search methods. In: [5], pp 58-71

Moscato P (1989) On evolution, search, optimization, genetic algorithms and
martial arts: Toward memetic algorithms. Tech. Rep. 826, California Institute
of Technology

Moscato P, Cotta C (2003) A gentle introduction to memetic algorithms. In:
Glover F, Kochenberger G (eds) Handbook of Metaheuristics, Kluwer Aca-
demic Publishers, Boston MA, pp 105-144

Moscato P, Cotta C (2006) Memetic algorithms. In: Gonzélez T (ed) Handbook
of Approximation Algorithms and Metaheuristics, Taylor & Francis, chap 22
Moscato P, Cotta C (2010) A modern introduction to memetic algorithms. In:
Gendrau M, Potvin JY (eds) Handbook of Metaheuristics (2nd Edition), In-
ternational Series in Operations Research and Management Science, vol 146,
Springer-Verlag, New York, pp 141-183

Moscato P, Norman M (1989) A competitive and cooperative approach to com-
plex combinatorial search. Tech. Rep. 790, Caltech Concurrent Computation
Program

Moscato P, Cotta C, Mendes A (2004) Memetic algorithms. In: Onwubolu G,
Babu B (eds) New Optimization Techniques in Engineering, Studies in Fuzzi-
ness and Soft Computing, vol 141, Springer-Verlag, Berlin, pp 53-85

Moscato P, Berretta R, Cotta C (2011) Memetic algorithms. In: Wiley Encyclo-
pedia of Operations Research and Management Science, Wiley

Neri F, Mininno E (2010) Memetic compact differential evolution for cartesian
robot control. IEEE Computational Intelligence Magazine 5(2):54—65

Nguyen QH, Ong YS, Krasnogor N (2007) A study on the design issues of
memetic algorithm. In: CEC 2007, IEEE Press, Singapore, pp 2390-2397

Ong YS, Keane AJ (2004) Meta-lamarckian learning in memetic algorithms.
IEEE Transactions on Evolutionary Computation 8(2):99-110

Ong YS, Lim MH, Chen X (2010) Memetic computation-past, present and fu-
ture. IEEE Computational Intelligence Magazine 5(2):24-31

References 15

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

Paszkowicz W (2006) Properties of a genetic algorithm extended by a random
self-learning operator and asymmetric mutations: A convergence study for a
task of powder-pattern indexing. Analytica Chimica Acta 566(1):81-98

Prins C, Prodhon C, Calvo R (2006) A memetic algorithm with population man-
agement (MA | PM) for the capacitated location-routing problem. In: Gottlieb J,
Raidl G (eds) Evolutionary Computation in Combinatorial Optimization, Lec-
ture Notes in Computer Science, vol 3906, Springer-Verlag, Budapest, pp 183—
194

Prodhom C, Prins C (2008) A memetic algorithm with population management
(MA|PM) for the periodic location-routing problem. In: [5], pp 43-57
Puchinger J, Raidl G (2005) Cooperating memetic and branch-and-cut algo-
rithms for solving the multidimensional knapsack problem. In: Proceedings of
the 2005 Metaheuristics International Conference, Vienna, Austria, pp 775-780
Puchinger J, Raidl GR, Koller G (2004) Solving a real-world glass cutting prob-
lem. In: Gottlieb J, Raidl GR (eds) 4th European Conference on Evolutionary
Computation in Combinatorial Optimization, Lecture Notes in Computer Sci-
ence, vol 3004, pp 165-176

Radcliffe N, Surry P (1994) Fitness Variance of Formae and Performance Pre-
diction. In: Whitley L, Vose M (eds) Proceedings of the 3rd Workshop on Foun-
dations of Genetic Algorithms, Morgan Kaufmann, San Francisco, pp 51-72
Rechenberg I (1973) Evolutionsstrategie: Optimierung technischer Systeme
nach Prinzipien der biologischen Evolution. Frommann-Holzboog Verlag,
Stuttgart

Schwefel HP (1984) Evolution strategies: A family of non-linear optimization
techniques based on imitating some principles of natural evolution. Annals of
Operations Research 1:165-167

Smith JE (2007) Coevolving memetic algorithms: A review and progress report.
IEEE Transactions on Systems, Man, and Cybernetics, Part B 37(1):6-17
Smith JE (2007) Credit assignment in adaptive memetic algorithms. In: Lipson
H (ed) GECCO 2007, ACM Press, London, pp 1412-1419

Sérensen K, Sevaux M (2006) MA|PM: memetic algorithms with population
management. Computers and Operations Research 33(5):1214-1225

Sudholt D (2008) Memetic algorithms with variable-depth search to overcome
local optima. In: Ryan C, Keijzer M (eds) GECCO 2008, ACM Press, Atlanta
GA, pp 787-794

Surry P, Radcliffe N (1996) Inoculation to initialise evolutionary search. In:
Fogarty T (ed) Evolutionary Computing: AISB Workshop, no. 1143 in Lecture
Notes in Computer Science, Springer-Verlag, pp 269-285

Whitley D (1987) Using reproductive evaluation to improve genetic search and
heuristic discovery. In: Grefenstette J (ed) ICGA 1987, Morgan Kaufmann, San
Mateo CA, pp 108-115

Wolpert D, Macready W (1997) No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation 1(1):67-82

16 References

74. Wright S (1932) The role of mutation, inbreeding, crossbreeding, and selection
in evolution. In: Proceedigns of the Sixth International Congress on Genetics,
vol 1, pp 356-366

Index

applications, 8

branch and bound, 9
branch and cut, 9

co-evolution, 9
complete techniques, 9

diversity
entropy, 7

epistasis, 3
evolution strategy, 6

fitness landscape, 3
basin of attraction, 3
distance, 7
distribution of local optima, 8
Full Employment Theorem, 4

hyperheuristics, 9

Lin-Kernighan heuristic, 7
local search, 6
2-opt, 8
Lin-Kernighan heuristic, 7
parameters, 8
partial lamarckianism, 8

memetic algorithm
adaptive, 9
co-evolution, 9
combination with exact techniques, 9
design, 7-8
initial population, 5
local search, 6
meta-lamarckian learning, 9
multimeme, 9
multiobjective, 8
need, 2—4

philosophy, 2

replacement, 6

reproduction, 6

restart, 7

template, 4-7

termination, 5
memetic computing, 9
multiobjective

MOGLS, 8

MPAES, 9

Pareto dominance, 8

Pareto MA, 8
mutation

heavy, 7

neighborhood structure, 3
No Free Lunch Theorem, 2

operations research, 8

population
initialization, 5
management, 8
premature convergence, 6

recombination
DPX, 7
replacement, 6
reporduction, 6
restart, 7
heavy mutation, 7
random immigrant strategy, 7

Shannon’s entropy, 7

termination condition, 5
travelling salesman problem, 7
2-opt, 8
Lin-Kernighan heuristic, 7

17

