
Tackling the Error Correcting Code Problem via
the Cooperation of Local-Search-Based Agents

Jhon Edgar Amaya1, Carlos Cotta2, and Antonio J. Fernández2

1 Universidad Nacional Experimental del Táchira (UNET)
Laboratorio de Computación de Alto Rendimiento (LCAR), San Cristóbal, Venezuela

jedgar@unet.edu.ve
2 Dept. Lenguajes y Ciencias de la Computación, ETSI Informática,
University of Málaga, Campus de Teatinos, 29071 - Málaga, Spain.

{ccottap,afdez}@lcc.uma.es
Abstract. We consider the problem of designing error correcting codes
(ECC), a hard combinatorial optimization problem of relevance in the
field of telecommunications. This problem is firstly approached via a bat-
tery of local search (LS) methods that are compared and analyzed. Then,
we study how to tackle this problem by having a society of interacting
autonomous agents where each agent is endowed with a specific (not nec-
essarily unique) strategy for local improvement. Distinct topologies and
forms of interaction are analyzed and discussed in the paper. Specifically,
it is shown how the election of the LS methods and their combination
influences the results. An empirical evaluation shows that agent-based
models are promising to solve of this problem.

1 Introduction

Telecommunications undoubtedly constitute one of the most prominent pillars
upon which our present society rests. Many of the tasks found in this area can be
formulated as combinatorial optimization problems, e.g., assigning frequencies
in radio link communications [1], designing telecommunication networks [2], or
developing error correcting codes for transmitting messages [3] among others. In
this work, we will focus precisely on the latter problem.

Roughly speaking, the development of an error correcting code (ECC) con-
sists of designing a communication scheme for maximizing the reliability of in-
formation transmission through a noisy channel. This task admits several formu-
lations. Here, we have considered the case of binary linear-block codes [4]. The
design of such codes turns out to be very difficult. There exists no known algo-
rithm for efficiently finding optimal solutions. The utilization of metaheuristic
approaches is thus in order.

There have been several attempts to use metaheuristics on the ECC problem
(ECCP, see Sect. 2.2). This paper builds on previous approaches, and explores
how to solve the ECCP via the cooperation of several algorithmic techniques. To
be precise, a set of different LS metaheuristics is used in a first stage to solve the
problem, being the results compared and analyzed; then these metaheuristics
are integrated as autonomous agents in two different agent-based architectures,
and deployed on the ECCP. Different versions of these architectures will be used
to attack the problem, analyzing the impact of the topology on the results.



2 Background

Before proceeding, let us firstly describe more in depth the ECC problem. Then,
we will review previous related work.

2.1 The Error Correcting Code Problem

As discussed in the previous section, an ECC is aimed at maximizing the relia-
bility of message transmissions through a noisy channel. Let us assume messages
are expressed in sequences of characters from some alphabet Σ. In the context of
the binary linear block codes, we would map each of these characters chi ∈ Σ to
a sequence of n bits (or code-word) ci in order to transmit it. Upon reception of
an n-bit sequence c, the character encoded could be recovered by looking for the
closest –in a Hamming distance sense– valid code-word. Then, if all code-words
are separated by at least d bits, any modification of at most (d− 1)/2 bits in a
valid code-word can be easily reverted. Hence large d is sought.

It is possible to increase the value of d by considering larger values of n, but
an upper bound of n has to be considered (otherwise messages would be too
lengthly, and therefore costly). Thus, we would be interested in maximizing d
for a certain alphabet Σ, and a certain value of n. This way, an ECCP instance
is fully specified by a pair (M, n), where n is the number of bits in each code-
word, and M is the number of code-words. Let B = {0, 1}; the solution space for
an ECCP instance would comprise all sets C = {c1, · · · , cM}, ci ∈ Bn, i.e., all
combinations of M different n-bit sequences. The size of the search space is thus(
2n

M

)
. Although no known algorithm is available for producing an optimal ECC

(i.e., a set of M n-bit code-words with maximal d) in general, the problem has
been theoretically studied, and bounds on the attainable values of d for different
combinations of n and M have been derived [5].

It is interesting to notice the relation between the ECCP as defined above,
and another problem in the realm of physics: finding the lowest energy config-
uration on M particles in an n-dimensional space. By assimilating particles to
code-words, the ECCP can be viewed as distributing M code-words in the cor-
ners of a binary n-dimensional space. This connection was used by Dontas and
de Jong [6] to define a fitness function (to be maximized) for a genetic algorithm
optimizing this problem, i.e.,

Fitness(C) =
1∑M

i=1

∑M
j=1,i 6=j

1
d2

ij

, (1)

where dij is the Hamming distance between code-words ci and cj . This function
is more adequate as a guiding function than a näıve function computing the
minimum distance between different code-words in a solution. Although the
latter would capture the absolute quality of a solution, it would induce large
plateaus in the fitness landscape. This would not be the case for the former
function, which is capable of grasping the effects of small changes in a solution.



2.2 Related Work

Many proposals can be found in the scientific literature to deal with the ECCP.
For instance, it has been treated with simulated annealing, genetic algorithms,
and hybrids thereof, with moderate success (check [7] and the references therein).
Recently, in [8], a LS algorithm – called the Repulsion Algorithm (RA) – hy-
bridized with a parallel genetic algorithm has been proposed for this problem.
The repulsion algorithm was conceived by Birbil and Fang [9], and is based on
the repulsion of particles over the surface of a sphere. An experimental study,
including comparisons with a pure parallel genetic algorithm, indicated that a
significant improvement in efficiency and accuracy can be obtained when the
repulsion algorithm is used as LS. The use of scatter search (SS) and memetic
algorithms (MAs) to attack the ECCP was also analyzed in [7]. It was shown
that SS and MAs are cutting-edge techniques for solving the ECCP, capable of
outperforming sophisticated versions of other metaheuristics on this domain, in-
cluding the parallel genetic algorithm incorporating RA mentioned before. More
recently, Blum et al. [10] suggested to tackle the ECCP with iterated local search
(ILS). An experimental study showed that this proposal is currently a state-of-
the-art method for the ECCP.

3 Tackling the ECC Problem via Local-Search Methods

As explained in Section 2.2, different LS methods have been utilized to solve the
ECCP with more or less success. In this section we will describe the deployment
of the more successful LS approaches on the ECCP.

3.1 General Issues
There are considerations that must be taken into account regardless of the LS
technique used, i.e., the representation, the neighborhood function, etc. Previ-
ously to detail the different LS approaches, let us describe these general aspects.

Solution representation. A candidate solution for an instance (M, n) is a set
of M binary code-words of length n represented as a binary matrix C with M
rows and n columns. Each row i in C corresponds to a code-word ci. We also
define the minimum Hamming distance in C as d(C) = min{dij | 1 ≤ i, j ≤ M}.

Neighborhood. The neighborhood relation (unless another one is specified) is
based on the 1-Hamming distance neighborhood (i.e., the 1-flip neighborhood)
in which a neighbor consists of flipping exactly one position in a solution. This
concept of neighborhood is the same as those used in [7, 10]. Let C be a candidate
solution i.e., an M × n binary matrix as mentioned above, and let cij and vij

(for 1 6 i 6 M and 1 6 j 6 n) be, respectively, the cell and the value of
the cell in row i and column j in matrix C. Then the set of possible moves is
M(C) = {(cij , vij) | 1 6 i 6 M ∧ 1 6 j 6 n ∧ 0 = 1 ∧ 1 = 0}.

In the rest of the paper, C[cij ← v] denotes the candidate solution C where
cell cij is assigned to v. Then, the neighborhood for a candidate solution C is
defined as N (C) = {C[cij ← v] | 1 6 i 6 M ∧ 1 6 j 6 n ∧ (cij , v) ∈M(C)}.



Fitness Recomputation. The fitness function defined in (1), as pointed out in
[7], does not require full re-evaluation, every time a bit is flipped. Assume that
we consider a 1-flip that changes the code-word ci, and let di be the minimum
distance between code-word ci and any of the other M − 1 code-words. We only
have to re-compute

∑M
j=1,i6=j

1
d2

ij
after the 1-flip. Also the Hamming distances

do not have to be recomputed from scratch. They can be updated by keeping
appropriate data structures. Thus, whenever a configuration is modified, the new
fitness can be computed just considering the 1-flip change.

Generation of initial solutions. Two methods are considered to generate an
initial solution: (1) randomly initializing all the entries in a configuration C, and
(2) using an ad-hoc constructive heuristic. Regarding this latter possibility, a very
interesting proposal is presented in [10]. Basically this intelligent heuristic works
as follows: assume that Ci is an optimal code for an instance (M = 2i+1, n =
2i); then, an optimal code Ci+1 for the instance (M = 2i+2, n = 2i+1) can be
obtained by setting

Ci+1 =
(

Ci Ci

Ci Cf
i

)

where Cf
i is matrix Ci where each position is flipped. This process starts from

the optimal code C0 for the instance (4,2), and is iterated until both the number
of columns of Ck (k > 0) is greater or equal to n, and the number of rows of
Ck is greater or equal to M . Doing so, we obtain a solution Cs for the instance
(M ′ = 2k+2, n′ = 2k+1) with 2k as minimum Hamming distance (i.e., d(Cs) =
2k). A solution for (M, n) is obtained by removing the last M ′ −M rows, and
the last n′ − n columns from Ck.

3.2 Tabu Search (TS)

As it is well-known, tabu-search algorithms are capable of escaping from local
optima by allowing down-hill moves. Fig. 1 shows the complete pseudocode of
our TS algorithm. The algorithm returns the best solution Cf found. To prevent
cycling, a tabu list of movements is kept. The list stores triplets 〈cij , v, i〉, where
cij is a cell, v ∈ {0, 1} is a possible value for cell cij , and i represents the first
iteration where cell cij can be assigned to v again. The tabu tenure, i.e., the
number of iterations (cij , v) stays in the list, is static and equal to 100 (i.e.,
τ = 100). For a candidate solution C and an iteration k, the set of legal moves
is thus defined as

M+(C, k) = {(cij , v) ∈M(C) | ¬tabu(cij , v, k)}. (2)

where tabu(cij , v, k) holds if the assignment cij ← v is tabu at iteration k. The
tabu status can be overridden whenever the selected candidate (even if this is
tabu) is better. Thus, if Cf is the candidate with the highest d(Cf ) found so far,
the neighborhood also includes the moves

M∗(C, Cf ) = {(cij , v) ∈M(C) | d(C[cij ← v]) > d(Cf )} (3)



1. TS()
2. C0 ← GenerateInitialSolution(); tabu ← {};
3. Cf ← C0; C ← C0; k ← 1;
4. while ¬ timeout do
5. select randomly (cij , v) ∈ M+(C, k) ∪M∗(C, Cf )
6. tabu ← tabu ∪ {〈cij , v, k + τ〉};
7. C ← C[cij ← v];
8. if d(C) > d(Cf ) then
9. Cf ← C;
10. k ← k + 1;
11. return Cf ;

Fig. 1. Pseudocode of the TS algorithm

3.3 Simulated annealing (SA)

Simulated annealing is another well known method in the field of metaheuris-
tics. It is a computational method that basically mimics the physical process of
thermal cooling. In fact it is a variation of the classical Hill climbing method.
Fig. 2 shows the complete pseudocode of our SA algorithm.

1. SA()
2. C0 ← GenerateInitialSolution(); C ← C0; Cf ← C0;
3. T ← T0; \\select initial temperature
4. while ¬timeout ∧ ¬(T 6 Tmin) do
5. probabilistically select Ct ∈ N (C);
6. ∆f = d(C)− d(Ct)
7. τ ← random([0,1]);

8. if (∆f < 0) or (τ < e−∆f/T ) then
9. C ← Ct;
10. if d(Cf ) < d(C) then
11. Cf ← C;
12. T ← α · T \\ update temperature: geometric decreasing
13. return Cf

Fig. 2. Pseudocode of the SA algorithm

Boltzmann’s law is used to determine the probability of acceptation of a
candidate solution under a perturbation as result of an energy change ∆E (the
fitness increase). The current temperature T modulates this acceptance proba-
bility (if T is high, higher energy increases are allowed).

P =
{

1, if ∆E < 0

e
− ∆E

kBT , otherwise

where kB is Boltzmann’s constant (which can be ignored in practice, by consid-
ering an appropriate scaling for the temperature). The temperature is decreased
from its initial value T0 to a final value Tmin using a geometric cooling schedule.
We have considered T0 = 100, Tmin = 0.001, and α = 0.998.

3.4 Iterated Local Search (ILS)

Iterated local search (ILS) is based on the principle of “reconstruction and im-
provement”. This basically means to repeat the following three steps: (1) A
perturbation mechanism perturbs at each iteration the current solution. This
mechanism basically maximizes the distance between the code-word with mini-
mum average distance to all the other M −1 code-words and another code-word



selected at random; (2) a LS method, based on the 1-flip neighborhood, is used
to improve this perturbed solution, and (3) a criterion for the acceptance of the
improved perturbed solution as new current solution is applied. See the pseu-
docode shown in Fig. 3, and [10] for more details about the ILS used here.

1. ILS ()
2. C0 ← GenerateInitialSolution(); Cf ← LS(C0);
3. while ¬ (timeout) do
4. Cf ← perturbation(Cf );
5. Cq ← LS(Cf );
6. C ← AcceptanceCriterion(Cq);
7. return best C;

Fig. 3. Pseudocode of the ILS algorithm

3.5 Hill Climbing (HC) and Variable Neighborhood Search (VNS)

We also consider a standard Hill-Climbing method (HC) with 1-flip neighbor-
hood, and a simple form of VNS algorithm (in which 20 neighbors, in a 1-flip
neighborhood, are randomly selected and the best of them is improved locally.
This process is repeated until a timeout is reached).

4 Computational Results with LS

We have implemented all the metaheuristics mentioned in previous section in
Java and executed them on a PC (Intel Celeron 1.5 GHz 512 MB) under Linux
Debian (kernel 2.6.16-2-686). The experiment has been done with the instances
chosen in [7, 10], i.e., the (M, n) pairs (24,12), (32,16), and (40,20). For each LS
∈ {HC,ILS,TS,SA,VNS}, we tested two versions of our algorithms: one that uses
the heuristic initial solution construction explained in Section 3.1, and another
that uses a random initial solution construction instead. We also impose the
same time limit as indicated in [10], i.e., 5, 100 and 2000 seconds for the instances
(24, 12), (32, 16), and (40, 20) respectively.

Note that our results cannot be directly compared with those presented in
[10] because of the following reasons: (1) our computational machine is slower
(1.5 Ghz and 512 MB RAM vs. 3 Ghz and 1 Gb RAM); (2) our algorithms were
implemented in Java and not in C (as done in [10]). For normalization purposes
we did experiments with our ILS algorithm (note that this is the same as that
described in [10]) and our time results are about one order magnitude slower.
However, we decide to maintain the same time limits as our purpose is not to
obtain new optimums (as these are already known) but to analyze the behavior
of two different LS-based agent topologies as shown in next sections.

Fig. 4 shows the results of the experiments (averages of 20 runs). In general,
the heuristic initialization-based version of the methods behaves better but, on
the smallest problem instance, the random initialization-based versions seems to
be slightly better. This means a generalization of one conclusion already pointed
out in [10] but only for the ILS method. Also it is not surprising that for the



instance (32,16), all the LS methods obtain the optimum with a high success
rate (not shown explicitly in the figure) as the constructive heuristic allows to
find the optimal solution without a single solution evaluation.

In general, and as expected, ILS performs better than the rest of heuristics,
especially in the instance (24,12). However, observe also that all the metaheuris-
tic methods behave very similar in the other instances except VNS (in its two
versions) that is significantly worst. We hypothesize the reason in the random
selection of the candidate solution because the movement is more dependant
on the random factor and not on a heuristic recommendation. To mitigate this
effect, we plan to consider for future work neighborhoods relations of variable
size, that is to say, a set {N1(C), . . . ,Nkmax

(C)} of neighborhood relations or-
dered according to increasing values of k (i.e., the number of flips that must be
simultaneously allowed in a candidate C).

 

Fig. 4. Average (20 runs) fitness of the different metaheuristics on different ECCP
instances. Random = Random generation of initial solutions, Blum et al.= generation
of initial solutions via the constructive heuristic explained in Section 3.1.

As expected, the heuristic initialization works much better than the random
initialization. This is particularly clear in the case of the VNS algorithm.

5 Agent-based Topologies

So far, we have considered several LS algorithms and have compared their perfor-
mance as stand-alone techniques. Now, we propose two agent-based architectures
in which each agent incorporates a LS mechanism. Let A be an architecture with
n agents; each agent ai (0 6 i 6 n−1) in A is driven by one of the metaheuristics
described in Sect. 3. In general, we let ai denote the metaheuristic implemented
in the agent i and Ci the current candidate solution handled in agent i.

Ring Topology. The first architecture consists of a ring topology with n agents.
Here, the agents are ordered according to some arbitrary criteria and each agent



is only connected with its successor in the ordered list. Fig. 5 presents the
schematic procedure of the ring-based algorithm for a specific architecture and
n agents.

1. Ring(A, n) \\
2. for i ← 0 to n− 1 do
3. Ci ← GenerateInitialSolution(); \\ As explained in Section 3.1
4. cyc ← 1; \\ number of cycles
5. while (cyc 6 cycmax) do
6. for i ← 0 to n− 1 do
7. Ci ← ai(Ci); \\ Agent-specific local improvement
8. for i ← 0 to n− 1 do \\ Agent cooperation
9. if d(C(i+n−1)%n) > d(Ci) then
10. Ci ← C(i%n)−1;
11. cyc ← cyc + 1;
12. return Ci (0 6 i 6 n− 1) minimizing d(Ci);

Fig. 5. Pseudocode of the algorithm of the ring topology

Initially all the agents are “charged” with an initial solution generated as
explained in preceding sections (Lines 2-3). Then, the algorithm is executed a
specific number of cycles. In each cycle, each agent works independently by im-
proving its internal solution via its corresponding LS method (Lines 6-7). The
time dedicated for local improvement in all the agents is the same. Agents co-
ordinate themselves by updating its current best candidate solution with the
candidate found by the preceding agent in case of the latter is better.

Broadcast topology. The second architecture consists of a go with the winners-
like topology, that we call broadcast topology, with n agents. As indicated in
Fig. 6, the main difference wrt. the algorithm RING(A,n) is that the best
global solution at each synchronization point is transmitted to all agents. This
means all agents start each cycle (except the first one) in the same local region.

1. BROADCAST(A, n) \\
2-7. same as in algorithm RING(A, n);
8. for i ← 1 to n− 1 do \\ Agent cooperation
9. if d(Ci) > d(C0) then
10. C0 ← Ci;
11. for i ← 1 to n− 1 do
12. Ci ← C0;
13-14. same as Lines 11-12 in algorithm RING(A, n);

Fig. 6. Pseudocode of the algorithm of the broadcast topology

Both RING(A,n) and BRODCAST (A,n) are executed by imposing a time
limit of tmax (seconds). As a consequence, each cycle cyc takes tcyc = tmax/cyc
(seconds), and the specific local-improvement method of an agent takes tcyc/n.

6 Computational Results

The computational setting for the agent-based algorithms is the same used in
Sect. 4. Again, we tested two versions of our algorithms: one using the construc-
tive heuristic of Blum et al. as explained in Section 3.1 (these are labelled with



the word ‘Blum’ in the figures shown later), and another using a random ini-
tial solution construction instead (labelled with ’Random’). In our experiments
n = 5, and for both topologies (i.e., ring and broadcast) we consider two dif-
ferent proposals: one in which each agent implements a different metaheuristic
in the set {HC,TS,SA,VNS,ILS}, and another one in which all agents imple-
ment ILS (i.e., the current state-of-the-art metaheuristic method as mentioned
in Sect. 2.2). Again, we impose the same time limits (i.e., tmax) as indicated in
Section 4, and we consider cyc = 4 cycles and cyc = 8 cycles.

Some interesting conclusions can be drawn from results shown in Fig. 7: (1)
as expected, algorithms using the constructive heuristic behave better than those
based on random initialization; (2) The algorithms seems to be slightly better
with a higher number of cycles between synchronization points (although this is
not evident in the ILS-only-based model); (3) On the smallest instance, RING
outperforms BROADCAST, whereas on larger ones it is the other way around.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. The graphic displays the average (20 runs) fitness of the different variants of
both algorithms RING(A, n) and BROADCAST (A, n) on different ECCP instances.
4C = 4 cycles, 8C = 8 cycles, Random = Random generation of initial solutions,
Blum et al.= generation of initial solutions via the constructive heuristic explained in
Section 3.1.

7 Conclusions

Agent-based optimization constitutes a very appropriate framework for integrat-
ing different search techniques. Each of these techniques has a different view of
the search landscape, and by combining the corresponding different exploration
patterns, the search can benefit from an increased capability for escaping from lo-
cal optima. Of course, this capability is more useful whenever the problem tackled
poses a challenging optimization task to the individual search algorithms. Oth-
erwise, computational power is diversified in unproductive explorations. In the



problem considered in this work, the ECC problem, there exists a killer approach,
namely the ILS algorithm of Blum et al.. In such a situation, it may be more
convenient to combine different instances of the same technique, much like it is
done in island-based evolutionary algorithms. Notice however the fact that they
are single agents rather than full populations (as in EAs) and this contributes to
intensify much more the search. Convergence to near-optimal solutions is thus
quicker.

Future work will be directed to extend this agent-based approach to other
problems to confirm its usefulness. We plan to include additional techniques
in the agent pool, such as population-based algorithms. Finally, we intend to
consider smarter mechanisms for exchanging information between agents, not
relying exclusively on a fixed interconnection topology.

Acknowledgements. This work is partially supported by Spanish MCyT
projects under contracts TIN2004-7943-C04-01 and TIN2005-08818-C04-01

References

1. Dorne, R., Hao, J.: An evolutionary approach for frequency assignment in cel-
lular radio networks. In: 1995 IEEE International Conference on Evolutionary
Computation, Perth, Australia, IEEE Press (1995) 539–544

2. Chu, C., Premkumar, G., Chou, H.: Digital data networks design using genetic
algorithms. European Journal of Operational Research 127 (2000) 140–158

3. Chen, H., Flann, N., Watson, D.: Parallel genetic simulated annealing: A massively
parallel SIMD algorithm. IEEE Transactions on Parallel and Distributed Systems
9(2) (1998) 126–136

4. Lin, S., Jr., D.C.: Error Control Coding : Fundamentals and Applications. Prentice
Hall, Englewood Cliffs, NJ (1983)

5. Agrell, E., Vardy, A., Zeger, K.: A table of upper bounds for binary codes. IEEE
Transactions on Information Theory 47(7) (2001) 3004–3006

6. Dontas, K., Jong, K.D.: Discovery of maximal distance codes using genetic algo-
rithms. In: Proceedings of the Second International IEEE Conference on Tools for
Artificial Intelligence, Herndon, VA, IEEE Press (1990) 905–811

7. Cotta, C.: Scatter search and memetic approaches to the error correcting code
problem. In Gottlieb, J., Raidl, G.R., eds.: 4th European Conference on Evo-
lutionary Computation in Combinatorial Optimization (EvoCOP 2004). Volume
3004 of Lecture Notes in Computer Science., Coimbra, Portugal, Springer (2004)
51–61

8. Alba, E., Chicano, J.F.: Solving the error correcting code problem with parallel
hybrid heuristics. In Haddad, H., Omicini, A., Wainwright, R.L., Liebrock, L.M.,
eds.: Proceedings of the 2004 ACM Symposium on Applied Computing (SAC),
Nicosia, Cyprus, ACM (2004) 985–989

9. Ş. Birbil, Fang, S.C.: An electromagnetism-like mechanism for global optimization.
Journal of Global Optimization 25(3) (2003) 263–282

10. Blum, C., Blesa, M., Roli, A.: Combining ILS with an effective constructive heuris-
tic for the application to error correcting code design. In Hartl, R., et al., eds.:
Proceedings of the 6th Metaheuristics International Conference (MIC2005), Uni-
versität Wien (2005) 114–119


