
A Memetic Algorithm for the
Tool Switching Problem

Jhon Edgar Amaya1, Carlos Cotta2, and Antonio J. Fernández2

1 Universidad Nacional Experimental del Táchira (UNET)
Laboratorio de Computación de Alto Rendimiento (LCAR), San Cristóbal, Venezuela

jedgar@unet.edu.ve
2 Dept. Lenguajes y Ciencias de la Computación, ETSI Informática,
University of Málaga, Campus de Teatinos, 29071 - Málaga, Spain.

{ccottap,afdez}@lcc.uma.es

Abstract. This paper deals with the Tool Switching Problem (ToSP), a
well-known problem in operations research. The ToSP involves determin-
ing a job sequence and the tools to be loaded on a machine with the goal
of minimizing the total number of tool switches. This problem has been
tackled by a number of algorithmic approaches in recent years. Here, we
propose a memetic algorithm that combines a problem-specific permuta-
tional genetic algorithm with a hill-climbing procedure. It is shown that
this combined approach outperforms each of the individual algorithms,
as well as an ad-hoc beam search heuristic defined in the literature for
this problem.

1 Introduction

For some time now, the manufacturing industry is more and more often demand-
ing flexible manufacturing systems (FMSs) as an alternative to traditional rigid
production systems. This increasing interest is motivated by the fact that FMSs
have the ability for self-adjustment to generate different products and/or change
the order of product generation, i.e., they incorporate versatility and efficiency
in mass production [1]. Basically, a FMS consists of a single machine that has
several slots into which different tools can be loaded. Each slot just admits one
tool, and each job executed on that machine requires a particular set of tools
to be done. Jobs are sequentially executed, and therefore each time a job is to
be processed, the corresponding tools must be loaded in the machine magazine.
Since the number of available slots is limited, it may be required at some point
to perform a tool switch, i.e., removing a tool from the magazine and inserting
another one in its place. In this context, tool management is a challenging task
that directly influences the efficiency of flexible manufacturing systems.

Although the order of tools in the magazine is often irrelevant, the need
of performing a tool switching does depend on the order in which the jobs are
executed. The Tool Switching Problem (ToSP) consists of finding an appropriate
job sequence in which jobs will be executed, and an associated sequence of tool
switches that minimizes the number of tool loading/unloading operations in the

magazine. Clearly, this problem is specially interesting when the time needed
to change a tool is a significant part of the processing time of all the jobs (and
hence the tool switching policy will significantly affect the performance of the
system). Different examples of the problem can be found in diverse areas such
as electronic industry, metalworking industry, computer memory management,
aeronautics, and manufacturing companies in general [1–5]. The ToSP has also
a number of variants; see for example [6–8].

Despite the ToSP has been tackled via different optimization techniques (in-
cluding exact and metaheuristics methods – see next section), to the best of our
knowledge, no population-based algorithm (let alone a hybrid population-local
approach) has been applied to its resolution. This paper gives a first step in this
direction and demonstrates empirically that hybrid evolutionary techniques are
effective solving strategies for this problem.

2 The Tool Switching Problem

Before getting to the algorithmic approaches considered for tackling the ToSP,
let us describe more formally the problem, and previous related work in the
literature.

2.1 Problem Formulation

As mentioned before, the ToSP involves scheduling a number of jobs on a single
machine such that the resulting number of tool switches required is kept to a
minimum. This can be formalized as follows: let a ToSP instance be represented
by a 4-tuple, I = (C, n, m, A) where

– C denotes the magazine capacity (i.e., number of available slots),
– n is the number of jobs to be processed,
– m is the total number of tools required to process all jobs (it is assumed that

C < m; otherwise the problem is trivial).
– A is a m×n Boolean matrix termed the incident matrix. This matrix defines

the tool requirements to execute each job, i.e., Aij =TRUE if, and only if, tool
i is required to execute job j.

The solution to such an instance is a sequence J1, · · · , Jn determining the
order in which the jobs are executed, and a sequence T1, · · · , Tn of tool config-
urations (Ti ⊂ {1, · · · ,m}) determining which tools are loaded in the magazine
at a certain time.

Let Nk = {1, · · · , k} henceforth. An integer linear programming (ILP) formu-
lation for the ToSP is shown below, using two sets of zero-one decision variables:

– xjk = 1 if job j ∈ Nn is assigned to position k ∈ Nn in the sequence, and 0
otherwise – see Eqs. (2) and (3),

– yik = 1 if tool i ∈ Nm is in the magazine at time k ∈ Nn, and 0 otherwise –
see Eq. (4).

Processing each job requires a particular collection of tools loaded in the mag-
azine. It is assumed that no job requires a number of tools higher than the
magazine capacity, i.e.,

∑m
i=1 δAij ,TRUE 6 C for all j, where δij is Kronecker’s

delta. Tool requirements are reflected in Eq. (5). Following [1], we assume the
initial condition yi0 = 1 for all i ∈ Nm. This initial condition amounts to the
fact that the initial loading of the magazine is not considered as part of the cost
of the solution (in fact, no actual switching is required for this initial load). The
objective function F (·) counts the number of switches that have to be done for
a particular job sequence – see Eq. (1).

min F (y) =
n∑

j=1

m∑

i=1

yij(1− yi,j−1) (1)

∀j ∈ Nn :
n∑

k=1

xjk = 1 (2)

∀j ∈ Nn :
n∑

k=1

xkj = 1 (3)

∀k ∈ Nn :
m∑

i=1

yik 6 C (4)

∀j, k ∈ Nn ∀i ∈ Nm : Aijxjk 6 yik (5)

∀j, k ∈ Nn ∀i ∈ Nm : xjk, yij ∈ {0, 1} (6)

It must be noted that the general definition above can be augmented if addi-
tional constraints are posed on tools or on the magazine. For example, it might
be the case that different tools require slots of different sizes (or more than one
slot). This is the so-called non-uniform ToSP [9]. Be as it may, we will consider
in the following the uniform ToSP as previously defined.

2.2 Related Work

References to the ToSP can be found in the literature as early as in the 60’s
[2]. Since then, the uniform ToSP has been tackled via many different tech-
niques. The late 80’s contributed specially to solve the problem [10, 11]. Tang
and Denardo [3] proposed an ILP formulation of the problem, and later Bard
[1] described a non-linear integer programming formulation with a dual-based
relaxation heuristic.

Heuristics-based constructive methods have also been applied to the problem.
For instance Djellab at al. [12] tackled ToSP via a hypergraph representation and
proposed a particular heuristic oriented towards minimizing the number of (total
weighted) gaps in edge-projection where a projection is basically a permutation
satisfying some specific constraints; the hypergraph is used to represent the

relation among jobs and the needed tools. Also, Hertz et al. [13] described three
constructive methods (i.e., FI, GENI and GENIUS) in which at each step both a
job to be inserted in current tour and the best position in the tour are selected.
Additionally, nearest neighbor (NN) and 2-opt search were also considered.

Exact methods have been also applied to the problem. For instance, Laporte
et al. [14] propose two exact algorithms: a branch-and-bound approach and a a
linear programming-based branch-and-cut algorithm. Precisely this last one is
based on a new ILP formulation having a better linear relaxation than that
proposed previously by Tang and Denardo [3]. It must be noted that these
exact methods are inherently limited, since Oerlemans [15] and Crama et al.
[16] proved formally that the ToSP is NP-hard for C > 2. This limitation was
already highlighted in [14], where Laporte et al. reported that their algorithm
was capable of managing instances with 9 jobs but it presented a very low success
ratio for instances over 10 jobs.

Clustering/grouping methods have also been attended. For instance, Salonen
et al. [17] attacked the uniform ToSP of printed circuit boards (PCBs) and
described an algorithm that iterated the process of first determining a good (or
even optimal) grouping of the PCBs for further sequencing them. A hierarchical
job grouping technique, based on the Jaccard similarity coefficient as clustering
criterion, is additionally employed to avoid identical groupings.

The use of metaheuristics has been also recently considered. So, several tabu
search approaches [17–19] have been used in the literature. A different, and very
interesting, approach has been described by Zhou et al. [20] that proposed a
beam search algorithm. This method was demonstrated to be specially efficient
and practical compared to other techniques previously presented. The reason
provided to justify this efficiency was that the performance of the algorithm
can be adjusted by changing the search width and the evaluation functions. We
will return later to this approach since, due to its proved efficiency, it has been
included in our experimental comparison.

In any case, to the best of our knowledge, no population-based algorithm has
been proposed so far to solve this problem.

3 Solving the ToSP

The ToSP can be divided into three subproblems [21]: the first subproblem is
machine loading and consists of determining the sequence of jobs; the second
subproblem is tool loading, consisting of determining which tool to switch (if a
switch is needed) before processing a job; finally, the third subproblem is slot
loading, and consists of deciding where (i.e., in which slot) to place each tool.
We are considering the uniform ToSP, and therefore only two subproblems have
to be taken into account: machine loading and tool loading.

As it will be shown in next subsection, the tool loading subproblem can
be optimally solved if the sequence of jobs is known by following a specific tool
switching policy (described in Section 3.1) that guarantees to obtain the optimal
number of tool switches for a given job sequence. Therefore, the metaheuristic

effort is concentrated on the machine loading stage. For this purpose, we will
consider the use of memetic algorithms (MAs). As already mentioned, the beam
search heuristic defined by Zhou et al. [20] is used for comparison purposes in
the experimental section (see Section 5) and will be also described for the sake
of completeness in Section 3.2.

3.1 The KTNS Method for Tool Loading

In the context of the uniform ToSP, the cost of switching a tool is considered a
constant (the same for all tools). Under this assumption, if the job sequence is
fixed, the optimal tool switching policy can be determined in polynomial time
using a greedy procedure termed Keep Tool Needed Soonest (KTNS) [1, 3]3. The
functioning of this procedure is as follows:

1. At any instant, insert all the tools that are required for the current job.
2. If one or more tools are to be inserted and there are no vacant slots on

the magazine, keep the tools that are needed soonest. Let J = 〈J1, · · · , Jn〉
be the job sequence, and let Ti ⊂ Nm be the tool configuration at time i.
Let Ξik(J) = min

{
j | (j > k) ∧Ai,Jj

}
, that is, the next instant after time

k at which tool i will be needed again given sequence J . If a tool has to
be removed, the tool i∗ maximizing Ξik(J) is chosen, i.e., remove the tools
whose next usage is farther in time.

The KTNS policy states that when tool changes are necessary, the tools
required for an upcoming job should be kept in the magazine. As a side remark,
the tool loading problem is NP-hard in the non-uniform ToSP, even if the job
sequence is known and unit loading/unloading costs are assumed [9].

3.2 A Beam Search Heuristic

The beam search algorithm defined by Zhou et al. [20] is a powerful approach to
tackle the ToSP. Beam search is a derivative of branch-and-bound that uses a
breadth-first traversal of the search tree, and incorporates a heuristic choice to
keep at each level only the best (according to some quality measure) β nodes (the
so-called beam width). This sacrifices completeness, but provides a very effective
heuristic search approach.

The best β nodes are selected by one-step priority evaluation functions which
estimate the cost of expanding the current solution. Note that nodes in the beam
represent partial solutions (i.e., sequences of λ jobs 〈J1, · · · , Jλ〉 with λ < n; if
λ = n they actually represent solutions). For each node in the current level,
a decision about which job will be added to the partial sequence is done. Let
τj = {i | Aij = TRUE}, i.e., the set of tools required by job j. Two simple
functions are used to ensure the quality of the solutions obtained:

h1(J, k) = #(τJk
∩ τJk+1) (7)

h2(J, k) = #(τJk
∪ τJk+1) (8)

3 As BÃlażewicz and Finke [7] point out, the KTNS property was already known to
Belady[2].

where #S is the cardinality of set S. Thus, h1(J, k) returns the number of
common tools needed to process job Jk and candidate job Jk+1 to be added to
the partial job sequence. As to h2(J, k), it computes the total number of tools
required to process job Jk and the candidate job Jk+1. These functions are used
to select the beam nodes in each level, trying to maximize h1 and using h2 (to
be minimized) to break ties.

4 A Memetic Approach to the ToSP

According to the previous discussion, the role of the MA is to determine the best
job sequence, such that the total number of switches is minimized. Therefore, a
permutational encoding arises as the natural way to represent solutions. Next
sections will be devoted to describe our evolutionary algorithm, the neighbor-
hood structures defined on the permutational encoding, and how these are used
within the evolutionary algorithm to produce a memetic algorithm.

4.1 A Population-based Attack to the ToSP

We have considered a steady-state genetic algorithm (GA) to evolve promising
job sequences: a single solution is generated in each generation, and inserted in
the population replacing the worst individual. Selection is done by binary tourna-
ment. For recombination we initially explored two schemes: the well-known order
crossover (OX), and a crossover scheme named Alternating Position (APX) that
consists in select genes alternating of each parents [22]. Preliminary experiments
that we executed showed that the employment of APX provided better results, in
terms of solution quality, than using OX so that we elected APX as the crossover
operator.

For the purposes of mutation we have considered the block neighborhood.
This neighborhood is proposed for the ToSP in [19] and is based on swapping
whole segments of contiguous positions. The resulting mutation operator is called
Random Block Insertion (RBI) and works as follows:

1. A block length bl ∈ Nn/2 is uniformly selected at random.
2. The starting point of the block bs ∈ Nn−2bl

is subsequently selected at
random.

3. Finally, an insertion point bi is selected, such that bs + bl 6 bi 6 n− bl, and
the segments 〈bs, bs + bl〉 and 〈bi, bi + bl〉 are swapped.

Obviously, if the block length bl = 1 then the operation reduces to a simple
position swap, but this is not typically the case when performing mutation.

4.2 Local Search

A specific local search approach considered in this work is based on the well-
known all-pairs neighborhood, i.e., two permutations are neighbors if they just
differ in two positions of the sequence. A steepest-ascent hill climbing (HC)

approach is defined on the basis of this neighborhood structure: the neighborhood
N (x) of the current solution x is partially traversed, and the best solution found
is taken as the new current solution, provided it is better than the current one
(otherwise, it is considered that there is a stagnation).

Note that the exploration of the whole neighborhood is not executed as this
process becomes more and more costly as the number of jobs increases e.g., for
50 jobs, the number of neighbors for a given candidate is 1225. For this reason
only a set Nx ⊂ N (x), with #Nx = αn, is explored in each step of the HC
method. The selection of candidates in Nx is done randomly.

4.3 The Memetic Proposal

On the basis of the previously described GA, we have defined a memetic algo-
rithm (MA) by endowing the GA with a local search scheme. To be precise, we
have used the all-pairs hill climbing algorithm defined in Section 4.2 just after
the mutation stage. This local search is performed for a number of maxEval
evaluations, or until it stagnates. It must be also noted that the local search is
always performed on every new individual generated.

In all our proposals (i.e., HC, GA and MA) the fitness of the candidate is ob-
tained by the value returned after applying the KTNS method to the candidate.
The objective is thus minimizing this value.

5 Experimental results

The experiments have been performed using four different algorithms: the beam
search (BS) presented in [20] and described in Section 3.2, and the three algo-
rithms proposed in preceding section, that is to say, a steady-state permutational
GA, an steepest-ascent hill climbing (HC) search and a memetic algorithm. In the
case of BS, five different equally-spaced values between 1 and 5 were considered
for the beam width. As to the HC, the value α = 4 was chosen for exploration of
the neighborhood. Also, when HC is working alone, each time that local search
is considered stagnated this is reactivated from a randomly selected candidate;
when used inside the MA as an improvement operator, the HC is executed until
reaching a stagnation or a maximum number of evaluations (i.e., exactly 1000;
obviously there is no reactivation from a random point). As to the GA (and
subsequently to the MA), an elitist generational model replacing the worst in-
dividual of the population (popsize = 30, pX = 1.0, pM = 1/n where n is the
number of jobs i.e., number of genes per individual) with binary tournament
selection has been utilized; alternating position crossover (APX) is used, and
mutation is done by applying the RBI operator. As to the MA, HC was always
applied to each offspring generated after the mutation step (i.e., the probability
of improvement was 1.0). The election of the parameter values (including the
value for α) was done after an extensive phase of experimentation with many
different values. The best combinations of the values were finally selected.

As far as we know, no standard data instance exists for this problem (at
least publicly available) so that we have arbitrarily selected a wide set of prob-
lem instances that were attacked in [1, 13, 19, 20]; more specifically, 16 instances
were chosen with values for the number of jobs, number of tools, and machine
capacity ranging in [10,50], [9,60] and [4,25] respectively. Table 1 shows the dif-
ferent problem instances chosen for the experimental evaluation where a specific
instance with n jobs, m tools and machine capacity C is labeled as Cζm

n .

4ζ10
10 4ζ9

10 6ζ15
10 6ζ12

15 6ζ20
15 8ζ15

20 8ζ16
20 10ζ20

20 24ζ30
20 24ζ36

20 30ζ40
20 10ζ25

30 15ζ40
30 15ζ30

40 20ζ60
40 25ζ40

50

Min. 2 2 3 3 3 3 3 4 9 9 11 4 6 6 7 9
Max. 4 4 6 6 6 8 8 10 24 24 30 10 15 15 20 20

Source [13] [1] [1] [1] [1] [1] [1]
[19] [20] [20] [20] [13] [19] [20] [20] [20] [20] [20] [19] [13] [19] [13] [19]

Table 1. Problem Instances considered in the experimental evaluation. The minimum and maximum
of tools required for all the jobs is indicated in second and third rows respectively. Fourth row display
the bibliography reference from which the problem instance was obtained.

Five different datasets4 (i.e., incident matrixes or relations among tools and
jobs) were generated randomly per instance. Each dataset was generated with
the restriction, already imposed in previous works such as [13], that no job is
covered by any other job in the sense that ∀i, j ∈ [1,m] ∧ i 6= j : τi 6⊆ τj where
τk = {h | Ahk = TRUE} is defined as before, i.e., the set of tools required to
process job k. The reason to enforce this constraint is to avoid the simplification
of the problem by preprocessing techniques as done for instance in [1] and [20].

For GA, HC and MA, the algorithms were run 10 times (per instance and
dataset) and a maximum of ϕn|n − C| evaluations5 per run (with ϕ > 0).
Preliminary experiments on the value of ϕ proved that ϕ = 80 is an appropriate
value that allows to keep an acceptable relation between solution quality and
computational cost. Regarding the BS algorithm, because of its deterministic
nature, just one execution per dataset (and per value of beam width) was run and
the algorithm was allowed to be executed until exhaustion (i.e., until completing
the search). All methods were implemented in Java language version 1.5, and
all the experiments were carried out on a PC computer Toshiba with Operating
System Debian 1.6.x and 1.5 GHz/512 MB RAM. Tables 2 and 3 show the
obtained results grouped by problem instance.

Several considerations can be done here. For instance, HC performed better,
with respect to the best solution result, in most of the cases than BS; this
is specially evident in the lower instances (i.e., those with smaller values of

4 All datasets are available at http://www.unet.edu.ve/∼jedgar/ToSP/ToSP.htm
5 Observe that the number of evaluations increases with the number of jobs (that is

assumed to be related directly with the problem difficulty) and decreases when the
magazine capacity increases (that, in certain form, it is also inversely related to the
problem difficulty).

GA MA HC 1 β 2 β 3 β 4 β 5 β Evaluations

4ζ10
10 Av 8.88 8.68 8.96 10 9.8 9.6 9.6 9.6 4800

SD 1.518 1.618 1.624 2.098 1.833 2.059 2.059 2.059
B 7 7 7 8 8 7 7 7

6ζ15
10 Av 14.1 13.7 14.04 15.2 14.8 14.8 14.8 14.8 3200

SD 2.012 2.09 2.097 1.47 1.47 1.47 1.47 1.47
B 11 11 11 13 13 13 13 13

4ζ9
10 Av 8 7.86 8.04 8.4 8.4 8.4 8.4 8.4 4800

SD 0.8 0.721 0.894 0.49 0.49 0.49 0.49 0.49
B 7 7 7 8 8 8 8 8

6ζ12
15 Av 16.48 15.5 17 18.2 17.6 17.6 17.4 17.4 10800

SD 2.138 1.982 1.929 0.748 1.02 1.02 1.2 1.2
B 13 12 14 17 16 16 16 16

6ζ20
15 Av 23.62 22.38 24.08 26.2 25.8 25.2 25.2 25.2 10800

SD 2.134 1.938 2.115 2.315 2.135 1.6 1.6 1.6
B 20 20 21 23 23 23 23 23

8ζ15
20 Av 23.66 22.36 25.06 27 26 25.6 25.2 25.2 19200

SD 3.603 3.576 3.652 3.95 4.05 4.271 4.118 4.118
B 17 17 20 21 21 20 20 20

8ζ16
20 Av 28.5 26.66 29.18 29.4 29.4 29.4 29.4 29.4 19200

SD 2.202 1.986 2.16 1.625 1.625 1.625 1.625 1.625
B 24 23 25 27 27 27 27 27

10ζ20
20 Av 31.6 29.92 33.1 34.2 33.6 33.4 33.4 33.4 16000

SD 2.828 2.357 2.147 3.187 2.871 2.8 2.8 2.8
B 26 26 29 30 30 30 30 30

mean 26.52 24.9 27.2 33 32.6 32.4 32.4 32.4 6400
24ζ30

20 σ 3.061 3.282 3.572 4.427 4.499 4.63 4.63 4.63
best 22 20 22 28 28 28 28 28

mean 48.16 46.54 49.6 54 54 53.8 53.8 53.4 6400
24ζ36

20 σ 8.999 8.807 9.481 8.198 8.198 8.328 8.328 7.605
best 35 36 37 45 45 45 45 45

mean 42.82 41.04 44.48 52.2 50.2 50.2 50.2 50.2 16000
30ζ40

20 σ 5.183 4.539 5.1 6.242 7.026 7.026 7.026 7.026
best 32 31 35 42 39 39 39 39

Table 2. Results for n 6 20 of GA, MA, HC, and BS considering several values
(1 ≤ i ≤ 5) for the beam width β. Best results are marked in boldface.

n), although in some instances (i.e., 10ζ25
30 , 15ζ30

40 , 20ζ60
40) BS returned better

solutions. However, in average, HC behaves better than BS in the lower instances
although it seems evident than BS performs better than HC when the number
of jobs increases over 30. Also, it is evident that GA and MA provide the best
results and clearly outperform both the HC and BS algorithms.

Focusing on the evolutionary proposals, notice firstly that the permutational
GA provides comparable results, in terms of best solutions, to those of MA. In
fact, the GA presents roughly the same performance than the MA, but becomes

GA MA HC 1 β 2 β 3 β 4 β 5 β Evaluations

mean 69.2 64.92 74.9 73.6 70.8 70.8 70.8 70.6 48000
10ζ25

30 σ 3.4 1.573 1.9 1.02 1.47 1.47 1.47 1.497
best 62 62 69 72 68 68 68 68

mean 105.08 100.86 111 111.6 110 109.2 107.8 107.8 36000
15ζ40

30 σ 13.335 12.9 14.323 15.187 13.55 13.407 13.257 13.257
best 81 81 89 89 89 89 89 89

mean 105.28 97.96 111.5 105.2 103.2 102.8 102.8 102.4 80000
15ζ30

40 σ 8.775 7.887 8.273 8.518 9.579 9.745 9.745 9.972
best 88 86 98 96 93 93 93 93

mean 220.6 211.88 231.1 221.8 220 218.8 218.6 218.6 64000
20ζ60

40 σ 8.825 7.812 9.104 7.026 6.164 5.706 5.817 5.817
best 200 201 216 215 215 215 215 215

mean 161.82 153.36 169 167.2 164 162.8 162.8 161.8 100000
25ζ40

50 σ 13.671 13.52 13.485 12.906 12.554 12.335 12.335 12.156
best 141 132 146 152 147 147 147 147

Table 3. Results for n > 20 of GA, MA, HC, and BS described in [20] considering
several values (1 ≤ i ≤ 5) for the beam width β. Best results are marked in boldface.

clearly inferior when the average is considered as the MA always provides better
results in this case.

4ζ10
10 4ζ9

10 6ζ15
10 6ζ12

15 6ζ20
15 8ζ15

20 8ζ16
20 10ζ20

20 24ζ30
20 24ζ36

20 30ζ40
20 10ζ25

30 15ζ40
30 15ζ30

40 20ζ60
40 25ζ40

50

GA 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
MA 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Table 4. Comparison: HC vs. GA/MA. Each cell displays the number of datasets
in which HC is considered significantly better than GA/MA according to Wilcoxon
ranksum test.

4ζ10
10 4ζ9

10 6ζ15
10 6ζ12

15 6ζ20
15 8ζ15

20 8ζ16
20 10ζ20

20 24ζ30
20 24ζ36

20 30ζ40
20 10ζ25

30 15ζ40
30 15ζ30

40 20ζ60
40 25ζ40

50

HC 0 0 0 0 0 3 0 2 1 2 2 4 5 5 5 4
MA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 5. Comparison: GA vs. HC/MA. Each cell displays the number of datasets
in which GA is considered significantly better than HC/MA according to Wilcoxon
ranksum test.

A non-parametrical statistical test –Wilcoxon ranksum– was executed on the
results returned by all the executions performed by HC, GA and MA. Then a

4ζ10
10 4ζ9

10 6ζ15
10 6ζ12

15 6ζ20
15 8ζ15

20 8ζ16
20 10ζ20

20 24ζ30
20 24ζ36

20 30ζ40
20 10ζ25

30 15ζ40
30 15ζ30

40 20ζ60
40 25ζ40

50

HC 2 0 0 5 5 5 5 5 3 5 5 5 5 5 5 5
GA 0 0 1 2 4 2 5 4 3 3 1 4 4 5 5 4

Table 6. Comparison: MA vs. HC/GA. Each cell displays the number of datasets
in which MA is considered significantly better than HC/GA according to Wilcoxon
ranksum test.

comparison between each method with the other two was executed; Tables 4, 5
and 6 show the results of the comparison of HC vs. GA and MA, GA vs. HC
and MA, and MA vs. HC and GA respectively. Each cell in the tables indicates
the number of times that the corresponding algorithm is significantly better
than the other one with respect to the 5 datasets per instance. For example,
a 4 appearing in Table 6 for the instance 10ζ25

30 in the row of GA means that
the MA behaves significantly better, according to the statistical test, than the
GA in 4 of the 5 datasets that were used to solve the specific problem instance.
These results corroborate our preliminar considerations and one can observe that
the GA outperforms HC when the number of jobs increases and that the MA
outperforms both HC and GA and also behaves in general evidently better than
the GA.

6 Conclusions and future work

We have tackled here the tool switching problem (in its uniform version) and
have proposed three methods to attack it. Two of the methods are, as far as we
know, the first evolutionary approaches to handle the tool switching problem.
Combining ideas from the realm of evolutionary computation and hill climbing
methods, we have specifically devised an evolutionary proposal that takes the
form of a memetic algorithm. An empirical evaluation was executed in order to
prove the validity and performance of the proposed techniques. For comparison
purposes, we have considered in the experimentation the beam search method
described in [20], as this was demonstrated to be specially efficient and practical
compared to another techniques previously published.

The experiments demonstrate that the three methods (i.e., a hill climbing
search, a genetic algorithm and a memetic algorithm) provide encouraging re-
sults and are capable of improving the results obtained by the BS. Focusing
on our proposals, the memetic algorithm outperforms both a permutational ge-
netic algorithm and a steepest-ascent hill climbing method. A statistical test
demonstrates that the MA is significantly superior to the other two proposals.

We believe that there is room for improvement. For instance, it would be
interesting to prove alternative methods to HC such as tabu search or variable
neighborhood search. In this case, it would be necessary to obtain a good balance
between intensification and exploration in the local search component of the MA;
in our proposal we have leaned towards exploration by evaluating only a part

of the whole neighborhood space, and have obtained encouraging results, but
perhaps a more intensive strategy can also produce valuable results. We also
plan to analyze new instances and variants of the problem [6–8].

Acknowledgements

Second and third authors were partially supported by Spanish MCyT under
contracts TIN2004-7943-C04-01 and TIN2005-08818-C04-01.

References

1. Bard, J.F.: A heuristic for minimizing the number of tool switches on a flexible
machine. IIE Transactions 20(4) (1988) 382–391

2. Belady, L.: A study of replacement algorithms for virtual storage computers. IBM
Systems Journal 5 (1966) 78–101

3. Tang, C.S., Denardo, E.V.: Models arising from a flexible manufacturing machine,
part I: minimization of the number of tool switches. Oper. Res. 36(5) (1988)
767–777

4. Privault, C., Finke, G.: Modelling a tool switching problem on a single nc-machine.
Journal of Intelligent Manufacturing 6(2) (april 1995) 87–94

5. Shirazi, R., Frizelle, G.: Minimizing the number of tool switches on a flexible
machine: an empirical study. International Journal of Production Research 39(15)
(2001) 3547–3560

6. Kashyap, A.S., Khator, S.K.: Modeling of a tool shared flexible manufacturing
system. In: WSC ’94: Proceedings of the 26th conference on Winter simulation,
San Diego, CA, USA, Society for Computer Simulation International (1994) 986–
993

7. BÃlażewicz, J., Finke, G.: Scheduling with resource management in manufacturing
systems. European Journal of Operational Research 76 (1994) 1–14

8. Hong-Bae, J., kim Yeong-Dae, Suh, S.H.W.: Heuristics for a tool provisioning
problem in a flexiblemanufacturing system with an automatic tool transporter.
IEEE Transactions on Robotics and Automation 15(3) (1999) 488–496

9. Crama, Y., Moonen, L.S., Spieksma, F.C., Talloen, E.: The tool switching problem
revisited. European Journal of Operational Research 182(2) (2007) 952–957

10. ElMaraghy, H.: Automated tool management in flexible manufacturing. Journal
of Manufacturing Systems 4(1) (1985) 1–14

11. Kiran, A., Krason, R.: Automated tooling in a flexible manufacturing system.
Industrial Engineering 20 (1988) 52–57

12. Djellab, H., Djellab, K., Gourgand, M.: A new heuristic based on a hypergraph
representation for the tool switching problem. International Journal of Production
Economics 64(1-3) (March 2000) 165–176

13. Hertz, A., Laporte, G., Mittaz, M., Stecke, K.: Heuristics for minimizing tool
switches when scheduling part types on a flexible machine. IIE Transactions 30
(1998) 689–694

14. Laporte, G., Salazar-González, J., Semet, F.: Exact algorithms for the job sequenc-
ing and tool switching problem. IIE Transactions 36(1) (January 2004) 37–45

15. Oerlemans, A.: Production planning for flexible manufacturing systems. Ph.d.
dissertation, University of Limburg, Maastricht, Limburg, Netherlands (October
1992)

16. Crama, Y., Kolen, A., Oerlemans, A., Spieksma, F.: Minimizing the number of tool
switches on a flexible machine. International Journal of Flexible Manufacturing
Systems 6 (1994) 33–54

17. Salonen, K., Raduly-Baka, C., Nevalainen, O.S.: A note on the tool switching
problem of a flexible machine. Computers & Industrial Engineering 50(4) (2006)
458–465

18. Hertz, A., Widmer, M.: An improved tabu search approach for solving the job
shop scheduling problem with tooling constraints. Discrete Applied Mathematics
65 (1993) 319–345

19. Al-Fawzan, M.A., Al-Sultan, K.S.: A tabu search based algorithm for minimizing
the number of tool switches on a flexible machine. Comput. Ind. Eng. 44(1) (2003)
35–47

20. Zhou, B.H., Xi1, L.F., Cao, Y.S.: A beam-search-based algorithm for the tool
switching problem on a flexible machine. The International Journal of Advanced
Manufacturing Technology 25(9-10) (Mayo 2005) 876–882

21. Tzur, M., Altman, A.: Minimization of tool switches for a flexible manufacturing
machine with slot assignment of different tool sizes. IIE Transactions 36(2) (2004)
95–110

22. Larrañaga, P., Kuijpers, C., Murga, R., Inza, I., Dizdarevic, S.: Genetic algorithms
for the travelling salesman problem: A review of representations and operators.
Articial Intelligence Review 13 (1999) 129–170

