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Abstract The Tool Switching Problem (ToSP) is a hard combinatorial optimiza-
tion problem of relevance in the field of flexible manufacturing systems (FMS), that
has been tackled in the literature using both complete and heuristic methods, in-
cluding local-search metaheuristics, population-based methods and hybrids thereof
(e.g., memetic algorithms). This work approaches the ToSP using several hybrid co-
operative models where spatially-structured agents are endowed with specific local-
search/population-based strategies. Issues such as the intervening techniques and
the communication topology are analyzed via an extensive empirical evaluation. It is
shown that the cooperative models provide better results than their constituent parts.
Furthermore, they not only provide solutions of similar quality to those returned by
the memetic approach but raise interest prospects with respect to its scalability.

1 Introduction

The uniform tool switching problem (ToSP) is a hard combinatorial optimization
problem that appears in Flexible Manufacturing Systems (FMSs), an alternative to
rigid production systems that has the capability to be adjusted for generating dif-
ferent products and/or for changing the order of product generation. This problem
arises in a single machine that has several slots into which different tools can be
loaded. Each slot just admits one tool, and each job executed on that machine re-
quires a particular set of tools to be completed. Jobs are sequentially executed, and
therefore each time a job is to be processed, the corresponding tools must be loaded
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in the machine magazine. The ToSP consists of finding an appropriate job sequence
in which jobs will be executed, and an associated sequence of tool loading/unloading
operations that minimizes the number of tool switches in the magazine. In this con-
text, tool management is a challenging task that directly influences the efficiency of
flexible manufacturing systems. Different examples of the problem can be found in
diverse areas such as electronics manufacturing, metalworking industry, computer
memory management, and aeronautics, among others [3, 4, 30, 32].

Exact methods ranging from integer linear programming (ILP) techniques to
heuristic constructive algorithms have been already applied to the problem with
moderate success. The reason is clear: the ToSP has been proved to be NP-hard
when the magazine capacity is higher than two (which is the usual case) and thus
exact methods are inherently limited. In this context the use of alternative techniques
that might eventually overcome this limitation has been explored. In particular, the
use of metaheuristic techniques can be considered. In this line of work, [2] recently
proposed three methods to tackle the ToSP: a simple local search (LS) scheme based
on hill climbing, a genetic algorithm (which, as far as we know, constituted the first
population-based approach to solve the uniform ToSP1), and a memetic algorithm
[19, 26] (MA), based on the hybridization of the two latter methods. Related to this
latter approach, this work proceeds along the cooperative side of hybridization by
considering composite models in which different search techniques cooperate for
solving the ToSP. These models can be arranged in a plethora of ways, and as a
first step we have focused on the use of local-search metaheuristics as basic search
strategies, and more precisely on how they can synergistically interact and the effect
of the communication topology.

2 Background

Before proceeding, let us firstly describe more in depth the ToSP. Then, we will
review previous related work.

2.1 The Tool Switching Problem

In light of the informal description of the uniform ToSP given before, there are
two major elements in the problem: a machine M and a collection of jobs J =
{J1, · · · ,Jn} to be processed. Regarding the latter, the relevant information for the
optimization process is the tool requirements for each job. We assume that there is a
set of tools T = {τ1, · · · ,τm}, and that each job Ji requires a certain subset T (Ji) ⊆ T
of tools to be processed. As to the machine, we will just consider one piece of infor-
mation: the capacity C of the magazine (i.e., the number of available slots). Given

1 Note that genetic algorithms (GAs) have been applied to other variants of the problem –e.g., [17]–
though.
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the previous elements, we can formalize the ToSP as follows: let a ToSP instance
be represented by a pair, I = 〈C,A〉 where C denotes the magazine capacity, and A
is a m×n binary matrix that defines the tool requirements to execute each job, i.e.,
Ai j = 1 if, and only if, tool τi is required to execute job J j.

We assume that C < m; otherwise the problem is trivial. The solution to such
an instance is a sequence 〈Ji1 , · · · ,Jin〉 (where i1, . . . , in is a permutation of num-
bers 1, . . . ,n) determining the order in which the jobs are executed, and a sequence
T1, · · · ,Tn of tool configurations (Ti ⊂ T ) determining which tools are loaded in the
magazine at a certain time. Note that for this sequence of tool configurations to be
feasible, it must hold that T (Ji j ) ⊆ Tj.

Let N+
h = {1, · · · ,h} henceforth. We will index jobs (resp. tools) with integers

from N+
n (resp. N+

m). An ILP formulation for the ToSP is shown below, using two
sets of zero-one decision variables – x jk ( j ∈N+

n , k ∈N+
n ), and yik (i ∈N+

m , k ∈N+
n )

– that respectively indicate whether a job j is executed at time k or not, or whether a
tool i is in the magazine at time k or not. Notice that since each job makes exclusive
use of the machine, time-step k can be assimilated to the time at which the kth job
is executed.

Processing each job requires a particular collection of tools loaded in the maga-
zine. It is assumed that no job requires a number of tools higher than the magazine
capacity, i.e., ∑m

i=1 Ai j 6 C for all j ∈N+
n . Tool requirements are reflected in Eq. (5).

Following [3], we assume the initial condition yi0 = 1 for all i∈N+
m . This initial con-

dition amounts to the fact that the initial loading of the magazine is not considered
as part of the cost of the solution (in fact, no actual switching is required for this
initial load). The objective function F(·) counts the number of switches that have to
be done for a particular job sequence:

min F(y) =
n

∑
k=1

m

∑
i=1

yik(1− yi,k−1) (1)

∀ j ∈ N+
n :

n

∑
k=1

x jk = 1 (2)

∀k ∈ N+
n :

n

∑
j=1

x jk = 1 (3)

∀k ∈ N+
n :

m

∑
i=1

yik 6 C (4)

∀ j,k ∈ N+
n ∀i ∈ N+

m : Ai jx jk 6 yik (5)

∀ j,k ∈ N+
n ∀i ∈ N+

m : x jk,yi j ∈ {0,1} (6)

This general definition shown above corresponds to the uniform ToSP in which
each tool fits in just one slot. The ToSP can be divided into three subproblems [35]:
the first subproblem is machine loading and consists of determining the sequence of
jobs; the second subproblem is tool loading, consisting of determining which tool to
switch (if a switch is needed) before processing a job; finally, the third subproblem
is slot loading, and consists of deciding where (i.e., in which slot) to place each tool.
Since we are considering the uniform ToSP, the third subproblem does not apply (all
slots are identical, and the order of tools is irrelevant). Moreover, and without loss
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of generality, the cost of switching a tool is considered constant (the same for all
tools) in the uniform ToSP. Under this assumption, the tool loading subproblem can
also be obviated because if the job sequence is fixed, the optimal tool switching
policy can be determined in polynomial time using a greedy procedure termed Keep
Tool Needed Soonest (KTNS) [3, 32]. The importance of this policy is that given a
job sequence KTNS obtains its optimal number of tool switches. Therefore, we can
concentrate on the machine loading subproblem, and use KTNS as a subordinate
procedure to solve the subsequent tool loading subproblem.

2.2 Related Work on the ToSP

This paper focuses on the uniform case of the ToSP, in which there is one magazine,
no job requires more tools than the magazine capacity, and the slot size is constant.
To the best of our knowledge, the first reference to the uniform ToSP can be found
in the literature as early as in the 1960’s [4]; since then, the uniform ToSP has been
tackled via many different techniques. The late 1980’s contributed specially to solve
the problem [3, 11, 18, 32]. This way, [32] proposed an ILP formulation of the prob-
lem, and [3] formulated the ToSP as a non-linear integer program with a dual-based
relaxation heuristic. More recently, [20] proposed two exact algorithms: a branch-
and-bound approach and a linear programming-based branch-and-cut algorithm.

Despite the moderate success of exact methods, it must be noted that they are
inherently limited, since [27] and [8] proved formally that the ToSP is NP-hard for
C > 2. This limitation was already highlighted by Laporte et al. [20] who reported
that their algorithm was capable of dealing with instances with 9 jobs, but provided
very low success ratios for instances with more than 10 jobs. Some ad hoc heuristics
have been devised in response to this complexity barrier (e.g., [10, 14, 30]).

The use of metaheuristics has been also considered recently. For instance, local
search methods such as tabu search (TS) have been proposed [1, 13]. Among these,
we find specifically interesting the approach presented by [1], due to the quality
of the obtained results; they defined three different versions of TS that arose from
the inclusion of different algorithmic mechanisms such as long-term memory and
oscillation strategies. We will return later to this approach and describe it in more
detail since it has been included in our experimental comparison. A different, and
very interesting, approach has been described by [36], who proposed a beam search
algorithm. Beam search (BS) is a derivate of branch-and-bound that uses a breadth-
first traversal of the search tree, and incorporates a heuristic choice to keep at each
level only the best (according to some quality measure) β nodes (the so-called beam
width). This sacrifices completeness, but provides a very effective heuristic search
approach. Actually, this method provided good results, e.g., better than those of
Bard’s heuristics, and will be also included in the experimental comparison.



Hybrid cooperation models for the ToSP 5

2.3 Background on Cooperative Models

Different schemes have been proposed for cooperating metaheuristics. For exam-
ple, Toulouse et al. [33] considered using multiple instances of tabu search running
in parallel, eventually exchanging some of the attributes stored in tabu memory.
Later on, Toulouse et al. [34] proposed a a hierarchical cooperative model based
on problem decomposition. Crainic and Gendreau [6] presented a cooperative par-
allel tabu search method for capacitated network design problem that was shown to
outperform independent search strategies. Crainic et al. [7] also proposed a method
for asynchronous cooperative multi-search using variable neighborhood search with
application to the p-median problem. Pelta et al. [28] presented a cooperative multi-
thread search-based optimization strategy, in which several solvers were controlled
by a higher-level coordination algorithm which collected information on their search
performance and altered the behavior of the solvers accordingly (see also [9]).

More recently, Lu et al. [23] presented a hybrid cooperative version of quantum
particle swam optimization aimed to improving the diversity of the swarms. Another
approach for the implementation of cooperative mechanisms with metaheuristics is
multi-agent systems. Milano and Roli [25] developed a multi-agent system called
MAGMA (multiagent metaheuristic architecture) allowing the use of metaheuristics
at different levels (creating solutions, improving them, defining the search strategy,
and coordinating lower-level agents). Malek [24] introduced a multi-agent system
like MAGMA which considered particular metaheuristics implemented by individ-
ual agents and the exchange of solutions between these.

To the best of our knowledge, no cooperative scheme has been applied to tackle
the ToSP, perhaps with the exception of our memetic proposal described in [2] that
can be catalogued as an integrative cooperation according to the classification de-
scribed in [29] (note at any rate that none of the techniques involved in the MA is
a complete algorithm). In any case, no classical cooperation model in the sense of
“search algorithms working in parallel with a varying level of communication” [5]
has been tried. This paper presents the first cooperative models according to this
mentioned schema for solving the ToSP.

3 Hybrid Cooperative Models

We have considered four collaborative architectures. In three of them, agents are
attached to a certain spatial structure endowed with a LS mechanism. These archi-
tectures are defined on the basis of the particular LS methods used, and on their
interaction topology. Therefore, these two aspects are defined separately in Sec-
tions 3.1 and 3.2 respectively. A fourth architecture, also described in Section 3.2,
is defined on the basis of a model based in heterogeneous techniques for executing
search, diversification and intensification.
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3.1 Local searchers

LS metaheuristics are based on exploring the neighborhood of a certain “current”
solution. It is thus convenient to address firstly the representation of solutions and
the structure of this neighborhood, and subsequently of the underlying search space.
A permutational encoding arises as the natural way to represent solutions. Thus, a
candidate solution for a specific ToSP instance I = 〈C,A〉 is simply a permutation
π = 〈π1, · · · ,πn〉 ∈ Pn where πi ∈ N+

n , and Pn is the set of all permutations of ele-
ments in N+

n . The KTNS algorithm is used to obtain the actual tool configuration of
the machine for the corresponding job sequence.

Having defined the representation, we now turn our attention to the neighbor-
hood structure. In general, we have considered the well-known swap neighborhood
Nswap(·), in which two permutations are neighbors if they just differ in two positions
of the sequence, that is, for a permutation π ∈Pn, Nswap(π) = {π ′ ∈Pn |H(π,π ′) =
2} where H(π,π ′) = n−∑n

i=1[πi = π ′i ] is the Hamming distance between sequences
π and π ′ (the number of positions in which the sequences differ), and [·] is Iverson
bracket (i.e., [P] = 1 if P is true, and [P] = 0 otherwise). Given the permutational na-
ture of sequences, this implies that the contents of the two differing positions have
been swapped. For some specific applications (named when necessary), we have
also considered a specific neighborhood called block neighborhood Nblock(·). This
is a generalization of the swap neighborhood in which two non-overlapping blocks
(i.e., subsequences of adjacent positions) of a randomly chosen length bl ∈N+

n/2 are
selected at random within a permutation, and swapped.

These neighborhoods are exploited within two different LS frameworks. The first
one is steepest-ascent Hill Climbing (HC), in which given a current solution π , its
neighborhood N (π) is explored, and the best solution found is taken as the new
current solution, provided it is better than the current one (ties are randomly bro-
ken). If no such neighboring solution exist, the search is considered stagnated, and
can be restarted from a different initial point. The second LS technique consid-
ered is a Tabu Search (TS) method along the lines of the proposal in [1]. This TS
method is based on a strategic oscillation mechanism which switches between the
two neighborhoods defined before. A deterministic criterion based on switching the
neighborhood structure after a fixed number of iterations was reported by [1] to per-
form better than a probabilistic criterion (i.e., choosing the neighborhood structure
in each step, according to a certain probability distribution). We implement a long
term memory scheme using a frequency based memory structure with a mechanism
based in swapping to select new candidate solutions [1]. No aspiration criterion is
used in this referred algorithm.

3.2 Interaction Topology

Let R be an architecture with n agents; each agent ai (0 6 i 6 n− 1) in R consists
of one of the metaheuristics described in Sect. 3.1. These agents engage in peri-
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Algorithm 1: COOPERATIVE-MODELn

for i ∈ N+
n do1

Si ← GenerateInitialSolution();2
endfor3
cycles← 1;4
while cycles 6 cyclesmax do5

for i ∈ N+
n do6

Si ← ai(Si);7
endfor8
for (i, j) ∈ TR do9

if KT NS(Si) < KT NS(S j) then10
S j ← Si;11

endif12
endfor13
cycles← cycles+114

endw15
return max−1{KT NS(Si) | i ∈ N+

n };16

ods of isolated exploration followed by synchronous communication. We denote
as cyclesmax the maximum number of such exploration/communication cycles in a
certain cooperative model. Also, let Si be the best solution found by agent ai, and
let TR ⊆ N+

n ×N+
n be the communication topology over R (i.e., if (i, j) ∈ TR then

ai can send information to agent a j). The general architecture of the model is then
described in Algorithm 1. Firstly all the agents are initialized with random initial
solution (lines 1-3). Then, the algorithm is executed for a maximum number of iter-
ations cycles (lines 5-15) where, in each cycle, a local improvement of the solution
kept in each agent is done (lines 6-8), and solutions are fed from an agent to an-
other according to the topology considered (lines 9-13). Note that an agent only
accepts an incoming solution if it is better than its incumbent. Observe also that,
for a maximum number of evaluations Emax and for a specific number of cycles
cyclesmax, each cycle in our cooperative algorithms spends Ecycle = Emax/cyclesmax
evaluations, and the specific LS method of any agent takes Ecycle/n evaluations at
most.

Three strategies based on different interaction topologies are considered:

• RING: TR = {(i, i(n)+1) | i ∈ N+
n and i(n) denotes i modulo n}. Thus, there ex-

ists a circular list of agents in which each node only sends (resp. receives) infor-
mation to its successor (resp. from its predecessor).

• BROADCAST: TR = N+
n ×N+

n , i.e., a go with the winners-like topology in which
the best overall solution at each synchronization point is transmitted to all agents.
This means all agents executes intensification over the same local region of the
search space at the beginning of each cycle.

• RANDOM: TR is composed by n pairs (i, j) that are randomly sampled from
N+

n ×N+
n . This sampling is done each time communication takes place, and hence

any two agents might eventually communicate in any step.
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In addition to these strategies we have considered a so-called Ring SDI model,
based on an interesting proposal described in [31]. SDI stands for Search, Diversi-
fication and Intensification, and hence the SDI architecture consists of three agents
dedicated to distinct purposes: the first one to local search, the second one to diver-
sification and the third one to intensification. As described in next section, within
this SDI model the intervening techniques are not just local searchers, but other
techniques can be used for intensification/diversification purposes.

4 Computational Results

As far as we know, no standard data instance exists for this problem (at least publicly
available) so that we have selected a wide set of problem instances that were attacked
in [1, 3, 14, 36]; more specifically, 16 instances were chosen with values for the
number of jobs, number of tools, and machine capacity ranging in [10,50], [9,60]
and [4,25] respectively. Table 1 shows the different problem instances chosen for the
experimental evaluation where a specific instance with n jobs, m tools and machine
capacity C is labeled as Cζ m

n .

Table 1 Problem Instances considered in the experimental evaluation. The minimum and maxi-
mum of tools required for all the jobs is indicated in second and third rows respectively. Fourth
row shows the work from which the problem instance was obtained.

4ζ 10
10 4ζ 9

10 6ζ 15
10 6ζ 12

15 6ζ 20
15 8ζ 15

20 8ζ 16
20 10ζ 20

20 24ζ 30
20 24ζ 36

20 30ζ 40
20 10ζ 25

30 15ζ 40
30 15ζ 30

40 20ζ 60
40 25ζ 40

50

Min. 2 2 3 3 3 3 3 4 9 9 11 4 6 6 7 9
Max. 4 4 6 6 6 8 8 10 24 24 30 10 15 15 20 20

Source [14] [3] [3] [3] [3] [3] [3]
[1] [36] [36] [36] [14] [1] [36] [36] [36] [36] [36] [1] [14] [1] [14] [1]

Five different datasets2 (i.e., incident matrixes or relations among tools and jobs)
were generated randomly per instance. Each dataset was generated with the restric-
tion, already imposed in previous works such as [14], that no job is covered by any
other job in the sense that ∀i, j ∈N+

n , i 6= j, T (Ji) 6⊆ T (J j). The reason to enforce this
constraint is to avoid the simplification of the problem by preprocessing techniques
as done for instance in [3] and [36].

The experiments have been performed using a wide set of different algorithms:
the beam search (BS) presented in [36], three LS methods, a GA, the memetic ap-
proach (denoted as MaHC) presented in [2], and the four cooperative algorithms
described in this paper. From these, a wide number of algorithms were devised and
tested. For instance, in the case of BS, five different values β ∈N+

5 were considered
for the beam width. Regarding LS methods, we consider the TS proposed in [1], and

2 All datasets are available at http://www.unet.edu.ve/∼jedgar/ToSP/ToSP.htm
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HC as described previously. Moreover, we have taken into account also LS versions
in which a partial exploration of the neighborhood is done by obtaining a fixed-size
random sample; in particular, the size of this sample has been chosen to be αn, i.e.,
proportional to the number of jobs (the value α = 4 has been used). The notation
HCP and HCF (resp. TSP and TSF) is used to indicate the HC variant (resp. TS
variant) in which the neighborhood is partially or fully explored respectively. Also,
in the case of HC, the search is restarted from a different initial point if stagnation
takes place before consuming the allotted number of evaluations. Regarding TS, the
tabu tenure is 5, and the number of iterations on each neighborhood for performing
strategic oscillation is 3. In both cases, this corresponds to the setting used by [1].
The GA is a steady-state genetic algorithm whose parameters are exactly as those
described in [2], that is to say, popsize = 30, pX = 1.0, and pM = 1/n where n is
the number of jobs, with binary tournament selection; alternating position crossover
(APX) is used [21], and mutation is done by applying the random block swap as op-
erator. The MaHC consists of a combination of this GA with HCP where HCP was
always applied to each offspring generated after the mutation step. The election of
the parameter values (including the value for α) was done after an extensive phase
of experimentation with many different values. The best combinations of the values
were finally selected.

Regarding the cooperative models, we have used cyclesmax ∈ {3,4,5}, and have
focused on models with 3 agents to make easier the comparison with the SDI model.
In this latter RINGSDI model we connect HCP for LS, GA for diversification, and
for intensification we plug in the KickOperator that was also used in [31]. In our
rendition of this operator it acts as a first-ascent HC on the swap neighborhood. As
to the basic RING, BROADCAST and RANDOM topologies, their three agents were
loaded with HCF, HCP and TSP techniques respectively.

All algorithms were run 10 times (per instance and dataset) and a maximum of
Emax = ϕn(m−C) evaluations3 per run (with ϕ > 0). Preliminary experiments on
the value of ϕ proved that ϕ = 100 is an appropriate value that allows to keep an
acceptable relation between solution quality and computational cost. Regarding the
BS algorithm, because of its deterministic nature, just one execution per dataset (and
per value of beam width) was run and the algorithm was allowed to be executed until
exhaustion (i.e., until completing the search).

Due to space limitations we will not present all the obtained results for each of
the instances and for all the algorithms involved in the comparison, and will use a
rank-based approach in order to analyze the significance of the results. To do so,
we have computed the rank ri

j of each algorithm j on each instance i (rank 1 for
the best, and rank k for the worst, where k = 23 is the number of algorithms; in
case of ties, an average rank is awarded). The distribution of these ranks is shown
in Fig. 1. Here one can extract important conclusions: the most important is that

3 Observe that the number of evaluations depends directly on the number of jobs although it seems
evident that the problem difficulty lies in the relation between number of tools and magazine ca-
pacity. In this sense, the number of evaluations increases with the number of tools (assumed to be
directly related with problem difficulty) and decreases when the magazine capacity increases (that,
in some sense, it is also inversely related to the problem difficulty).
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in general, the cooperative models behaves better than its constituent parts. This is
an important fact as the cooperative models have not been optimized exhaustively
(due to the high number of possible metaheuristics combinations to be loaded in
the agents). Also, the fact that RINGSDI is better than RING might indicate the
need for a diversification algorithm to increase the area of exploration in the search
landscape.

0 5 10 15 20

MaHC

RingSDI(4)

RingSDI(3)

RingSDI(5)

TSP

Broadcast(5)

Random(5)

Broadcast(4)

Broadcast(3)

Random(4)

Random(3)

GA

Ring(4)

Ring(5)

Ring(3)

TSF

HCF

B=5

B=4

B=3

B=2

HCP

B=1

Values

Fig. 1 Rank distribution of each algorithm across all instances. As usual, each box comprises the
second and third quartiles of the distribution, the median is marked with a vertical line, whiskers
span 1.5 times the inter-quartile range, and outliers are indicated with a plus sign. The numbers in
parentheses indicate the number of cycles of execution (i.e., cyclesmax).

Next, we have used two well-known non-parametric statistical tests [22] to com-
pare ranks, namely Friedman test [12] and Iman-Davenport test [16]. The results are
shown in Table 2. As seen in the first row, the statistic values obtained are clearly
higher than the critical values, and therefore the null hypothesis, namely that all al-
gorithms are equivalent, can be rejected. Since there are algorithms with markedly
poor performance, we have repeated the test with the top 5 algorithms (i.e., the
MaHC, all RINGSDI and TS), whose performance places them in a separate cluster
from the remaining algorithms. Again, it can be seen that the statistical test is passed,
thus indicating significant differences in their ranks at the standard α = 0.05 level.

Subsequently, we have focused in these top 5 algorithms, and performed Holm’s
test [15] in order to determine whether there exists significant differences with re-
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Table 2 Results of Friedman and Iman-Davenport tests.

Friedman value critical χ2 value Iman-Davenport value critical FF value
all 269.80 33.92 49.23 1.57

top 5 19.04 9.49 6.35 2.53

spect to a control algorithm (in this case MaHC, the algorithm with the best mean
rank). The results are shown in Table 3. Notice that the test is passed for all al-
gorithms with respect to MaHC and that there is no statistical difference between
MaHC, RINGSDI(4) and RINGSDI(3).

Table 3 Results of Holm’s test using MaHC as control algorithm.

i algorithm z-statistic p-value α/(k− i)
1 RingSDI(4) 1.286 0.09926 0.013
2 RingSDI(3) 1.957 0.02520 0.016
3 RingSDI(5) 2.012 0.02209 0.025
4 TSP 4.249 < 0.00001 0.050

Table 4 Computational results. Best results (in terms of the best solution average) are underlined
and in boldface.

4ζ 10
10 6ζ15

10 4ζ9
10 6ζ 12

15 6ζ20
15 8ζ 15

20 8ζ 16
20 10ζ20

20 24ζ 30
20 24ζ 36

20 30ζ40
20 10ζ 25

30 15ζ 40
30 15ζ 30

40 20ζ60
40 25ζ 40

50
TSP mean 8.8 13.68 8.08 16.46 23.02 23.62 27.92 30.72 25.04 45.9 42.12 67.72 101.72 101.9 213.74 153.58

σ 1.61 2.1 0.74 1.93 2.0 3.63 2.13 2.5 3.02 8.98 4.34 1.52 13.07 8.14 8.38 12.89
best 7 11 7 13 20 18 23 26 21 34 33 65 82 89 199 130

MaHC mean 8.68 13.7 7.86 15.5 22.38 22.36 26.66 29.92 24.9 46.54 41.04 64.92 100.86 97.96 211.88 153.36
σ 1.62 2.09 0.721 1.982 1.938 3.576 1.986 2.357 3.28 8.81 4.54 1.573 12.9 7.887 7.812 13.52

best 7 11 7 12 20 17 23 26 20 36 31 62 81 86 201 132
RingSDI (3) mean 8.72 13.74 7.9 16.14 23.0 23.34 27.6 30.72 24.76 45.26 41.3 66.98 102.66 99.52 210.68 148.14

σ 1.64 2.04 0.68 1.85 2.21 3.36 2.21 2.31 3.17 8.46 4.43 2.64 13.03 7.71 7.79 11.75
best 7 11 7 13 20 19 23 26 20 35 32 62 82 87 197 129

RingSDI (4) mean 8.72 13.66 7.9 16.16 22.96 23.06 27.44 30.72 24.46 45.84 41.8 67.32 102.28 99.16 211.08 146.34
σ 1.65 2.12 0.73 1.9 2.14 3.34 2.05 2.41 3.51 7.91 4.79 2.69 12.37 7.64 9.34 12.28

best 7 11 7 13 20 17 23 25 19 36 32 61 79 88 198 126
RingSDI (5) mean 8.7 13.74 7.92 16.1 23.1 23.2 27.28 30.74 24.46 45.64 41.58 68.1 102.2 100.24 210.44 146.98

σ 1.62 2.07 0.69 2.02 2.08 3.42 2.3 2.38 3.13 8.55 4.5 2.76 12.78 8.07 9.17 12.12
best 7 11 7 12 20 18 22 25 20 33 32 63 81 87 195 124

Also, Table 4 shows the obtained results, grouped by problem instances, for these
top 5 algorithms. One can observe that all RINGSDI algorithms perform better than
MaHC in several instances, particularly in the largest one (i.e., last column), in
which Wilcoxon’s ranksum test indicates that RingSDI4 significantly outperforms
(at the standard 0.05 level) the MA in all five datasets generated for this parameter
combination. This raises interest prospects for the scalability of these models, thus
hinting the need for experiments at a larger scale to confirm this.

4 All tables are available in http://www.unet.edu.ve/∼jedgar/ToSP/Wilcoxon.htm
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5 Conclusions

Collaborative optimization models constitute a very appropriate framework for in-
tegrating different search techniques. Each of these techniques has a different view
of the search landscape, and by combining the corresponding different exploration
patterns, the search can benefit from an increased capability for escaping from lo-
cal optima. Of course, this capability is more useful whenever the problem tackled
poses a challenging optimization task to the individual search algorithms. Other-
wise, computational power is diversified in unproductive explorations.

We have tackled here the tool switching problem and have proposed four coop-
erative methods to attack it. An empirical evaluation was executed in order to prove
the validity and performance of the proposed techniques. One topology based on
heterogenous intervening techniques (RINGSDI) provides better computational re-
sults than well-known algorithms for solving the ToSP, i.e., beam search and tabu
search, and does not perform worse than a memetic algorithm. Indeed, some re-
sults with larger instances lead us to hypothesize that this model might have better
scalability properties than the MA. This issue will be analyzed in future work.

We believe that there is room for improvement. For instance, it would be interest-
ing to test other alternatives to LS. More precisely, the MA is a killer approach for
the ToSP, so it may be interesting to include this technique in the cooperative model.
In this case, it would be necessary to re-balance the intensification/exploration ratio,
since MAs perform a much more intensified search than other techniques, and thus
may require a more explorative counterweight. This line of research is in progress.
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