
A Memetic Cooperative Optimization Schema
and its Application to the Tool Switching

Problem

Jhon Edgar Amaya1, Carlos Cotta2, and Antonio J. Fernández Leiva2

1 Universidad Nacional Experimental del Táchira (UNET)
Laboratorio de Computación de Alto Rendimiento (LCAR), San Cristóbal, Venezuela

jedgar@unet.edu.ve
2 Dept. Lenguajes y Ciencias de la Computación, ETSI Informática,
University of Málaga, Campus de Teatinos, 29071 - Málaga, Spain.

{ccottap,afdez}@lcc.uma.es

Abstract. This paper describes a generic (meta-)cooperative optimiza-
tion schema in which several agents endowed with an optimization tech-
nique (whose nature is not initially restricted) cooperate to solve an
optimization problem. These agents can use a wide set of optimization
techniques, including local search, population-based methods, and hy-
brids thereof, hence featuring multilevel hybridization. This optimiza-
tion approach is here deployed on the Tool Switching Problem (ToSP),
a hard combinatorial optimization problem in the area of flexible manu-
facturing. We have conducted an ample experimental analysis involving
a comparison of a wide number of algorithms or a large number of in-
stances. This analysis indicates that some meta-cooperative instances
perform significantly better than the rest of the algorithms, including a
memetic algorithm that was the previously incumbent for this problem.

1 Introduction and related work

Collaborative optimization models constitute a very appropriate framework for
integrating different search techniques. Each of these techniques has a differ-
ent view of the search landscape, and by combining the corresponding different
exploration patterns, the search can benefit from an increased capability for es-
caping from local optima. Of course, this capability is more useful whenever the
problem tackled poses a challenging optimization task to the individual search
algorithms. Otherwise, computational power is diversified in unproductive ex-
plorations.

Different schemes have been proposed for cooperating metaheuristics. For
example, Toulouse et al. [1] considered using multiple instances of tabu search
(TS) running in parallel, eventually exchanging some of the attributes stored
in tabu memory. Crainic and Gendreau [2] presented a cooperative parallel TS
method that was shown to outperform independent search strategies. Crainic
et al. [3] also proposed a method for asynchronous cooperative multi-search us-
ing variable neighborhood search (VNS). Pelta et al. [4] presented a cooperative



multi-thread search-based optimization strategy, in which several solvers were
controlled by a higher-level coordination algorithm which collected information
on their search performance and altered the behavior of the solvers accordingly.
Milano and Roli [5] developed a multi-agent system called MAGMA (MultiA-
Gent Metaheuristic Architecture) in which metaheuristics are used at different
levels (creating solutions, improving them, defining the search strategy, and co-
ordinating lower-level agents). Recently, Amaya et al. [6] have proposed agent
topologies equipped with local search (LS) methods based on simple structures
of communication similar to those used in the computer networks. More specif-
ically, [6] proposed four different cooperative models (i.e., Ring,Broadcast,
Random, and a so-called Ring SDI model) to handle the uniform tool switching
problem (ToSP).

In this paper we go a step beyond and have generalized the first model (i.e.,
Ring) described in [6]; the result is a generic schema whose instances produce
meta-cooperative architectures in which one or more agents can also be loaded
with a cooperative optimization technique. This schema is not specific for a
particular optimization problem and thus can be applied to many combinato-
rial optimization problems. To demonstrate both the adequacy of the schema
and the goodness of its instances (as meta-cooperative algorithms) we have also
conducted an empirical evaluation on the ToSP.

2 Ring-Based (Meta-)Cooperative Model

Let us denote N+
n = {1, · · · , n}. The optimization architecture proposed is shown

in Algorithm 1. As it can be seen, it features an architecture R with n agents
connected in form of a ring; each agent ai (0 6 i 6 n − 1) in R consists of
an optimization method (e.g., any metaheuristic, such as a local searcher, a
population-based method, or even a hybrid thereof). Observe that there exists a
circular list of agents in which each node only sends (resp. receives) information
to its successor (resp. from its predecessor). The agents in the architecture engage
in periods of isolated exploration followed by synchronous communication. We
denote as cyclesmax the maximum number of such exploration/communication
cycles in a certain cooperative model. Also, let Si be the set of candidates solu-
tions managed by agent ai; note that the nature of Si is variable (e.g., if ai is
a population-based method this means that Si is its corresponding population
whereas if ai is a loaded with a trajectory-based method, then Si just contains
one candidate).

Firstly all the agents are initialized with a set of initial candidate solutions
(lines 1-3, function GenerateCandidateSet). The size of this set depends on
the technique endowed in the agent (e.g., it might be a population or just one
single candidate). Then, the algorithm is run for a maximum number of iterations
cycles (lines 5-16) where, in each cycle, an optimization phase of the specific
candidate set kept in each agent is done (lines 6-9) and the best solution obtained
in each agent (line 8, functionBestCandidateIn) is sent to its successor agent if
this solution is better than the best one obtained in the successor agent (lines 10-



Algorithm 1: Ring-based (Meta-)Cooperative Modeln

1 for i ∈ N+
n do

2 Si ← GenerateCandidateSet();
3 end for
4 cycles← 1;
5 while cycles 6 cyclesmax do
6 for i ∈ N+

n do
7 Si ← ai(Si);
8 bi ← BestCandidateIn(Si);

9 end for
10 for (i, j) ∈ {(i, i(n) + 1) | i ∈ N+

n and i(n) denotes i modulo n} do
11 if fitness(bi) < fitness(bj) then
12 Replace worst candidate in Sj with bi;
13 end if

14 end for
15 cycles← cycles+ 1

16 end while
17 return max−1{fitness(BestCandidateIn(Si)) | i ∈ N+

n };

14). Note that an agent only accepts an incoming solution if it is better than the
best one kept in its candidate set (lines 11-13) . Observe also that, for a maximum
number of evaluations Emax and for a specific number of cycles cyclesmax, each
cycle in our cooperative algorithms spends Ecycle = Emax/cyclesmax evaluations,
and the specific optimization method of any agent takes Ecycle/n evaluations at
most.

Multiple variants of this cooperative schema can be devised from the general
schema shown above as no specific mention is done about the type of the agents
involved in the architecture.

3 Experimental Results

To test the feasibility of the proposed architecture we consider the uniform
tool switching problem (ToSP) as a benchmark. This section is thus devoted
to present the problem and provide a formal description of it. Then, an ex-
perimental analysis that includes a wide number of optimization techniques is
shown.

3.1 The ToSP

The uniform tool switching problem (ToSP) is a hard combinatorial optimization
problem that can be found in flexible manufacturing systems (FMSs) and diverse
areas such as electronics manufacturing, metalworking industry, computer mem-
ory management, and aeronautics, among others [7–10]. This problem occurs in
a single machine that has several slots into which different tools can be loaded.



Each slot just admits one tool, and each job executed on that machine requires
a particular set of tools to be completed. Jobs are sequentially executed, and
therefore each time a job is to be processed, the corresponding tools must be
loaded in the machine magazine. The ToSP consists of finding an appropriate
job sequence in which jobs will be executed, and an associated sequence of tool
loading/unloading operations that minimizes the number of tool switches in the
magazine. Therefore management tool directly affects the efficiency of FMS.
The ToSP has been tackled through different methods such as exact methods
[8], LS methods, population-based optimization methods [11], and even coop-
erative models [6]. [12] and [13] proved formally that the ToSP is NP-hard for
C > 2 and thus exact methods are inherently limited.

Following the previous description of the uniform ToSP, there are two major
elements in the problem: a machine M and a collection of jobs J = {J1, · · · , Jn}
to be processed. Regarding the latter, the relevant information for the optimiza-
tion process is the tool requirements for each job. We assume that there is a set of
tools T = {τ1, · · · , τm}, and that each job Ji requires a certain subset T (Ji) ⊆ T
of tools to be processed. As to the machine, we will just consider one piece of
information: the capacity C of the magazine (i.e., the number of available slots).
Given the previous elements, we can formalize the ToSP as follows: let a ToSP
instance be represented by a pair, I = ⟨C,A⟩ where C denotes the magazine
capacity, and A is a m× n binary matrix that defines the tool requirements to
execute each job, i.e., Aij = 1 if, and only if, tool τi is required to execute job
Jj . We assume that C < m; otherwise the problem is trivial. The solution to
such an instance is a sequence ⟨Ji1 , · · · , Jin⟩ (where i1, . . . , in is a permutation
of numbers 1, . . . , n) determining the order in which the jobs are executed, and
a sequence T1, · · · , Tn of tool configurations (Ti ⊂ T ) determining which tools
are loaded in the magazine at a certain time. Note that for this sequence of tool
configurations to be feasible, it must hold that T (Jij

) ⊆ Tj .

We will index jobs (resp. tools) with integers from N+
n (resp. N+

m). An ILP
formulation for the ToSP is shown below, using two sets of zero-one decision
variables – xjk (j ∈ N+

n , k ∈ N+
n ), and yik (i ∈ N+

m, k ∈ N+
n ) – that respectively

indicate whether a job j is executed at time k or not, or whether a tool i is in
the magazine at time k or not. Notice that since each job makes exclusive use of
the machine, time-step k can be assimilated to the time at which the kth job is
executed. Processing each job requires a particular collection of tools loaded in
the magazine. It is assumed that no job requires a number of tools higher than
the magazine capacity, i.e.,

∑m
i=1 Aij 6 C for all j ∈ N+

n . Tool requirements are
reflected in Eq. (5). Following [8], we assume the initial condition yi0 = 1 for all
i ∈ N+

m. This initial condition amounts to the fact that the initial loading of the
magazine is not considered as part of the cost of the solution (in fact, no actual
switching is required for this initial load). The objective function F (·) counts
the number of switches that have to be done for a particular job sequence:

min F (y) =
n∑

k=1

m∑
i=1

yik(1− yi,k−1) (1)



∀j ∈ N+
n :

n∑
k=1

xjk = 1 (2)

∀k ∈ N+
n :

n∑
j=1

xjk = 1 (3)

∀k ∈ N+
n :

m∑
i=1

yik 6 C (4)

∀j, k ∈ N+
n ∀i ∈ N+

m : Aijxjk 6 yik (5)

∀j, k ∈ N+
n ∀i ∈ N+

m : xjk, yij ∈ {0, 1} (6)

This general definition shown above corresponds to the uniform ToSP in
which each tool fits in just one slot. The uniform ToSP considered the cost of
switching a tool constant (the same for all tools) and computing the cost of a
job sequence by means of a greedy procedure termed Keep Tool Needed Soonest
(KTNS) [8, 9]. The importance of this policy is that given a job sequence KTNS
obtains its optimal number of tool switches in polynomial time. Therefore, we can
concentrate on determining the sequence of jobs, and use KTNS as a subordinate
procedure to decide where (i.e., in which slot) to place each tool.

3.2 Computational results

As far as we know, no standard data instance exists for this problem (at least
publicly available) so that we have selected a wide set of problem instances
that were attacked in [8, 14–16]; more specifically, 16 instances were chosen with
values for the number of jobs, number of tools, and machine capacity ranging
in [10,50], [9,60] and [4,25] respectively. Table 1 shows the different problem
instances chosen for the experimental evaluation where a specific instance with
n jobs, m tools and machine capacity C is labeled as Cζmn .

Table 1. Problem Instances considered in the experimental evaluation. The minimum
and maximum of tools required for all the jobs is indicated in second and third rows
respectively. Fourth row shows the work from which the problem instance was obtained.

4ζ10
10 4ζ9

10 6ζ15
10 6ζ12

15 6ζ20
15 8ζ15

20 8ζ16
20 10ζ20

20 24ζ30
20 24ζ36

20 30ζ40
20 10ζ25

30 15ζ40
30 15ζ30

40 20ζ60
40 25ζ40

50

Min. 2 2 3 3 3 3 3 4 9 9 11 4 6 6 7 9
Max. 4 4 6 6 6 8 8 10 24 24 30 10 15 15 20 20

Source [14] [8] [8] [8] [8] [8] [8]
[15] [16] [16] [16] [14] [15] [16] [16] [16] [16] [16] [15] [14] [15] [14] [15]

Five different datasets3 (i.e., incident matrixes or relations among tools and
jobs) were generated randomly per instance. Each dataset was generated with
the restriction, already imposed in previous works such as [14], that no job is

3 All datasets are available at http://www.unet.edu.ve/∼jedgar/ToSP/ToSP.htm



covered by any other job in the sense that ∀i, j ∈ N+
n , i ̸= j, T (Ji) ̸⊆ T (Jj). The

reason to enforce this constraint is to avoid the simplification of the problem by
preprocessing techniques as done for instance in [8] and [16].

The experiments have been performed using a wide set of different algo-
rithms. In particular we have considered deterministic methods, local search (LS)
techniques, cooperative methods, and a number of meta-cooperative algorithms
devised from the schema shown in Algorithm 1. From these, a number of variants
have also been considered. For instance, as deterministic method we have con-
sidered the beam search (BS) algorithm presented in [16]; this algorithms admits
a parameter β (termed beam-widht) for which we have considered five different
values β ∈ N+

5 . As to LS methods, we have considered two of them: (1) The tabu
search versions (TSP and TSF) specialized for the ToSP and described in [6];
here *P and *F is used to indicate the algorithmic variant in which the neighbor-
hood is partially or fully explored respectively (the interested reader is referred
to [6] for more details), and (2) the steepest-ascent Hill Climbing (HC) method
presented in [11]; from this we have also devised two versions HCP and HCF
following the same principles of partial/full exploration mentioned previously.

As cooperative techniques we have considered the memetic algorithm (MA)
presented in [11] (denoted as MAHCP because it is a combination of a genetic
algorithm (GA) and the method HCP mentioned previously). In [6] we shown
that this MA was a killer approach for the ToSP (beating to a number of coop-
eratives models in which all agents where loaded with LS techniques). We have
also included in the comparison a new MA denoted as MATSP because it is a
combination of a GA and the TSP method mentioned previously (the param-
eters were the same as those indicated in [11] for the MAHCP). In these two
MAs the LS techniques were always applied to each offspring generated after the
mutation step. Other parameters are: popsize = 30, pX = 1.0, and pM = 1/n
where n is the number of jobs, with binary tournament selection; alternating
position crossover (APX) is used [17], and mutation is done by applying the
random block swap as operator (see [11] for more details).

Regarding the meta-cooperative model, we have devised 10 different instances
from the schema shown in Algorithm 1 where n = 3 and cyclesmax ∈ {4, 5};
GenerateCandidateSet represents a random initialization, and fitness is
defined as the KTNS method described in Section 3.1. In all the instances, at
least one agent has been loaded with a cooperative optimization technique, in
particular with one of the two MAs mentioned above (i.e., MAHCP or MATSP).
In the rest of the paper we have used the notation U(dd,ee,ff,xx ) to represent an
instance of three agents loaded with techniques dd, ee, ff and where xx is the
number of cycles considered. All algorithms were run 10 times (per instance and
dataset) and a maximum of Emax = φn(m − C) evaluations, cf. [6]. Regarding
the BS algorithm, because of its deterministic nature, just one execution per
dataset (and per value of beam width) was run and the algorithm was allowed
to be executed until exhaustion (i.e., until completing the search).

Due to space limitations we will not present all the obtained results for each
of the instances and for all the algorithms involved in the comparison, and will



use a rank-based approach in order to analyze the significance of the results.
To do so, we have computed the rank rij of each algorithm j on each instance
i (rank 1 for the best, and rank k for the worst, where k = 21 is the number
of algorithms; in case of ties, an average rank is awarded). The distribution of
these ranks is shown in Fig. 1.

0 5 10 15 20

U(MAHCP,MATSP,MAHCP,4)

U(MAHCP,MATSP,MAHCP,5)

MAHCP

U(MATSP,MAHCP,TSP,5)

U(MAHCP,HCP,TSP,5)

U(MATSP,MAHCP,HCP,5)

U(MATSP,MAHCP,HCP,4)

U(MAHCP,HCP,TSP,4)

U(MATSP,MAHCP,TSP,4)

TSP

U(MATSP,HCP,TSP,5)

U(MATSP,HCP,TSP,4)

MATSP

TSF

HCF

BS=5

BS=4

BS=3

BS=2

HCP

BS=1

Values

Fig. 1. Rank distribution of each algorithm across all instances. As usual, each box
comprises the second and third quartiles of the distribution, the median is marked
with a vertical line, whiskers span 1.5 times the inter-quartile range, and outliers are
indicated with a plus sign.

Next, we have used two well-known non-parametric statistical tests [18] to
compare ranks, namely Friedman test [19] and Iman-Davenport test [20]. The re-
sults are shown in Table 2. As seen in the first row, the statistic values obtained
are clearly higher than the critical values, and therefore the null hypothesis,
namely that all algorithms are equivalent, can be rejected. Since there are algo-
rithms with markedly poor performance, we have repeated the test with the top 4
algorithms (i.e., U(MAHCP,MATSP,MAHCP,4), U(MAHCP,MATSP,MAHCP,5),
MAHCP,, and U(MATSP,MAHCP,TSP,5)). Again, it can be seen that the sta-



tistical test is passed, thus indicating significant differences in their ranks at the
standard α = 0.05 level.

Table 2. Results of Friedman and Iman-Davenport tests.

Friedman value critical χ2 value Iman-Davenport value critical FF value

all 277.30 31.41 97.41 1.61
top 4 41.44 7.81 94.71 2.81

Subsequently, we have focused in these top 4 algorithms, and performed
Holm’s test [21] in order to determine whether there exists significant differences
with respect to a control algorithm (in this case U(MAHCP,MATSP,MAHCP,4),
the algorithm with the best mean rank). The results are shown in Table 3.
The test indicates there exists a significant difference between the control algo-
rithm and both MAHCP and U(MATSP,MAHCP,TSP,5), but not with respect
to U(MAHCP,MATSP,MAHCP,5) (at the 0.05 level; the p-value is only slightly
above this value though).

Table 3. Results of Holm’s test using U(MAHCP,MATSP,MAHCP,4) as control algo-
rithm.

i algorithm z-statistic p-value α/(k − i)

1 U(MAHCP,MATSP,MAHCP,5) 1.369 0.0855 0.017
2 MAHCP 3.834 6.3e− 5 0.025
3 U(MATSP,MAHCP,TSP,5) 4.108 1.9e− 5 0.050

Table 4. Computational results. Best results (in terms of the best solution av-
erage) are underlined and in boldface. U1 = U(MAHCP,MATSP,MAHCP,4), U2

= U(MAHCP,MATSP,MAHCP,5), U3 = U(MATSP,MAHCP,TSP,5) and MA =
MAHCP. x, σ and b denotes the mean, standard deviation and best values respec-
tively.

4ζ1010 4ζ910 6ζ1510 6ζ1215 6ζ2015 8ζ1520 8ζ1620 10ζ2020 24ζ3020 24ζ3620 30ζ4020 10ζ2530 15ζ4030 15ζ3040 20ζ6040 25ζ4050

U1 x 8.78 7.9 13.82 15.92 22.98 22.66 26.96 30.18 24.42 44.82 40.6 64.2 99.1 95.08 205.78 143.22
σ 1.72 0.81 2.01 1.86 1.92 3.22 2.07 2.16 3.48 8.46 4.34 2.23 12.39 8.09 7.82 11.46
b 7 7 11 13 20 17 22 26 19 35 32 60 80 82 194 125

U2 x 8.86 7.98 13.76 16.12 22.84 22.9 26.78 30.26 24.34 44.92 41.04 64.3 98.64 95.46 206.0 144.72
σ 1.71 0.79 2.11 1.82 2.04 3.37 1.96 2.38 3.1 8.02 4.66 1.93 12.41 7.62 7.92 11.67
b 7 7 11 12 20 18 23 25 21 35 31 60 79 83 192 128

MA x 8.94 8.1 13.89 16.26 23.18 22.86 27.24 30.53 24.78 44.87 41.3 64.32 99.7 95.86 206.3 144.18
σ 1.62 0.75 1.99 1.79 1.96 3.41 2.22 2.49 3.29 7.55 4.41 2.4 12.82 7.52 8.81 11.94
b 7 7 11 12 20 17 22 26 20 35 31 59 80 80 193 122

U3 x 8.86 7.98 13.7 16.28 22.82 23.02 27.08 30.48 24.84 45.2 41.52 65.52 100.06 97.1 207.38 145.48
σ 1.69 0.73 2.06 1.77 2.17 3.72 2.12 2.74 3.13 8.49 4.69 2.86 12.77 7.73 9.89 11.72
b 7 7 11 13 20 17 22 25 21 33 31 59 81 85 191 127



Also, analyzing the obtained results, grouped by problem instances (see Table
4 for the results of these top 4 algorithms), one can observe that the two best
meta-cooperative models (i.e., U1 and U2) outperform MAHCP (the previous
incumbent for this problem) in all the problem instances.

4 Conclusions

In this work we have proposed a memetic cooperative architecture where several
agents endowed with MAs and other techniques cooperate in solving a certain
optimization problem. This model takes advantage of maintaining a high diver-
sity of possible solutions as well as providing a certain degree of independence in
the exploration of different regions of the search space as in island model-based
evolutionary systems (although the former is much more flexible since it does not
depend solely on population-based algorithms, and tries to exploit the synergy
between different search techniques).

The results obtained show the effectiveness of the model on the ToSP, a very
hard combinatorial problem related to flexible manufacturing. As expected, the
experimentation indicates the choice of heuristic combinations, as well as the
number of cycles used in the meta-cooperative model, are crucial parameters.
Combinations including several memetic algorithms endowed with both TS and
HC have been shown to provide the best results, with statistical significance with
respect to other models (including a single MA that was the previous incumbent
for this problem). Determining the proper values of some of the parameters (such
as the number of agents, number of cycles for communication, the probability
of acceptance of solutions, communication topology) in the ToSP and other
problems is a line of future work.

Acknowledgements.

We thank the reviewers for their valuable comments and suggestions. The second
and third authors were partially supported by Spanish MICINN project under
contract TIN2008-05941 (NEMESIS project).

References

1. Toulouse, M., Crainic, T.G., Sanso, B., Thulasiraman, K.: Self-organization in
cooperative tabu search algorithms. In: Proceedings of the IEEE International
Conference on Systems, Man, and Cybernetics. Volume 3. (11–14 Oct. 1998) 2379–
2384

2. Crainic, T.G., Gendreau, M.: Cooperative parallel tabu search for capacitated
network design. Journal of Heuristics 8(6) (2002) 601–627

3. Crainic, T.G., Gendreau, M., Hansen, P., Mladenović, N.: Cooperative parallel
variable neighborhood search for the p-median. Journal of Heuristics 10(3) (2004)
293–314



4. Pelta, D., Cruz, C., Sancho-Royo, A., Verdegay, J.: Using memory and fuzzy rules
in a co-operative multi-thread strategy for optimization. Information Sciences 176
(2006) 1849–1868

5. Milano, M., Roli, A.: Magma: a multiagent architecture for metaheuristics. IEEE
Transactions on Systems, Man, and Cybernetics, Part B 34(2) (April 2004) 925–
941

6. Amaya, J.E., Cotta, C., Fernández, A.J.: Hybrid cooperation models for the tool
switching problem. In et al., D.P., ed.: International Workshop on Nature In-
spired Cooperative Strategies for Optimization (NICSO 2010). Series on Studies
in Computational Intelligence, Granada, Spain, Springer (2010) In Press.

7. Belady, L.: A study of replacement algorithms for virtual storage computers. IBM
Systems Journal 5 (1966) 78–101

8. Bard, J.F.: A heuristic for minimizing the number of tool switches on a flexible
machine. IIE Transactions 20(4) (1988) 382–391

9. Tang, C., Denardo, E.: Models arising from a flexible manufacturing machine, part
I: minimization of the number of tool switches. Operations Research 36(5) (1988)
767–777

10. Shirazi, R., Frizelle, G.: Minimizing the number of tool switches on a flexible
machine: an empirical study. International Journal of Production Research 39(15)
(2001) 3547–3560

11. Amaya, J., Cotta, C., Fernández, A.: A memetic algorithm for the tool switching
problem. In Blesa, M., et al., eds.: Hybrid Metaheuristics 2008. Volume 5296 of
Lecture Notes in Computer Science., Málaga, Spain, Springer-Verlag (2008) 190–
202

12. Oerlemans, A.: Production planning for flexible manufacturing systems. Ph.d.
dissertation, University of Limburg, Maastricht, Limburg, Netherlands (October
1992)

13. Crama, Y., Kolen, A., Oerlemans, A., Spieksma, F.: Minimizing the number of tool
switches on a flexible machine. International Journal of Flexible Manufacturing
Systems 6 (1994) 33–54

14. Hertz, A., Laporte, G., Mittaz, M., Stecke, K.: Heuristics for minimizing tool
switches when scheduling part types on a flexible machine. IIE Transactions 30
(1998) 689–694

15. Al-Fawzan, M., Al-Sultan, K.: A tabu search based algorithm for minimizing the
number of tool switches on a flexible machine. Computers & Industrial Engineering
44(1) (2003) 35–47

16. Zhou, B.H., Xi, L.F., Cao, Y.S.: A beam-search-based algorithm for the tool
switching problem on a flexible machine. The International Journal of Advanced
Manufacturing Technology 25(9-10) (May 2005) 876–882

17. Larrañaga, P., Kuijpers, C., Murga, R., Inza, I., Dizdarevic, S.: Genetic algorithms
for the travelling salesman problem: A review of representations and operators.
Articial Intelligence Review 13 (1999) 129–170

18. Lehmann, E., D’Abrera, H.: Nonparametrics: statistical methods based on ranks.
Prentice-Hall, Englewood Cliffs, NJ (1998)

19. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in
the analysis of variance. Journal of the American Statistical Association 32(200)
(1937) 675–701

20. Iman, R., Davenport, J.: Approximations of the critical region of the Friedman
statistic. Communications in Statistics 9 (1980) 571–595

21. Holm, S.: A simple sequentially rejective multiple test procedure. Scandinavian
Journal of Statistics 6 (1979) 6570


