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Abstract This work deals with memetic-computing agent-models based on
the cooperative integration of search agents endowed with (possibly differ-
ent) optimization strategies, in particular memetic algorithms. As a proof-of-
concept of the model, we deploy it on the tool switching problem (ToSP),
a hard combinatorial optimization problem that arises in the area of flexible
manufacturing. The ToSP has been tackled by different algorithmic meth-
ods ranging from exact to heuristic methods (including local search meta-
heuristics, population-based techniques and hybrids thereof, i.e., memetic al-
gorithms). Here we consider an ample number of instances of this coopera-
tive memetic model, whose agents are adapted to cope with this problem.
A detailed experimental analysis shows that the meta-models promoting the
cooperation among memetic algorithms provide the best overall results com-
pared with their constituent parts (i.e., memetic algorithms and local search
approaches). In addition, a parameter sensitivity analysis of the meta-models
is developed in order to understand the interplay among the elements of the
proposed topologies.
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1 Introduction

It is well known that exact methods are inherently limited by the complexity
of solving to optimality many hard optimization problems. The use of alter-
native techniques that might eventually overcome this limitation has been
thus explored. In particular, the utilization of meta-heuristic techniques has
been shown to be specially adequate to attack large instances of such com-
plex optimization problems; their success lies in the fact that they can provide
high-quality (near-optimal) solutions in reasonable time, at the expense of not
proving their optimality. Of course, in order to achieve this practical effec-
tiveness, meta-heuristics are required to exploit problem-specific knowledge
[1–3]. This has been one of the main lessons learned in the last years and has
paved the way for designing optimization methods intrinsically concerned with
exploiting problem knowledge in order to adjust to the optimization task at
hand. Memetic algorithms [4–7] are a prime example of such methods.

Memetic algorithms (MAs) are optimization techniques that blend to-
gether ideas from different meta-heuristics, most notably from local-search
and population-based techniques. They thus provide a natural framework
where diverse search techniques can be integrated. Each of the underlying
techniques in a such a hybrid model can provide a different perspective of
both the optimization process and the search space, and can actually make
a different (complementary) contribution to the search process in terms of
intensification/diversification. Thus, by combining the corresponding differ-
ent exploration patterns, the search can benefit from an increased capability
both for finding high-quality solutions and for escaping from local optima. Of
course, these capabilities are more useful whenever the problem tackled poses
a challenging optimization task to the individual search algorithms. Otherwise,
computational power is diversified in unproductive explorations.

From a wider perspective, these collaborative schemes can be considered as
“memetic” regardless of whether they adjust or not to the stereotypical model
of an evolutionary algorithm endowed with a local search procedure. Certainly,
regarding a MA as a collection of individual search agents engaged in periods of
isolated search punctuated by cooperation/competition stages is the primeval
definition of this paradigm [6,8]. This original definition –also regarded as the
wide interpretation of MAs– also fits within the current notion of memetic
computing [9] as a paradigm that uses memes as units of information encoded
in computational representations for the purpose of problem-solving, often
incarnated in a co-evolving system of intelligent agents. Therein, a meme is
interpreted as a lifetime learning procedure capable of improving individual
solutions – see [10–15]. Again, a wider interpretation is also possible in this
context, more akin to the definition of meme as a unit of cultural information
[16]. Such wider interpretation would also include higher-level information
units that are neither bound to specific genes nor to the lifetime conservation
of inherited genetic information. Thus, memes can be regarded as formae [17]
subject to lifetime learning and improvement (a process that can be controlled
by the meme itself), thus capturing the plasticity of non-genetic information
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and its suitability for Lamarckian transmission. Incidentally, Radcliffe and
Surry’s work [18] on MAs contributed to settle the classical definition of MAs
sketched above.

In retrospect, models adhering to the aforementioned philosophy can be
found in the literature of the last two decades. Thus, Toulouse et al. [19] con-
sidered using multiple instances of tabu search running in parallel, eventually
exchanging some of the attributes stored in tabu memory. Later on, Toulouse et
al. [20] proposed a hierarchical cooperative model based on problem decompo-
sition. Crainic and Gendreau [21] presented a cooperative parallel tabu search
method for capacitated network design problem that was shown to outper-
form independent search strategies. Crainic et al. [22] also proposed a method
for asynchronous cooperative multi-search using variable neighborhood search
with application to the p-median problem. Le Bouthillier and Crainic [23]
described a cooperative parallel meta-heuristic for the vehicle routing prob-
lem with time windows. Pelta et al. [24] presented a cooperative multi-thread
search-based optimization strategy, in which several solvers were controlled
by a higher-level coordination algorithm which collected information on their
search performance and altered the behavior of the solvers accordingly (see
also [25]). More recently, Lu et al. [26] presented a hybrid cooperative version
of quantum particle swam optimization aimed to improving the diversity of the
swarms. Multi-agent systems are also well suited in order to implement this
kind of cooperative models. This way, Milano and Roli [27] developed a multi-
agent system called MAGMA (multiagent meta-heuristic architecture) allow-
ing the use of meta-heuristics at different levels (creating solutions, improving
them, defining the search strategy, and coordinating lower-level agents). Malek
[28] introduced a multi-agent system like MAGMA which considered partic-
ular meta-heuristics implemented by individual agents and the exchange of
solutions between these. Also, Sbihi [29] proposed a cooperative local search-
based algorithm Multiple-Scenario Max-Min Knapsack Problem. From a more
general point of view, an analogy can also be drawn between these models
and hyperheuristics [30,31], namely a high-level heuristic that controls the ap-
plication of a set of low-level heuristics to solutions, using strategies ranging
from pure random to performance-based rules. It is also worth mentioning the
work on parallel MAs, such as the asynchronous blackboard model of Bradwell
and Brown [32] –where a genetic algorithm and tabu search cooperate using
a shared blackboard as a means for communication (note the connection with
A-Teams as well [33])– or island-based (and in general spatially-structured)
MAs [34–36]. Particularly in [34] it was noted that each individual in the pop-
ulation could use a different local improvement method, very much in line with
heterogenous memetic models.

This paper deals with the uniform tool switching problem (ToSP), a hard
combinatorial optimization problem that appears in Flexible Manufacturing
Systems (FMSs), an alternative to rigid production systems that has the ca-
pability to be adjusted for generating different products and/or for changing
the order of product generation. Different examples of the problem can be
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found in diverse areas such as electronics manufacturing, metalworking indus-
try, computer memory management, and aeronautics, among others [37–40].

This problem represents a challenging task that has already been attacked
by many different optimization methods including exact methods ranging from
integer linear programming (ILP) techniques to heuristic constructive algo-
rithms. References to the problem can be found as early as in the 1960s [37];
since then, it has been tackled via many different techniques [38,39]. Tang
et al. [39] proposed an ILP formulation of the problem, and [38] formulated
the ToSP as a non-linear integer program with a dual-based relaxation heuris-
tic. More recently, [41] proposed two exact algorithms: a branch-and-bound
approach and a linear programming-based branch-and-cut algorithm.

Despite the moderate success of exact methods, it must be noted that they
are inherently limited, since [42] and [43] proved formally that the ToSP is NP-
hard in general. This limitation was already highlighted by Laporte et al. [41]
who reported that their algorithm was capable of dealing with instances with
9 jobs, but provided very low success ratios for instances with more than 10
jobs. Some ad hoc heuristics have been devised in response to this complexity
barrier (e.g., [40,44,45]). Meta-heuristics have been also used to solve the ToSP
[46,47]. For example, a version based in tabu search (TS) [47] provided good-
quality results; Al-Fawzan and Al-Sultan defined three different versions of
TS that arose from the inclusion of different algorithmic mechanisms such as
long-term memory and oscillation strategies. A different, and very interesting,
approach has been described by [48], who proposed a beam search algorithm.
Beam search (BS) is a derivate of branch-and-bound that uses a breadth-first
traversal of the search tree, and incorporates a heuristic choice to keep at
each level only the best (according to some quality measure) β nodes (β is the
so-called beam width).

In [49] we proposed three methods to tackle the ToSP: a simple local search
(LS) scheme based on hill climbing, a genetic algorithm and a MA based on the
hybridization of the two latter methods. This MA represented a killer approach
for the ToSP. More recently, in [50] we proceeded along the memetic comput-
ing avenue by considering composite models in which different local search
techniques cooperate for solving the ToSP. A number of different topologies
for agent communication were considered. These cooperatives models showed
a good performance, better that their constituent parts working alone and sta-
tistically comparable to the state-of-the-art approach (i.e., the MA presented
in [49]). To the best of our knowledge, this was the first attempt of such a
memetic scheme to tackle the ToSP.

Now, this paper continues in the search of more complex memetic com-
puting models, and here we propose a multi-level memetic approach in which
collaborating agents are themselves memetic (hence the model can be consid-
ered in some sense meta-cooperative, as the individual agents are cooperative
techniques themselves) and analyze the effect of using different interconnection
topologies. The goal of this paper is thus to synergistically combine the co-
operative model presented in [50] with the powerful and flexibility of classical
MAs, exploiting the capability of composite schemes for identifying probably
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good regions of the search space and the potential of MAs for exploring and
exploiting these.

We consider here different topologies for the communication of our memetic
agents; to analyze the goodness of our cooperative memetic model we consider
the ToSP and test the performance of a wide number of cooperative MAs
(i.e., also called indistinctly meta-cooperative algorithms) that were naturally
generated as instances of the proposed model. Moreover, the resulting collab-
orative algorithms depend on several parameters that can be tuned to control
the memetic model, and hence we have conducted a sensitivity analysis of the
parameters, in the solving of the ToSP, that can shed some light on the inner
working of the meta-models.

The remainder of the paper is organized as follows: Sect. 2 provides an
overview of the ToSP; then in Sect. 3 we detail the architecture of the memetic
model considered, as well as the constituent algorithms involved in it; subse-
quently, Sect. 4 describes the experiments performed and their results, includ-
ing the sensitivity analysis mentioned before; Sect. 5 closes the paper with
conclusions and some prospects for future developments.

2 The Tool Switching Problem

Before proceeding, let us firstly describe more in depth the ToSP. As already
mentioned the uniform tool switching problem (ToSP) is a hard combinato-
rial optimization problem that appears in Flexible Manufacturing Systems
(FMSs). This problem arises in a single machine that has several slots into
which different tools can be loaded. Each slot just admits one tool, and each
job executed on that machine requires a particular set of tools to be com-
pleted. Jobs are sequentially executed, and therefore each time a job is to be
processed, the corresponding tools must be loaded in the machine magazine.
The ToSP consists of finding an appropriate job sequence in which jobs will
be executed, and an associated sequence of tool loading/unloading operations
that minimizes the number of tool switches in the magazine.

There are two major elements in the problem: a machineM and a collection
of jobs J = {J1, · · · , Jn} to be processed. Regarding the latter, the relevant
information for the optimization process is the tool requirements for each job.
We assume that there is a set of tools T = {τ1, · · · , τm}, and that each job
Ji requires a certain subset T (Ji) ⊆ T of tools to be processed. As to the
machine, we will just consider one piece of information: the capacity C of the
magazine (i.e., the number of available slots). Given the previous elements, we
can formalize the ToSP as follows: let a ToSP instance be represented by a pair,
I = ⟨C,A⟩ where C denotes the magazine capacity, and A is a m × n binary
matrix that defines the tool requirements to execute each job, i.e., Aij = 1 if,
and only if, tool τi is required to execute job Jj .

We assume that C < m; otherwise the problem is trivial. The solution to
such an instance is a sequence ⟨Ji1 , · · · , Jin⟩ (where i1, . . . , in is a permutation
of numbers 1, . . . , n) determining the order in which the jobs are executed, and
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a sequence T1, · · · , Tn of tool configurations (Ti ⊂ T ) determining which tools
are loaded in the magazine at a certain time. Note that for this sequence of
tool configurations to be feasible, it must hold that T (Jij

) ⊆ Tj .
Let N+

h = {1, · · · , h} henceforth. We will index jobs and tools with integers
from N+

n and N+
m respectively. An ILP formulation for the ToSP is shown

below, using two sets of zero-one decision variables – xjk (j ∈ N+
n , k ∈ N+

n ),
and yik (i ∈ N+

m, k ∈ N+
n ) – that respectively indicate whether a job j is

executed at time k or not, or whether a tool τi is in the magazine at time k or
not. Notice that since each job makes exclusive use of the machine, time-step
k can be assimilated to the time at which the kth job is executed.

In order to process each job, a particular collection of tools is required to
be loaded in the magazine. Obviously, it is assumed that no job requires a
number of tools higher than the magazine capacity, i.e.,

∑m
i=1 Aij 6 C for all

j ∈ N+
n . Tool requirements are reflected in Eq. (5). Following [38], we assume

the initial condition yi0 = 1 for all i ∈ N+
m. This initial condition amounts to

the fact that the initial loading of the magazine is not considered as part of
the cost of the solution (in fact, no actual switching is required for this initial
load). The objective function F (·) counts the number of switches that have to
be done for a particular job sequence:

min F (y) =
n∑

k=1

m∑
i=1

yik(1− yi,k−1) (1)

∀j ∈ N+
n :

n∑
k=1

xjk = 1 (2)

∀k ∈ N+
n :

n∑
j=1

xjk = 1 (3)

∀k ∈ N+
n :

m∑
i=1

yik 6 C (4)

∀j, k ∈ N+
n ∀i ∈ N+

m : Aijxjk 6 yik (5)

∀j, k ∈ N+
n ∀i ∈ N+

m : xjk, yij ∈ {0, 1} (6)

This general definition shown above corresponds to the uniform ToSP in
which each tool fits in just one slot. The ToSP can be divided into three sub-
problems [51]: the first subproblem is machine loading and consists of deter-
mining the sequence of jobs; the second subproblem is tool loading, consisting
of determining which tool to switch (if a switch is needed) before processing
a job; finally, the third subproblem is slot loading, and consists of deciding
where (i.e., in which slot) to place each tool. Since we are considering the uni-
form ToSP, the third subproblem does not apply (all slots are identical, and
the order of tools is irrelevant). Moreover, and without loss of generality, the
cost of switching a tool is considered constant (the same for all tools) in the
uniform ToSP. Under this assumption, the tool loading subproblem can also
be obviated because if the job sequence is fixed, the optimal tool switching
policy can be determined in polynomial time using a greedy procedure termed
Keep Tool Needed Soonest (KTNS) [38,39]. Therefore, we can concentrate on
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the machine loading subproblem, and use KTNS as a subordinate procedure
to solve the subsequent tool loading subproblem.

3 Model Architecture

We have considered four memetic cooperative architectures in which agents
attached to a certain spatial structure are endowed with a LS mechanism or a
MA. These architectures are defined on the basis of the particular optimization
methods used, and thus in the following we describe the local search methods
considered as well as the basic MAs that are part of the cooperative model. The
architectures also depend on their interaction topology and thus this aspect is
defined below.

3.1 Local searchers

LS meta-heuristics are based on exploring the neighborhood of a certain “cur-
rent” solution. It is thus convenient to address firstly the representation of
solutions and the structure of this neighborhood, and subsequently of the un-
derlying search space. A permutational encoding arises as the natural way to
represent solutions. Thus, a candidate solution for a specific ToSP instance
I = ⟨C,A⟩ is simply a permutation π = ⟨π1, · · · , πn⟩ ∈ Pn where πi ∈ N+

n ,
and Pn is the set of all permutations of elements in N+

n . The KTNS algo-
rithm is used to obtain the actual tool configuration of the machine for the
corresponding job sequence.

Having defined the representation, we now turn our attention to the neigh-
borhood structure. In general, we have considered the well-known swap neigh-
borhood Nswap(·), in which two permutations are neighbors if they just dif-
fer in two positions of the sequence, that is, for a permutation π ∈ Pn,
Nswap(π) = {π′ ∈ Pn | H(π, π′) = 2} where H(π, π′) = n −

∑n
i=1[πi = π′

i] is
the Hamming distance between sequences π and π′ (the number of positions in
which the sequences differ), and [·] is Iverson bracket (i.e., [P ] = 1 if P is true,
and [P ] = 0 otherwise). Given the permutational nature of sequences, this im-
plies that the contents of the two differing positions have been swapped. For
some specific applications (named when necessary), we have also considered
a specific neighborhood called block neighborhood Nblock(·). This is a gener-
alization of the swap neighborhood in which two non-overlapping blocks (i.e.,
subsequences of adjacent positions) of a randomly chosen length bl ∈ N+

n/2 are

selected at random within a permutation, and swapped.
These neighborhoods are exploited within two different LS frameworks.

The first one is steepest-ascent Hill Climbing (HC), in which given a current
solution π, its neighborhood N (π) is explored, and the best solution found is
taken as the new current solution, provided it is better than the current one
(ties are randomly broken). If no such neighboring solution exist, the search
is considered stagnated, and can be restarted from a different initial point.
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Algorithm 1: Pseudocode of MA

1 for i ∈ N+
µ do

2 pop[i]←Random-Solution();
3 Local-Improvement (pop[i]);

4 end for
5 i← 0;
6 while i < MaxEvals do
7 Rank-Population (pop); // sort population according to fitness

8 parent1 ←Select (pop);
9 if Rand[0, 1] < pX then // recombination is done

10 parent2 ← Select (pop);
11 child← Recombine (parent1, parent2);

12 else
13 child← parent1;
14 end if
15 child← Mutate (child, pM ); // pM is the mutation probability per gene

16 if Rand[0, 1] < pLS then // LS is applied

17 Local-Improvement (child); // Local Improvement

18 end if
19 pop[µ]← child; // replace worst

20 end while
21 return best solution in pop;

The second LS technique considered is a Tabu Search (TS) method along the
lines of the proposal in [47]. This TS method is based on a strategic oscillation
mechanism which switches between the two neighborhoods defined before. A
deterministic criterion based on switching the neighborhood structure after
a fixed number of iterations was reported by [47] to perform better than a
probabilistic criterion (i.e., choosing the neighborhood structure in each step,
according to a certain probability distribution). Given the nature of the two
neighborhoods considered (the block neighborhood being a huge superset of
the swap neighborhood), this TS algorithm has some resemblance with variable
neighborhood search (VNS) [52]: a VNS approach could be actually defined
on the basis of nested neighborhoods considering blocks of increasing size (the
swap neighborhood being the base case). We implement a long term memory
scheme using a frequency based memory structure with a mechanism based
in swapping to select new candidate solutions [47]. No aspiration criterion is
used in this referred algorithm.

3.2 Basic Memetic Algorithms

The simplest form of MA that we consider here consists of endowing a genetic
algorithm (GA) with a local search method. The general scheme of this MA
is shown in Figure 1.

With respect to the GA, we have considered a steady-state genetic algo-
rithm to evolve promising job sequences: a single solution is generated in each
generation, and inserted in the population replacing the worst individual. Se-
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lection is done by binary tournament. As to recombination, we have opted for
using alternating position crossover (APX) [53], an operator based on the cre-
ation the offspring by selecting alternately the next element of the first parent
and the next element of the second parent, omitting elements already present
in the offspring. Notice that this operator is not transmitting positional in-
formation [17], hence including an additional degree of diversification. Other
choices of recombination operator are possible (see [54] for a description of
numerous permutation-based recombination operators).

For the purposes of mutation we have considered the block neighborhood
(the same as in our proposals described in [49]). In all our meta-heuristics
proposals (i.e., HC, TS, GA and MA) the fitness of the candidate is obtained
by the value returned after applying the KTNS method to the candidate. The
objective is thus minimizing this value.

Different versions of this MA were analyzed by considering the two LS
techniques described previously (note that in [49] we only considered a hill
climbing method). The LS methods have been applied just after the mutation
stage. Local search is applied to any individual with a probability pLS ; in case
of application, the improvement uses up a number of EvalsLS evaluations
(or in the case of HC until it stagnates, whatever comes first). Notice that
this improvement strategy is intentionally simple. Indeed there exists ample
literature on the use of more sophisticated strategies to determine to which
individuals should be applied, or which improvement strategy or neighbor
structure to use if several are available [55,56].

3.3 Interaction Topology for the Cooperative Memetic Models

Let R be an architecture with n agents; each agent ai (0 6 i < n) in R consists
of one of the meta-heuristics described in Sections 3.1 and 3.2. These agents
engage in periods of isolated exploration followed by synchronous communica-
tion. We denote asΘ the maximum number of such exploration/communication
cycles in a certain cooperative model. Also, let Si be the pool of solution can-
didates associated to agent ai (i.e., if the agent is loaded with a LS method
then #Si = 1, and if the agent is loaded with a population based method –
e.g., a MA– then #Si > 1, where #Si represents the cardinality of Si), and let
TR ⊆ N+

n ×N+
n be the communication topology over R (i.e., if (i, j) ∈ TR then

ai can send information to agent aj). The general architecture of the model is
then described in Algorithm 2. Firstly all the agents are initialized with ran-
dom solution(s) (lines 1-3). Then, the algorithm is executed for a maximum
number of iteration cycles (lines 5-15) where, in each cycle, the search tech-
nique kept in each agent is executed to update its associated pool of solutions
(lines 6-8; note that if the agent contains an LS method this basically means
an improvement of its incumbent solution but if the agent contains a popula-
tion based method then a new pool of solutions is generated), and solutions
are fed from an agent to another according to the topology considered (lines
9-13). Note that an agent only accepts an incoming solution if it is better than
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Algorithm 2: Cooperative-Modeln

1 for i ∈ N+
n do

2 Si ← GenerateInitialPopulation();
3 end for
4 cycles← 1;
5 while cycles 6 Θ do

6 for i ∈ N+
n do

7 Si ← ai(Si); // Population update

8 end for
9 for (i, j) ∈ TR do

10 if KTNS(Best(Si)) < KTNS(Best(Sj)) then
11 Sj ← Sj ∪ {Best(Si)} \ {Worst(Sj)}; // new solution accepted

12 end if

13 end for
14 cycles← cycles+ 1;

15 end while

16 return argmin{KTNS(Best(Si)) | i ∈ N+
n };

the best solution contained in its corresponding pool of candidates. Note also
that other acceptance criteria are possible; in fact we also tested empirically
a model in which an agent accepted an incoming solution only if this was
better than the worst solution in its candidate pool but the algorithms de-
vised from this model performed worse. Observe that, for a maximum number
of evaluations Emax and for a specific number of cycles Θ, each cycle in our
cooperative algorithms spends Ecycle = Emax/Θ evaluations, and the specific
search method of any agent takes Ecycle/n evaluations at most.

Three strategies based on different interaction topologies are considered
(Figure 1 shows a graphical representation of these topologies):

– Ring: TR = {(i, i(n) + 1) | i ∈ N+
n and i(n) denotes i modulo n}. Thus,

there exists a circular list of agents in which each node only sends (resp.
receives) information to its successor (resp. from its predecessor).

– Broadcast: TR = N+
n × N+

n , i.e., a go with the winners-like topology in
which the best overall solution at each synchronization point is transmitted
to all agents. This means all agents execute intensification over the same
local region of the search space at the beginning of each cycle.

– Random:TR is composed by n pairs (i, j) that are randomly sampled from
N+

n ×N+
n . This sampling is done each time communication takes place, and

hence any two agents might eventually communicate in any step.

The topologies mentioned above can be regarded as a simple way of co-
ordinating the functioning of the different agents. It is possible to conceive
dynamic topologies which change in time in response to the evolution of the
search process, trying to adapt the whole model to the needs of the former.
In some sense, the adaptive mechanisms described in [56] for determining the
choice of memes to be applied can be cast upon this model in terms of plug-
ging/unplugging particular agents depending upon some measure of the state
of the search, e.g., genetic diversity [57], fitness diversity [58–61], etc. As an
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Fig. 1 Considered topologies in the memetic cooperative model. Agents are represented by
circles and arrows show the channel (and flow) of communication among them.

aside remark, ideas from co-evolutionary MAs [14] naturally adapt to these
spatially-structured models, allowing to devise a rich variety of pairing strate-
gies between solutions and memes.

In addition to these strategies we have considered a so-called Ring SDI
model, based on an interesting proposal described in [62] and that we also
considered in [50]. SDI stands for Search, Diversification and Intensification,
and hence the SDI architecture consists of three agents dedicated to different
purposes: the first one to local search, the second one to diversification and
the third one to intensification.

4 Computational Results

As far as we know, no standard data instance exists for this problem (at least
publicly available) so that we have selected a wide set of problem instances that
were attacked in [38,44,47,48]; more specifically, 16 instances were chosen with
values for the number of jobs, number of tools, and machine capacity ranging
in [10,50], [9,60] and [4,30] respectively. Table 1 shows the different problem
instances chosen for the experimental evaluation where a specific instance with
n jobs, m tools and machine capacity C is labeled as Cζmn .

Five different datasets1 (i.e., incident matrixes or relations among tools and
jobs) were generated randomly per instance. Each dataset was generated with
the restriction, already imposed in previous works such as [44], that no job is
covered by any other job in the sense that ∀i, j ∈ N+

n , i ̸= j, T (Ji) ̸⊆ T (Jj). The
reason to enforce this constraint is to avoid the simplification of the problem
by preprocessing techniques as done for instance in [38] and [48].

The experiments have been performed using a wide set of different algo-
rithms that were devised from the beam search (BS) presented in [48], the two

1 All datasets are available at http://www.unet.edu.ve/∼jedgar/ToSP/ToSP.htm
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Table 1 Problem Instances considered in the experimental evaluation. The minimum and
maximum of tools required for all the jobs is indicated in second and third rows respectively.
Fourth row shows the work from which the problem instance was obtained.

4ζ10
10 4ζ9

10 6ζ15
10 6ζ12

15 6ζ20
15 8ζ15

20 8ζ16
20 10ζ20

20

Min. 9 9 11 4 6 6 7 9
Max. 24 24 30 10 15 15 20 20

Source [47],[44] [38],[48] [48] [38],[48] [44] [47] [38],[48] [38],[48]

10ζ25
30 15ζ40

30 15ζ30
40 20ζ60

40 24ζ30
20 24ζ36

20 25ζ40
50 30ζ40

20

Min. 4 6 6 7 9 9 9 11
Max. 10 15 15 20 24 24 20 30

Source [47] [44] [47] [44] [38],[48] [38],[48] [47] [48]

LS methods described in Section 3.1, the MA scheme shown in Section 3.2
and the cooperative scheme shown in Section 3.3. From these a wide number
of algorithms were devised and tested. For instance, in the case of BS, five
different values β ∈ N+

5 were considered for the beam width. Regarding LS
methods, we consider the TS and HC as described previously. We take into
account also LS versions in which a partial exploration of the neighborhood
was done by obtaining a fixed-size random sample; in particular, the size of
this sample has been chosen to be αn, i.e., proportional to the number of jobs
(the value α = 4 has been used). The notation HCP and HCF (resp. TSP
and TSF) was used to indicate the HC variant (resp. TS variant) in which the
neighborhood was partially or fully explored respectively. Also, in the case of
HC, the search is restarted from a different initial point if stagnation takes
place before consuming the allotted number of evaluations. Regarding TS, the
tabu tenure is 5, and the number of iterations on each neighborhood for per-
forming strategic oscillation is 3. In both cases, this corresponds to the setting
used in [47]. The memetic approaches (MAHCP and MATSP) consist of a
combination of a GA with HCP/TSP where HCP/TSP was always applied to
each offspring generated after the mutation step (i.e., pLS = 1.0). The choice
of parameter values of the MA scheme shown in Algorithm 1 was done after an
extensive phase of experimentation with many different values. The best com-
binations of the values were finally selected; the parameters were identical to
those used in [49], i.e., µ = 30, pX = 1.0, and pM = 1/n where n is the number
of jobs. Due to the high number of possible combinations for the cooperative
model, we only display the results obtained by the algorithms that employed
LS techniques with partial neighborhood exploration since the results shown
in [50] (as well as preliminary experiments conducted on the memetic schemas
presented here) suggest these algorithms perform better that those based on
LS with a full neighborhood exploration schema.

Regarding the cooperative memetic model, we have considered a topology
with 3 agents and have tested 36 different scenarios of the cooperative model:
in our experiments we use the following notation ΘT(a1,a2,a3) for the co-
operative memetic versions where Θ ∈ {4, 5} represents the number of cycles,
T ∈ {Broadcast (Br), Random (Ra), Ring (Ri)} the topology of the model,
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and ai ∈ {MATSP, MAHCP,HCP, TSP} the optimization methods loaded in
agent i (for 1 ≤ i ≤ 3). In addition we include in our experiments the Ring
SDI model where the GA described in Section 3.2 was used for diversification,
HCP as local searcher, and the Kick Operator (KO) [62] –a first-ascent HC
on the swap neighborhood– for intensification; this model, denoted here as
ΘRi(GA,HCP,KO), was considered because in [50] it was illustrated that its
performance was comparable to that shown by the MAHCP approach as no
significant statistical difference between these two approaches was perceived;
moreover the Ring SDI model provided the best results among the coopera-
tive proposals shown in [50]. Precisely, for this reason the remaining memetic
models proposed in [50] are not illustrated here.

All algorithms were run 10 times (per instance and dataset) for a maxi-
mum of Emax = φn(m − C) evaluations2 per run (with φ > 0). Preliminary
experiments on the value of φ proved that φ = 100 is an appropriate value that
allows to keep an acceptable relation between solution quality and computa-
tional cost. Regarding the BS algorithm, because of its deterministic nature,
just one execution per dataset (and per value of beam width) was run and the
algorithm was allowed to be executed until exhaustion (i.e., until completing
the search). Tables 4-8 in the appendix show the computational results ob-
tained by the different algorithms in each of the instances considered in the
experiments.

Given the ample number of algorithms and instances considered, we have
used a rank-based approach to analyze globally the performance of each tech-
nique. To do so, we have computed the rank rij of each algorithm j on each
instance i (rank 1 for the best, and rank k for the worst, where k = 49 is
the number of algorithms; in case of ties, an average rank is awarded). The
distribution of these ranks is shown in Fig. 2. As it can be seen several coop-
erative MAs outperform the MAHCP approach, the previous incumbent for
this problem.

Next, we have used two well-known non-parametric statistical tests [63]
to compare ranks, namely Friedman test [64] and Iman-Davenport test [65].
The results are shown in Table 2. As seen in the first row, the statistic values
obtained are clearly higher than the critical values, and therefore the null
hypothesis, namely that all algorithms are equivalent, can be rejected. Since
there are algorithms with markedly poor performance, we have repeated the
test with the top 16 algorithms (i.e., those that occupy the sixteen lower
positions at the bottom of Fig. 2). Again, it can be seen that the statistical test
is passed, thus indicating significant differences in their ranks at the standard
α = 0.05 level.

Subsequently, we have focused in these top 16 algorithms, and per-
formed Holm’s test [66] in order to determine whether there exists sig-
nificant differences with respect to a control algorithm (in this case
4Ra(MAHCP,MAHCP,MAHCP), the algorithm with the best mean rank

2 Observe that the number of evaluations increases with the number of tools (assumed
to be directly related with problem difficulty) and decreases when the magazine capacity
increases (that, in some sense, it is also inversely related to the problem difficulty).
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Fig. 2 Rank distribution of each algorithm across all instances. As usual, each box comprises
the second and third quartiles of the distribution, the median is marked with a vertical line,
whiskers span 1.5 times the inter-quartile range, and outliers are indicated with a plus sign.

acording to Fig. 2). The results are shown in Table 3 where we can notice
that there is no statistical difference between the six first cooperative MAs,
but there does exist a statistical difference with respect to MAHCP, the pre-
vious best-known algorithm to solve the ToSP. This seems to fundament the
validity of our cooperative memetic model.

In order to understand the sensitivity of the cooperative memetic model we
conducted next an experimental analysis to ascertain adequate values for the
main parameters of the model, namely the number of agents and the number
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Table 2 Results of Friedman and Iman-Davenport tests.

Friedman critical χ2 Iman-Davenport critical FF

value value value value
all 603.67 65.17 55.10 1.38

top 16 66.88 24.99 13.01 1.71

Table 3 Results of Holm’s test using 4Ra(MAHCP,MAHCP,MAHCP) as control algorithm.

i algorithm z-statistic p-value α/i
1 5Ra(MAHCP,MAHCP,MAHCP) 0.8540 0.1966 0.05
2 4Ri(MAHCP,MAHCP,MAHCP) 0.8726 0.1914 0.025
3 4Br(MAHCP,MAHCP,MAHCP) 1.1882 0.1174 0.0167
4 4Ri(MAHCP,MATSP,MAHCP) 1.5966 0.0552 0.0125
5 5Ri(MAHCP,MAHCP,MAHCP) 1.7266 0.0421 0.01
6 5Br(MAHCP,MAHCP,MAHCP) 1.7266 0.0421 0.0083
7 5Br(MAHCP,MATSP,MAHCP) 2.7848 0.0027 0.0071
8 5Ri(MAHCP,MATSP,MAHCP) 3.0447 0.0012 0.0063
9 4Br(MAHCP,MATSP,MAHCP) 3.1190 0.0009 0.0056

10 5Ra(MAHCP,MATSP,MAHCP) 3.2489 0.0006 0.005
11 4Ra(MAHCP,MATSP,MAHCP) 3.2675 0.0005 0.0045
12 5Br(MATSP,MAHCP,TSP) 5.1426 < 0.0001 0.0042
13 5Ri(MATSP,MAHCP,TSP) 5.2540 < 0.0001 0.0038
14 MAHCP 5.4396 < 0.0001 0.0036
15 4Br(MATSP,MAHCP,TSP) 5.8852 < 0.0001 0.0033

of cycles of communication among them. To do so, we experiment with 5 of
the largest instances considered here for ToSP, i.e., 10ζ2530 , 15ζ

40
30 , 15ζ

30
40 , 20ζ

60
40

and 25ζ4050 and 5 datasets per instance. According to Figure 2, there is a model
whose instances systematically show the best performance; this cooperative
memetic model corresponds with the schema ΘT(MAHCP,MAHCP,MAHCP),
that is to say, a 3-agent topology in which each agent is endowed with the
previous incumbent for the problem; moreover according to Table 3 there is
no statistical difference if we consider 4 or 5 cycles. Thus to determine an
appropriate value for the number of agents we have considered the algorithms
5T(a1, . . . ,an) where T is one of the topologies considered here, the number
of cycles Θ was set to 5, n (i.e., the number of agents) ranges in [2, 6], and
each agent ai is endowed with the previous incumbent algorithm MAHCP.
The results for the three algorithms devised from this model (i.e., one for each
topology) are shown in Figure 3 in which the y-axis represents the average
error (i.e., the average difference to the best solution known for each dataset).
In average (see the right bottom graphic) the 3-agent model seems to be the
most adequate for this problem independently of the topology, although the
2-agent model behaves better in the broadcast and random topologies. In any
case, the model clearly degrades for values of n above 3.

There is thus a trend that indicates the memetic model performs better
with a lower number of agents, and its performance degrades when the number
of agents increases. This might indicate that the higher the number of agents,
the less intensified the exploitation process developed in each of the agent is.
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Fig. 3 Influence of the number of agents in the best cooperative model: Average error
obtained by considering the instances 10ζ2530 , 15ζ

40
30 , 15ζ

30
40 , 20ζ

60
40 and 25ζ4050 and 5 datasets

per instance. Upper graphics and left bottom graphic correspond to the results obtained
using the algorithms 5T(a1, . . . ,an) being T ∈ {Broadcast (Br), Random (Ra), Ring
(Ri)} the topology of the model, n the number of agents, and ai = MAHCP the optimization
method loaded in each agent i (for 1 ≤ i ≤ n). Right bottom graphic shows the average
result considering the three algorithms.

This basically means that the effort carried out during the optimization is
too scattered, so that the search mechanism in each agent has not enough
resources (i.e., time or number of evaluations) to advance properly in its own
search process.

Once we have analyzed how the number of agents affects performance, we
have conducted a similar experiment with respect to the number of cycles
and have studied how this influences the results; to do so, the best coopera-
tive model according to the analysis previously conducted on the number of
agents, that is to say, the 3-agent model ΘT(MAHCP,MAHCP,MAHCP) has
been used. For each topology value T ∈ {Broadcast (Br), Random (Ra),
Ring (Ri)}, ten different instances of this model have been considered, corre-
sponding to different values of Θ ∈ N+

10. Figure 4 depicts the results; again the
average error with respect to best value found considering the 5 instances men-
tioned previously and 5 datasets per instance is shown. In general the model
performs better for a low number of cycles and 3 cycles fixes the threshold
over which the model starts to degrade. The reason that we find to explain
this degradation is similar to the one given for the number of agents, that is
to say, a higher number of cycles clearly disfavors the intensification that each
agent produces in an autonomous way and thus its contribution to the whole
system is lower. Also, in average, decreasing the number of cycles might have a
negative effect because the exploration process is also affected (i.e., agents are
activated a lower number of times) and, as a consequence, the whole model
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Fig. 4 Influence of the number of cycles in the best cooperative model: Average error
obtained by considering the instances 10ζ2530 , 15ζ

40
30 , 15ζ

30
40 , 20ζ

60
40 and 25ζ4050 and 5 datasets

per instance. Upper graphics and left bottom graphic correspond to the results obtained
using the algorithms ΘT(MAHCP,MAHCP,MAHCP) for different values of Θ ∈ [1, 10] and
being T ∈ {Broadcast (Br), Random (Ra), Ring (Ri)} the topology of the model, Right
bottom graphic shows the average result considering the three algorithms associated to the
different topologies.

is less cooperative in the sense that the flow of information between agents
decreases. Indeed, this behavior is analogous to that observed in distributed
evolutionary algorithms with varying communication frequency [67] – see also
[36].

5 Conclusions

In this work we have described a generic schema for the cooperation of MAs.
This schema consists basically of an architecture where n agents (possibly
memetic themselves) interchange periods of communication with isolated ex-
ecutions. These resulting model is aimed at combining synergistically the ca-
pabilities of different meta-heuristics (most notably, MAs), diversifying the
search and providing a new improved balance with intensification processes.



18 Jhon Edgar Amaya et al.

Also, as it was argued in the introduction section, and according to the defi-
nition given in [9], the spatial structure of our cooperative model is by itself
a memetic computing structure and thus it might be catalogued as a MA (a
superset of parallel MAs actually).

To demonstrate the feasibility and effectiveness of our proposal we have
tackled a hard combinatorial optimization problem, namely the tool switching
problem, by considering a high number of cooperative MAs that were pro-
duced as instances (specifically adjusted to cope with this problem) of our
generic schema. To this end, we have considered up to 36 memetic cooperative
models, differing in the particular combination of meta-heuristics assigned to
the agents and their connection topology. Fully memetic models –i.e., cooper-
ative models in which each agent is endowed with a (possibly different) MA–
are shown to provide the best results, significantly outperforming a stand-
alone MA which was the previous best-known algorithm for this problem. A
sensitivity analysis conducted to ascertain the different trade-offs involved in
the cooperative model indicates that a relatively low number of agents with
moderate isolation provides the best results.

Note that our proposed schema is generic and can be adapted to handle
distinct combinatorial optimization problems; in fact, many different instances
–as shown in the optimization of the tool switching problem– can be devised
from the schema to solve a specific optimization problem. The nature of these
instances can range from completely heterogeneous models (i.e., those in which
the algorithm loaded in each of the agents is different one from each others)
to fully homogeneous models (i.e., those in which all the agents support the
same algorithm). In fact, one of the lessons that one can learn from the analysis
conducted here is that it is good to use heterogeneous agents (the composite
models are shown to perform better than the individual agents); it is likely
to find an appropriate combination of them and an adequate balance in the
general model between exploration and exploitation, and this can surely work
even if all or most of agents are homogeneous, provided these are extremely
good as individual solvers (as it is the case of MAHCP for the TosP). Actu-
ally, there exists in this sense some connections with techniques such as VNS,
hyperheuristics, and multimeme/adaptive MAs, namely the need for integrat-
ing several approaches or selectively using a mixture of algorithms in order to
boost search capabilities. The model presented here is a general complemen-
tary approach to any of those mentioned before, and can be actually used in
conjunction with them, thus enlarging the arsenal of techniques available for
this purpose.

Future work will be directed along two major directions: considering addi-
tional techniques in the arsenal available to each of the agents in the model,
and moving to different problem domains. In both cases one of the main goals
is determining the extent to which the performance trends observed are also
present in these new scenarios. As a second further step, we plan to consider
more sophisticated collaborative models in which high-level features such as
the intervening techniques or the underlying topology may change dynam-
ically, either in response to some predefined agent-internal logic, under the
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control of a global model manager, or as the result of a self-adaptive process
[68,69].
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Table 4 Computational results: Beam search, LS methods, and MA versions
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σ 0.49 0.49 0.49 0.49 0.49 1.11 1.0 0.77 0.74 0.75 0.87

4ζ1010 mean 10.0 9.8 9.6 9.6 9.6 9.34 9.6 9.06 8.8 8.94 9.08
σ 2.1 1.83 2.06 2.06 2.06 1.56 1.57 1.58 1.61 1.62 1.66

6ζ1510 mean 15.2 14.8 14.8 14.8 14.8 14.38 14.7 13.82 13.68 13.89 13.86
σ 1.47 1.47 1.47 1.47 1.47 2.22 2.25 2.0 2.1 1.99 2.03

6ζ1215 mean 18.2 17.6 17.6 17.4 17.4 18.32 20.1 17.08 16.46 16.26 16.9
σ 0.75 1.02 1.02 1.2 1.2 1.71 2.05 2.09 1.93 1.79 2.07
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Table 5 Computational results: Broadcast topology
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Table 6 Computational results: random topology
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Table 7 Computational results: ring topology
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Table 8 Computational results: MAHCP and meta-cooperative models
ΘT (MAHCP,MATSP,MAHCP ) and ΘT (MAHCP,MAHCP,MAHCP )
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