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Solving the Tool Switching Problem with Memetic

Algorithms

Abstract

The tool switching problem (ToSP) is well known in the domain of flexible manu-

facturing systems. Given a reconfigurable machine, the ToSP amounts to scheduling

a collection of jobs on this machine (each of them requiring a different set of tools

to be completed), as well as the tools to be loaded/unloaded at each step to process

these jobs, such that the total number of tool switches is minimized. Different exact

and heuristic methods have been defined to deal with this problem. In this work, we

focus on memetic approaches to this problem. To this end, we have considered a num-

ber of variants of three different local-search techniques (namely hill climbing, tabu

search and simulated annealing), and embedded them in a permutational evolution-

ary algorithm. It is shown that the memetic algorithm endowed with steepest-ascent

hill climbing search yields the best results, performing synergistically better than its

stand-alone constituents, and providing better results than the rest of the algorithms

(including those returned by an effective ad-hoc beam search heuristic defined in the

literature for this problem).

Keywords: Flexible Manufacturing System, Tool Switching Problem, Evolutionary

Algorithm, Local Search, Memetic Algorithm.
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1 Introduction

Flexible manufacturing systems (FMSs) have the capability to be adjusted for generating

different products and/or for changing the order of product generation. Thus, they incor-

porate versatility and efficiency in the production process. This is precisely the reason that

has motivated an increasing interest on this kind of systems; for some time now, the manu-

facturing industry is more and more often demanding flexible manufacturing systems as an

alternative to traditional rigid production systems.

In the setting dealt in this work, we consider a simple machine that has several slots into

which different tools can be loaded. Each slot just admits one tool, and each job executed

on that machine requires a particular set of tools to be completed. Jobs are sequentially

executed, and therefore each time a job is to be processed, the corresponding tools must be

loaded in the machine magazine. The number of slots available in this magazine is obviously

limited. Since in general the total number of tools required to process all jobs is also larger

than the number of slots in the magazine, it may be required at some point to perform a tool

switch, i.e., removing a tool from the magazine and inserting another one in its place. In

this context, tool management is a challenging task that directly influences the efficiency of

flexible manufacturing systems: an inadequate schedule of jobs and/or a poor tool switching

policy may result in excessive delays for reconfiguring the machine.

Although the order of tools in the magazine is often irrelevant, the need of performing

a tool switching does depend on the order in which the jobs are executed. The tool switch-

ing problem (ToSP) consists of finding an appropriate job sequence in which jobs will be

3



executed, and an associated sequence of tool loading/unloading operations that minimizes

the number of tool switches in the magazine. Clearly, this problem is specifically interesting

when the time needed to change a tool is a significant part of the processing time of all jobs,

and therefore the tool switching policy will significantly affect the performance of the system.

Different examples of the problem can be found in diverse areas such as electronics manu-

facturing, metalworking industry, computer memory management, and aeronautics, among

others (Belady, 1966; Bard, 1988; Tang & Denardo, 1988; Privault & Finke, 1995; Shirazi &

Frizelle, 2001).

It must be noted that the ToSP is an extremely hard problem, whose difficulty scales

up depending on the number of jobs, tools, and magazine capacity. As later described in

Section 2.1, exact methods ranging from integer linear programming (ILP) techniques to

heuristic constructive algorithms have been already applied to the problem with moderate

success. The reason is clear: the ToSP has been proved to be NP-hard when the magazine

capacity is higher than two (which is the usual case) and thus exact methods are inherently

limited. In this context the use of alternative techniques that might eventually overcome

this limitation has been explored. In particular, the use of metaheuristic techniques (Blum

& Roli, 2003) can be considered. These techniques utilize high-lever strategies to combine

basic heuristics, and their most distinctive feature is their ability to escape from local op-

tima (or extrema). They thus have global optimization capabilities, although they cannot

in general provide optimality proofs for the solutions they obtain. Nevertheless, when ade-

quately crafted, they will likely provide optimal or near-optimal solutions to a wide range of
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continuous and combinatorial optimization problems.

Recently, Amaya et al. (2008) proposed three metaheuristics to tackle the ToSP: a simple

local search (LS) scheme based on hill climbing, a genetic algorithm, and a memetic algo-

rithm (Moscato & Cotta, 2003; Krasnogor & Smith, 2005; Moscato & Cotta, 2007) (MA),

based on the hybridization of the two latter methods. This memetic algorithm produced

very good results compared with a very efficient method –i.e., a beam search heuristic (Zhou

et al., 2005)– that generated high quality results on a number of ToSP instances. That

seminal work paves the way for considering other memetic approaches to the ToSP, based on

the use of other recombination approaches, other local search techniques, partial Lamarck-

ianism, as well as the utilization of alternative neighborhood structures. This has been done

here, providing also an extensive empirical evaluation that includes a meticulous statistical

comparison among 27 algorithms. Our analysis highlights the appropriateness of attacking

the ToSP via metaheuristics – in particular memetic approaches– and yields a sound ranking

of techniques for the problem, providing useful insights on its heuristic resolution.

2 Background

Before describing formally the ToSP, let us firstly overview the problem and its variants, and

review related work.
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2.1 Related Work

The ToSP is a combinatorial optimization problem that involves scheduling a number of jobs

on a single machine such that the resulting number of tool switches required is kept to a

minimum. We are going to focus here on the uniform case of the ToSP, in which there is

one magazine, no job requires more tools than the magazine capacity, and the slot size is

constant. To the best of our knowledge, the first reference to the uniform ToSP can be found

in the literature as early as in the 1960s (Belady, 1966); since then, the uniform ToSP has

been tackled via many different techniques. The late 1980s contributed especially to solve the

problem (ElMaraghy, 1985; Kiran & Krason, 1988; Bard, 1988; Tang & Denardo, 1988). This

way, Tang & Denardo (1988) proposed an ILP formulation of the problem, and Bard (1988)

formulated the ToSP as a non-linear integer program with a dual-based relaxation heuristic.

More recently, Laporte et al. (2004) proposed two exact algorithms: a branch-and-bound

approach and a linear programming-based branch-and-cut algorithm. This latter one is based

on a new ILP formulation with a better linear relaxation than that proposed previously by

Tang & Denardo (1988). An alternative definition to the problem was formulated by Ghiani

et al. (2007), who demonstrated that the ToSP is a symmetric sequencing problem; under

this perspective, the authors enriched the branch-and-bound algorithm proposed by Laporte

et al. (2004) with this new formulation, obtaining a significant computational improvement.

Despite the moderate success of exact methods, it must be noted that they are inherently

limited, since Oerlemans (1992) and Crama et al. (1994) proved formally that the ToSP is

NP-hard for C > 2, where C is the magazine capacity, i.e., the number of tools it can
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accomodate. This limitation was already highlighted by Laporte et al. (2004) who reported

that their algorithm was capable of dealing with instances with 9 jobs, but provided very low

success ratios for instances with more than 10 jobs. Some ad hoc heuristics have been devised

in response to this complexity barrier. We refer to Amaya et al. (2008) for an overview of

these. The use of metaheuristics has been also considered recently. In addition to Amaya

et al. (2008) mentioned before, local search methods such as tabu search (TS) have been

proposed (Hertz & Widmer, 1993; Al-Fawzan & Al-Sultan, 2003). Among these, we find

specifically interesting the approach presented by Al-Fawzan & Al-Sultan (2003), due to the

quality of the obtained results; they defined three different versions of TS that arose from

the inclusion of different algorithmic mechanisms such as long-term memory and oscillation

strategies. We will return later to this approach and describe it in more detail since it has

been included in our experimental comparison.

A different, and very interesting, approach has been described by Zhou et al. (2005), who

proposed a beam search algorithm. Beam search is a derivate of branch-and-bound that

uses a breadth-first traversal of the search tree, and incorporates a heuristic choice to keep

at each level only the best (according to some quality measure) β nodes (the so-called beam

width). This sacrifices completeness, but provides a very effective heuristic search approach.

Actually, this method provided good results, e.g., better than those of Bard’s heuristics, and

will be also included in the experimental comparison.

Note that the ToSP admits a number of variants. In this work we focus on the uniform

ToSP (cf. Section 2.2), but this problem can be augmented if additional constraints are
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posed on tools or on the magazine. In this case, one refers to the so-called non-uniform

ToSP (Crama et al., 2007). For example, it might be the case that different tools required

slots of different sizes (or more than one slot); this was precisely the case addressed by Tzur

& Altman (2004) that considered one magazine with slots of variable size, and pointed out

three types of decisions to solve the problem, i.e., how to select the job sequence, which tools

to switch before each processing operation, and where to locate each tool in the magazine

by means of an integer-programming heuristic. An additional variant of the ToSP consists

of having multiple magazines. Several proposals for solving this problem variant can be

found in the literature; for instance, Kashyap & Khator (1994) analyzed the control rules for

tool selection in a FMS with multiple magazines and used a particular policy to determine

tool requirements. B lażewicz & Finke (1994) considered two-level nested scheduling prob-

lems (i.e., the part-machine scheduling problem, and the resource allocation and sequencing

problem) and described some concrete models and solution procedures. Also, Hong-Bae

et al. (1999) described several algorithms, (e.g., greedy search based techniques, as well as

tool groupings-based methods) to solve the problem with a number of identical magazines,

each of which had a particular capacity. A more general case with parallel machines and dif-

ferent magazine capacities was considered by Keung et al. (2001). From a wider perspective,

Hop (2005) presents the ToSP as a hierarchical structure that can be analyzed under four

different assumptions: variable size for the tools/slots, jobs requiring more tools than the

magazine capacity, partial or complete job splitting, and (non-)concurrent tool changes/job

changes. All variations of the problem considered under these assumptions were proven to
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be NP-complete.

2.2 Formulation of the Uniform Tool Switching Problem

In light of the informal description of the uniform ToSP given before, there are two major

elements in the problem: a machine M and a collection of jobs J = {J1, · · · , Jn} to be

processed. Regarding the latter, the relevant information that will drive the optimization

process are the tool requirements for each job. We assume that there is a set of tools

T = {τ1, · · · , τm}, and that each job Ji requires a certain subset T (Ji) ⊆ T of tools to be

processed. As to the machine, we will just consider one piece of information: the capacity

C of the magazine (i.e., the number of available slots).

Given the previous elements, we can formalize the ToSP as follows: let a ToSP instance

be represented by a pair, I = 〈C,A〉 where

• C denotes the magazine capacity,

• A is a m×n binary matrix that defines the tool requirements to execute each job, i.e.,

Aij = 1 if, and only if, tool τi is required to execute job Jj, being 0 otherwise.

We assume that C < m; otherwise the problem is trivial. The solution to such an instance is

a sequence 〈Ji1 , · · · , Jin〉 (where i1, . . . , in is a permutation of numbers 1, . . . , n) determining

the order in which the jobs are executed, and a sequence T1, · · · , Tn of tool configurations

(Ti ⊂ T ) determining which tools are loaded in the magazine at a certain time. Note that

for this sequence of tool configurations to be feasible, it must hold that T (Jij ) ⊆ Tj.
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Let Nh = {1, · · · , h} henceforth. We will index jobs (respectively tools) with integers

from Nn (respectively Nm). An ILP formulation for the ToSP is shown below, using two sets

of zero-one decision variables:

• xjk = 1 if job j ∈ Nn is assigned to position k ∈ Nn in the sequence, and 0 otherwise

– see Eqs. (2) and (3),

• yik = 1 if tool i ∈ Nm is in the magazine at instant k ∈ Nn, and 0 otherwise – see Eq.

(4).

Processing each job requires a particular collection of tools loaded in the magazine. It is

assumed that no job requires a number of tools higher than the magazine capacity, i.e.,∑m
i=1 Aij 6 C for all j ∈ Nn. Tool requirements are reflected in Eq. (5). Following (Bard,

1988), we assume the initial condition yi0 = 1 for all i ∈ Nm. This initial condition amounts

to the fact that the initial loading of the magazine is not considered as part of the cost of the

solution (in fact, no actual switching is required for this initial load). The objective function

F (·) counts the number of switches that have to be done for a particular job sequence – see

Eq. (1). We assume that that the cost of each tool switching is constant and unitary.

min F (y) =
n∑
j=1

m∑
i=1

yij(1− yi,j−1) (1)

∀j ∈ Nn :
n∑
k=1

xjk = 1 (2)
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∀k ∈ Nn :
n∑
j=1

xjk = 1 (3)

∀k ∈ Nn :
m∑
i=1

yik 6 C (4)

∀j, k ∈ Nn ∀i ∈ Nm : Aijxjk 6 yik (5)

∀j, k ∈ Nn ∀i ∈ Nm : xjk, yij ∈ {0, 1} (6)

Recall that this general definition shown above corresponds to the uniform ToSP in which

each tool fits in just one slot.

2.3 The ToSP as a machine loading problem

The ToSP can be divided into three subproblems (Tzur & Altman, 2004): the first sub-

problem is machine loading and consists of determining the sequence of jobs; the second

subproblem is tool loading, consisting of determining which tool to switch (if a switch is

needed) before processing a job; finally, the third subproblem is slot loading, and consists

of deciding where (i.e., in which slot) to place each tool. Since we are considering the uni-

form ToSP, the third subproblem does not apply (all slots are identical, and the order of

tools is irrelevant). Therefore only two subproblems have to be taken into account: machine

loading and tool loading. In the following we will show that the tool loading subproblem

can be optimally solved if the sequence of jobs is known beforehand. This is very important
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for optimization purposes, since it means that the search effort can be concentrated on the

machine loading stage.

As already mentioned the cost of switching a tool is considered constant (the same for all

tools) in the uniform ToSP, the relevant decision being whether the tool is to be loaded in

the magazine or not at any given time (were the size of the tools not uniform, the location of

the tools in the magazine would be relevant too). Under this assumption, if the job sequence

is fixed, the optimal tool switching policy can be determined in polynomial time using a

greedy procedure termed Keep Tool Needed Soonest (KTNS) (Bard, 1988; Tang & Denardo,

1988)1. The functioning of this procedure is as follows:

• At any instant, insert all the tools that are required for the current job.

• If one or more tools are to be inserted and there are no vacant slots on the magazine,

keep the tools that are needed soonest. Let J = 〈Ji1 , · · · , Jin〉 be the job sequence, and

let Tk ⊂ Nm be the tool configuration at time k. Let Ξjk(J) be defined as

Ξjk(J) = min
{
t | (t > k) ∧

(
AjJit = 1

)}
,

that is, the next instant after time k at which tool τj will be needed again given

sequence J . If a tool has to be removed, the tool τj∗ maximizing Ξjk(J) is chosen, i.e.,

remove the tools whose next usage is furthest in time.

The importance of this policy is that, as mentioned before, given a job sequence KTNS

obtains its optimal number of tool switches. Therefore, we can concentrate on the machine

1As B lażewicz & Finke (1994) point out, the KTNS property was already known to Belady (1966).
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loading subproblem, and use KTNS as a subordinate procedure to solve the subsequent

tool loading subproblem. As an aside remark, the tool loading problem is NP-hard in the

non-uniform ToSP, even if the job sequence is known and unit loading/unloading costs are

assumed (Crama et al., 2007).

2.4 An Illustrative Example

To illustrate the formal definition of the problem given in previous subsections, let us present

a small example. Let there be a machine with a magazine capacity C = 4, and let there be

n = 10 jobs requiring a total number of m = 9 tools. More precisely, let the requirement

matrix be the indicated in Table 1:

<TABLE 1>

Now, let us assume we have a job sequence 〈1, 6, 3, 7, 5, 2, 8, 4, 9, 10〉. The initial loading

of the magazine must thus comprise the tools required by job 1, namely T (1) = {2, 3, 6}.

Since there are still free slots in the magazine, these are loaded with tools required by the

next job in the sequence (job 6; this means tool 1 is loaded too), see Figure 1.

<FIGURE 1>

Job 1 can thus be executed, and so does job 6 without any tool switch. Next job is

number 3, that requires tools {2, 6, 7}. Tools 2 and 6 are already in the magazine but 7 is

not, so a tool must be unloaded to make room for it. Two options are available for this

purpose: tools 1 and 3. The KTNS policy determines that tool 3 has to be replaced since
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the next time it will be required is when serving job 2 at position 6 in the sequence, whereas

tool 1 is required again for job 5 in position 5 in the sequence. Job 7 come next and requires

tools {6, 8}. Tool 8 is then loaded replacing tool 7 (required again by job 9 at time step 9;

the other candidates for replacement were tool 2 – required by job 2 at time 6 – and tool 1 –

required by job 5 at time 5). Now, job 5 requires tools {1, 5, 9} and only tool 1 is loaded so

a double switch is required. Candidates to be replaced at this point are: tool 2 (required by

job 2 at time 6), tool 6 (not required again) and tool 8 (required again by job 8 at time 7).

Therefore, tools 6 and 8 are replaced. Job 2 comes next and requires tools {2, 3, 5, 9} among

which only tool 3 is not loaded. In this case the only possibility is replacing tool 1 by tool

3. Proceeding to job 8, tools {5, 8, 9} are needed so tool 8 enters in the magazine replacing

tool 3 (not required again in the future; the same holds for tool 2, so it is irrelevant which

one of the two is removed). Getting to job 4, tool 4 is required in addition to 9 (already

loaded). The former enters the magazine substituting tool 8 (again, not used again, much

like tool 2; tool 5 is however required later by job 10 at time 10). The last but one is job 9,

needing tools {4, 7}. Since tool 4 is already in the magazine, only tool 7 has to be loaded,

replacing either tool 2 or tool 9 (none of them required again in the future). Finally, job 10

is completed using tools {4, 5} already in the magazine, so no new switch is required.

3 Solving the ToSP with Metaheuristics

Let us now describe the metaheuristics considered to tackle the ToSP. To do so, Section 3.1

deals with general issues of representation and neighborhood structure, whereas algorithm-
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dependent issues are described in Sections 3.2 and 3.3.

3.1 Representation and Neighborhood Structure

The use of metaheuristics to solve the ToSP requires determining in each case how solutions

will be represented, and which the structure of the underlying search space will be. For the

purpose of the techniques considered in this work, these considerations turn out to be general

issues that we address here. According to the discussion presented in previous subsection,

the role of the metaheuristics will be to determine an optimal (or near optimal) job sequence,

such that the total number of switches is minimized. Therefore, a permutational encoding

arises as the natural way to represent solutions. Thus, a candidate solution for a specific

ToSP instance I = 〈C,A〉 is simply a permutation π = 〈π1, · · · , πn〉 ∈ Pn where πi ∈ Nn,

and Pn is the set of all permutations of elements in Nn.

Having defined the representation, we now turn our attention to the neighborhood struc-

ture. This will be a central ingredient in the local-search-based metaheuristics considered,

both when used as stand-alone techniques or when embedded within other search algorithms.

Permutations are amenable to different neighborhood structures. We have focused on the

following two ones:

1. The well-known swap neighborhood Nswap(·), in which two permutations are neighbors

if they just differ in two positions of the sequence, that is, for a permutation π ∈ Pn

Nswap(π) = {π′ ∈ Pn | H(π, π′) = 2}

where H(π, π′) = n−
∑n

i=1[πi = π′i] is the Hamming distance between sequences π and
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π′ (the number of positions in which the sequences differ), and [·] is Iverson bracket

(i.e., [P ] = 1 if P is true, and [P ] = 0 otherwise). Given the permutational nature

of sequences, this implies that the contents of the two differing positions have been

swapped.

2. The block neighborhood Nblock(·), a generalization of the swap neighborhood in which

a permutation π′ is a neighbor of permutation π if the former can be obtained from

the latter via a random block swap. A random block swap is performed as follows:

(a) A block length bl ∈ Nn/2 is uniformly selected at random.

(b) The starting point of the block bs ∈ Nn−2bl is subsequently selected at random.

(c) Finally, an insertion point bi is selected, such that bs + bl 6 bi 6 n − bl, and the

segments 〈πbs , · · · , πbs+bl−1〉 and 〈πbi , · · · , πbi+bl−1〉 are swapped.

Obviously, if the block length bl = 1 then the operation reduces to a simple position

swap, but this is not typically the case.

Having defined the neighborhood structures, the next step is deploying local-search-based

procedures on them. This is described in next subsection.

3.2 Local Search Metaheuristics for the ToSP

Local search (LS) metaheuristics are based on exploring the neighborhood of a certain “cur-

rent” solution, using some specific decision-making procedure to determine when and where

within this neighborhood the search is to be continued. Thus, local search can be typically
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modelled as a trajectory in the search space, that is, an ordered sequence of solutions such

that neighboring solutions in this sequence differ in some small amount of information. The

quality of solutions in this sequence does not have to be monotonically increasing in general.

Indeed, the ability of performing “downhill” moves, i.e., moving to a solution of inferior

quality than the current one, is a crucial feature of most local search metaheuristics, allow-

ing them to escape from local extrema, and hence endowing them with global optimization

capabilities. Even more so, the dynamics of some local search techniques cannot even be

modelled as a simple trajectory in search space, since some additional mechanisms can be

considered to resume the search from a different point when stagnation is detected.

The first local search technique considered is classical exhaustive steepest-ascent hill

climbing (HC). Given a current solution π, its neighborhood N (π) is fully explored, and

the best solution found is taken as the new current solution, provided it is better than the

current one (ties are randomly broken). If no such neighboring solution exist, the search is

considered stagnated, and can be restarted from a different initial point.

The basic HC scheme suffers when confronted with a rugged search landscape, keeping

the search trapped in low-quality local optima. In order to escape from these, a mechanism

for accepting strictly non-improving moves has to be incorporated. One of the most classical

proposals to this end is simulated annealing (SA) (Kirkpatrick et al., 1983). Inspired in the

physical process of thermal cooling and residual strain relief in metals, SA uses a probabilistic

criterion to accept a neighbor as the current one. This criterion is based on Boltzmann’s

law, and is parameterized by a so-called temperature value (recall the analogy with thermal
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cooling). More precisely, let ∆f be the fitness difference between the tentative neighbor and

the current solution (in this case, a negative value if the neighbor is better than the current

solution), and let T be the current temperature. Then, the neighboring configuration is

accepted with probability P given by

P =

{
1, if ∆f > 0

e
− ∆f

kBT , otherwise

where kB is Boltzmann’s constant (which can be ignored in practice, by considering an appro-

priate scaling for the temperature). The current temperature T modulates this acceptance

probability (if T is high, higher energy increases are allowed). The temperature is decreased

from its initial value T0 to a final value Tk < T0 via a process termed cooling schedule.

Two classical cooling schedules are geometric cooling, i.e., Ti+1 = γTi for some γ < 1, and

arithmetic cooling, i.e., Ti+1 = Ti − ε for some ε > 0. These are however somewhat simplis-

tic strategies, nowadays superseded by more sophisticated cooling schedules that adaptively

modify the temperature in response to the evolution of the search. To be precise, we have

also considered an approach based on adaptive cooling and reheating (cf. Elmohamed et al.,

1998).

The idea underlying the use of adaptive cooling is keeping the system close to equilibrium

by decreasing the temperature according to a search-state-dependant variable termed specific

heat. This variable measures the variability of the cost of states at a given temperature;

higher values indicate it will take longer to reach equilibrium and hence slower cooling is

required. Following (Huang et al., 1986), the next temperature is thus calculated as

Ti+1 = Tie
−ηTi/σ̄(Ti)
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where η is a tunable parameter and σ̄(Ti) is a smoothed version of σ(Ti), the standard

deviation of cost at temperature Ti, computed as (Otten & van Ginneken, 1989; Diekmann

et al., 1993):

σ̄(Ti+1) = (1− ν)σ(Ti+1) + νσ(Ti)
Ti+1

Ti

Parameter ν tunes the learning rate and is generally set to 0.95. As to reheating, it is invoked

whenever the search is deemed stagnated (after nι evaluations without improvement, where

nι is a parameter). In that case, the temperature is reset to

Ti+1 = κfB + T (Cmax
H )

where κ is a parameter, fB is the cost of the best-so-far solution, and T (Cmax
H ) is the tem-

perature at which the specific heat CH(T ) = σ2(T )/T 2 took its maximum value.

The last local search scheme considered is tabu search (TS) (Glover, 1989a,b). TS is a

sophisticated extension of basic HC in which the best neighboring solution is chosen as the

next configuration, even if it is worse than the current one. To prevent cycling, that is, the

search returning to the same point after a few steps (consider for example that it may be the

case that y ∈ N (x) is the best neighbor of x and viceversa), a tabu list of movements is kept.

Hence, a neighboring solution is accepted only if the corresponding move is not tabu. This

tabu status of a move is not permanent: it only lasts for a number of search steps, whose

value is termed tabu tenure. This value can be fixed for all moves and/or the search process,

or can be different for different moves or in different stages of the search. Furthermore, an

aspiration criterion may be defined, so that the tabu status of a move can be overridden if

a certain condition holds (e.g., improving the best known solution).
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The TS method considered in this work is based on the proposal described by Al-Fawzan

& Al-Sultan (2003). Different TS schemes were defined and compared therein, the best one

turning out to be a TS algorithm featuring long-term memory and strategic oscillation. The

first feature refers to the maintenance of a long term memory, in this case measuring the

frequency of application of each move. The basic idea is to diversify the search penaliz-

ing neighbors attainable via frequent moves. As to the strategic oscillation mechanism, it

refers to a procedure for switching between the two neighborhoods defined in Section 3.1.

A deterministic criterion based on switching the neighborhood structure after a fixed num-

ber of iterations was reported by Al-Fawzan & Al-Sultan (2003) to perform better than a

probabilistic criterion (i.e., choosing the neighborhood structure in each step, according to

a certain probability distribution). No aspiration criterion is used in this algorithm.

3.3 A Population-based Attack to the ToSP

Unlike local search methods, population-based techniques maintain a pool of candidate solu-

tions, which are used to generate new candidate solutions, not just by neighborhood search

but by using other higher-arity procedures such as recombination, i.e., two or more solutions

–appropriately termed parents– are combined to create new solutions (Bäck, 1996). While

the relevance of recombination versus neighborhood search has been always debated (Reeves,

1994) –a common criticism being the fact that unless adequately crafted to the problem at

hand, recombination may reduce to pure macromutation (Jones, 1995)– it is widely accepted

that recombination can play a crucial role in information mixing, as well as in the balance
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between exploitation and exploration (Prügel-Bennett, 2010).

The first population-based approach considered is a steady-state genetic algorithm (GA):

a single solution is generated in each generation, and inserted in the population replacing

the worst individual. Selection is done by binary tournament. As to recombination, there

are many possibilities defined in the literature – check (Oliver et al., 1987; Starkweather

et al., 1991; Cotta & Troya, 1998; Larrañaga et al., 1999) among others. We have opted in

this work for using uniform cycle crossover (UCX) (Cotta & Troya, 1998), an operator based

on the manipulation of positional information. To be precise, it is a generalization of cycle

crossover in which all cycles are firstly identified, and subsequently mixed at random. Notice

that this operator ensures the new solution contains no exogenous positional information

(each position is taken from one of the parents). As to mutation, we have considered the use

of random block swap moves, as described in Section 3.1.

On the basis of this GA, we have defined a number of memetic algorithms (MA). MAs

are hybrid methods based on the synergistic combination of ideas from different search

techniques, most prominently from local search and population-based search. The term

“memetic” stems from the notion of meme, a concept coined by Dawkins (1976) to denote

an analogous of the gene in the context of cultural evolution. Indeed, information manip-

ulation is much more flexible in MAs, thanks to the usage of algorithmic add-ons such as

local search, exact techniques, etc. It must be noted that while the connection to cultural

evolution is sometimes overstressed in the literature, it is useful to depart from biologically-

constrained thinking that turns out to be very restrictive at times. As a matter of fact, the

21



initial developments in memetic algorithms done by Moscato (1989) did not emanate from a

biological metaphor, but from the idea of maintaining a population of cooperating/competing

search agents, for which a combination of evolutionary algorithms and local search was just

a convenient instantiation (local search for encapsulating search agents, and an evolutionary

algorithm for encapsulating cooperation – via recombination – and competition – via selec-

tion and replacement). Check (Moscato & Cotta, 2010) for a recent up-to-date overview of

these techniques.

The MAs considered in this work have been built by endowing the GA with each of the

local search schemes previously defined. To be precise, we have used each of the algorithms

(i.e., HC, SA, TS) defined in Section 3.2. While in some early memetic algorithms local search

was performed on every generated individual, this is not necessarily the best choice (Sudholt,

2009). Indeed partial Lamarckianism (Houck et al., 1997), namely applying local search only

to a fraction of individuals, can result in better performance. These individuals to which

local search will be applied can be selected in many different ways (Nguyen et al., 2007). We

have considered a simple approach in which local search is applied to any individual with

a probability pLS; in case of application, the improvement uses up a number of LSevals

evaluations (or in the case of HC until it stagnates, whatever comes first) – see Algorithm 1.

The underlying idea of this memetic algorithm is to combine the intensifying capabilities

of the embedded local search method, with the diversifying features of population-based

search, i.e., the population will spread over the search space providing starting points for a

deeper local exploration. As generations go by, promising regions will start to be spotted,
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and the search will concentrate on them. Ideally, this combination should be synergistic

(this will depend on the particulars of the combination, such as the intensity, frequency

and depth of local search and its interplay with the underlying evolutionary dynamics –

Sudholt (2009)), providing better results that either the GA or the local search techniques

by themselves. Empirical evidence of this fact will be provided in next section.

4 Experimental results

The experiments have been performed considering five different basic algorithms: beam

search (BS) presented by Zhou et al. (2005), three local search methods (HC, TS, and SA),

and a GA. From these, a wide number of algorithms were devised and tested. For instance,

in the case of BS, five different values from 1 up to 5 were considered for the beam width.

Finally, memetic approaches based on the combination of the GA with each of the local

search methods have been considered.

Regarding local search methods, we consider HC, TS, and three variants of SA with arith-

metic cooling (SAA), geometric cooling (SAG) and adaptive cooling and reheating (SAR)

respectively. Note also that the exploration of the whole neighborhood becomes more and

more costly as the number of jobs increases, e.g., for 50 jobs, the number of swap neighbors

for a given candidate is 1225, not to mention the even higher number of block neighbors.

In a fixed computational budget scenario, this implies the allocated computational effort

can be quickly consumed. For this reason, we have opted for taking into account also local

search versions in which a partial exploration of the neighborhood is done by obtaining a
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fixed-size random sample. To be precise, the size of this sample has been chosen to be αn,

i.e., proportional to the number of jobs (the value α = 4 has been used). The notation HCP

and HCF (respectively TSP and TSF) is used to indicate the HC variant (respectively TS

variant) in which the neighborhood is partially or fully explored respectively (in the case of

TS, the full exploration refers just to the swap neighborhood, since the block neighborhood

has a huge size). Other details of each particular local search method are as follows. In

the case of HC, the search is restarted from a different initial point if stagnation takes place

before consuming the allotted number of evaluations. As to SA, the initial temperature T0

has been chosen so that the initial acceptance rate is approximately 50% (this has been

done by obtaining offline a small sample of random solutions to measure the average fitness

difference θ, and taking T0 = 1.44θ). The cooling parameter (either geometric and arith-

metic) has been chosen so that a final temperature Tk = 0.1 is reached in the number of

evaluations allocated to the corresponding instance. As for adaptive cooling and reheating,

we use η = 10−4, ν = 0.95, κ = T0/f0 (where f0 is the mean cost of random solutions), and

nι = 20. Finally, regarding TS, the tabu tenure is 5, and the number of iterations on each

neighborhood for performing strategic oscillation is 3. This corresponds to the setting used

by Al-Fawzan & Al-Sultan (2003).

As to the GA (and subsequently to the MA), an elitist generational model replacing

the worst individual of the population (popsize = 30, pX = 1.0, pM = 1/n where n

is the number of jobs, i.e., number of genes per individual) with binary tournament se-

lection has been utilized. As mentioned in Section 3.3, mutation is done by applying a
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random block swap, and recombination uses UCX. Finally, regarding the memetic algo-

rithms, we conducted preliminary experiments considering PLS ∈ {0.001, 0.01, 0.1, 1.0} and

LSevals ∈ {100, 200, · · · , 1000} to analyze parameter sensitivity; the best results were ob-

tained for values of LSevals equal to 200 and 1000, and for PLS = 0.01, and thus our memetic

algorithms were run considering these values. Overall, this means twelve different versions

of memetic algorithms i.e., those resulting from the hybridization of the GA with each of

the six local search schemes pointed out above and fixing LSevals to the two values men-

tioned before. The notation MAxxyy is used, where xx stands for a particular local search

technique, and yy ∈ {02, 10} indicate LSevals = 200 and LSevals = 1000 respectively.

As far as we know, no standard benchmark exists for this problem (at least publicly

available). For this reason, we have selected a wide set of problem instances that were

considered in the literature (Bard, 1988; Hertz et al., 1998; Al-Fawzan & Al-Sultan, 2003;

Zhou et al., 2005); to be precise, 16 instances have been selected, with number of jobs,

number of tools, and machine capacity ranging in [10,50], [9,60] and [4,30] respectively.

Table 2 shows the different problem instances chosen for the experimental evaluation where

a specific instance with n jobs, m tools and machine capacity C is labeled as Cζmn .

<TABLE 2>

Five different datasets2 (i.e., tool requirement matrices) were generated randomly per

instance. Each dataset was generated with the constraint, already imposed in previous

works such as (Hertz et al., 1998), that no job is covered by any other job in the sense that

2All datasets are available at http://www.unet.edu.ve/∼jedgar/ToSP/ToSP.htm
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for no two different jobs i and j, T (Ji) ⊆ T (Jj). Were this the case, job i could be removed

from the problem instance, since scheduling it immediately after job j would result in no tool

switching. This consideration has been also taken into account by Bard (1988) and Zhou

et al. (2005).

All algorithms –except beam search, see below– have been run 10 times per dataset (i.e.,

50 runs per problem instance), for a maximum of maxevals = ϕn(m− C) evaluations3 per

run (with ϕ > 0). Preliminary experiments on the value of ϕ proved that ϕ = 100 is an

appropriate value that allows to keep an acceptable relation between solution quality and

computational cost. Regarding the BS algorithm, because of its deterministic nature, just

one run per dataset (and per value of beam width) has been done. The algorithm was

allowed to run till exhaustion of the search tree. Tables 3 and 4 show the obtained results,

grouped by problem instance.

<TABLE 3>

<TABLE 4>

A first consideration regarding the results is the fact that TSP performs better than

remaining non-hybrid techniques. Also, HCF performs better on average than BS versions

in most of the instances (i.e., exactly in 13 out of 16 instances). However, HCP is not as

competitive as its full-exploration counterpart. Note for example that the performance of

3Observe that the number of evaluations increases with the number of jobs and tools (assumed to be

directly related with problem difficulty) and decreases when the magazine capacity increases (thus making

the decision problem less tight).
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HCP degrades when the instance is larger. This is not surprising, since such larger instances

are likely to exhibit a much more rugged multimodal landscape, and basic local search

schemes suffer in these scenarios. In this case, BS is capable of adjusting better than HCP

to this curse of dimensionality, given its pseudo-population-based functioning (it is not truly

population-based in the sense that no set of multiple full solutions is maintained, although it

does indeed keep a population of constructive paths), which modulates the greediness of the

branch selection mechanism. Observe that, in general, BS exhibits a very robust behavior in

all its versions and shows a competitive performance with respect to the rest of the techniques

(especially in larger instances of the problem i.e., for C > 15). SA with adaptive cooling and

reheating significantly improves the performance of SAA and SAG (which do not generally

provide competitive results with respect to the rest of techniques). These comparatively

better results of SAR with respect to SAA and SAG, as well as the better results of TSP

with respect to the remaining local search based techniques and to the GA, highlight the

need of adaptive strategies to traverse the search space of the ToSP effectively. As to the

GA, it offers a robust performance given the fact that rather standard parameters have

been used. It actually provides very good results especially in the smaller instances of the

problem (i.e., for C < 10), and exhibits a good overall performance (very competitive with

respect to HC, SA, and BS, as well as TSF). The GA shows an irregular performance in some

instances though; in particular, its performance worsens when the number of jobs increases

(i.e., n > 40). This scaling difficulty in the case of the GA reflects the intricacy of the search

landscape of the ToSP, and the problem it poses for a pure population-based approach in
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order to fine-tuning good solutions for larger sizes. While the GA can be good at jumping

among different basins of attraction, identifying the corresponding local optima requires

stronger intensification of the search. Such an intensification capability can be provided

via the integration of a local search method and a population-based technique, using the

memetic approaches defined above.

Inspecting the results of the hybrid local/population-based techniques (i.e., the memetic

approaches) shown in Table 4, it can be seen that these often provide better results than

their constituent parts (with the exception of the MATS* versions). For instance, notice

that despite the poor performance of SAA and SAG, MASAA/MASAG variants are still

capable of performing better than most local search techniques, although the combination

does not reach synergistic value, since the results are comparable to those of the GA alone.

A similar consideration can be done with respect to MATS* variants, although in this case

its performance drops below that of the constituent parts. This may be due to the fact that

the increased computational cost of a potentially larger search trajectory does not pay off

(in other words, the TS schema has good diversification characteristics that results in good

performance as a stand-alone technique, but does not contribute enough intensification in

order to be effective within a memetic algorithm). Finally, observe that the hybridization

of GA with HCP (i.e., MAHCP*) provides the best overall results, even better than the

combination of GA with HCF, despite the fact that HCF performs much better than HCP

as stand-alone technique. The reason may be that, when used as local improvement, the full

exploration scheme in hill climbing demands a higher computational cost to produce a move
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in the search space.

<FIGURE 2>

In order to analyze the significance of the results and obtain a global perspective on

how they compare to each other, we have used a rank-based approach. To do so, we have

computed the rank rij of each algorithm j on each instance i (rank 1 for the best, and rank

k for the worst, where k = 27 is the number of algorithms; in case of ties, an average rank

is awarded). The distribution of these ranks is shown in Fig. 2. Next, we have used two

well-known non-parametric statistical tests (Lehmann & D’Abrera, 1998) to compare ranks:

• Friedman test (Friedman, 1937): we compute Friedman statistic value as

χ2
F =

12N

k(k + 1)

k∑
j=1

(
Rj −

k + 1

2

)2

where Rj is the mean rank of algorithm j across all N instances. The result is compared

with the χ2-distribution with k − 1 degrees of freedom.

• Iman-Davenport test (Iman & Davenport, 1980): a less conservative test based on

Friedman statistic value as follows:

FF =
(N − 1)χ2

F

N(k − 1)− χ2
F

.

In this case the result is compared with the F -distribution with k−1 and (k−1)(N−1)

degrees of freedom.

The results are shown in Table 5. As seen in the first row, the statistic values obtained

are clearly higher than the critical values, and therefore the null hypothesis, namely that all
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algorithms are equivalent, can be rejected. Since there are algorithms with markedly poor

performance, we have repeated the test with the top 7 algorithms (i.e., the MAs incorporating

HC and SAR, and TSP), whose performance places them in a separate cluster from the

remaining algorithms (cf. Figure 2). Again, it can be seen that the statistical test is passed,

thus indicating significant differences in their ranks at α = 0.01 level.

<TABLE 5>

Subsequently, we have focused in these top 7 algorithms, and performed Holm’s test

(Holm, 1979) in order to determine whether there exists significant differences with respect

to a control algorithm (in this case MAHCP02, the algorithm with the best mean rank). To

do so, we compute the following z-statistic for the ith algorithm:

z = (Ri −R0)/

√
k(k + 1)

6N
.

Then, we determine the corresponding p-value for a normal distribution, and sort the al-

gorithms for increasing p-values. Finally, these p-values are compared with and adjusted

critical p-value α/i, where α is the significance level and i is the algorithm’s position (1 for

the lowest p-value, k− 1 for the highest p-value; recall that one algorithm is used as control,

and hence there are only k − 1 slots). Tests are sequentially done for increasing p-values

until the null hypothesis cannot be rejected at a certain i. In that case, the null hypothesis

is retained for every j 6 i, i.e., algorithms with larger p-values. The results are shown in

Table 6. Notice that –with the exception of MAHCP10, for which statistical significance can

only be established at 82% level– the test is passed at 99% confidence level for all algorithms
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with respect to MAHCP02. This is a robust result that indicates a clear trend of superiority

of MAHCP02 over the remaining approaches.

<TABLE 6>

5 Conclusions and Future Work

We have tackled the uniform tool switching problem with different techniques, and showed

how metaheuristics can be very adequate to solve the problem. To be precise, we have

conducted an extensive empirical evaluation of three different local-search heuristics (hill

climbing, simulated annealing, tabu search), genetic algorithms, and memetic algorithms.

The experimentation has included the beam search method described in (Zhou et al., 2005),

since it was demonstrated to be especially effective compared to other techniques previously

published. The results show that metaheuristics provide encouraging results, and are capable

of improving the results obtained by beam search.

Starting on a general note, one of the main conclusions to be extracted from the results

is the versatileness and effectiveness of memetic algorithms as a search paradigm. They

constitute a natural framework in which different heuristics can be seamlessly integrated into

a single optimization engine. Thus, MAs should not be regarded as competitors for existing

approaches; on the contrary, it is much more appropriate to regard them as integrators:

whenever single metaheuristics start to reach their limits, the use of memetic algorithms is

in order to overcome these limitations.

Focusing now on each of the techniques considered, the experimental results indicate that
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tabu search is the most effective local search technique among the proposals considered. Its

ability to traverse the search space escaping from local optima, and the enhanced exploration

capabilities provided by the use of a strategic oscillation mechanism are crucial for this.

Regarding the genetic algorithm, the particular recombination operator utilized –uniform

cycle crossover– has shown the relevance of processing structural positional information to

create new tentative sequences. A similar consideration can be made with respect to the

choice of both local search technique to be embedded in the memetic algorithm and its

neighborhood exploration policy. Regarding the first issue, the memetic algorithm endowed

with HC has yielded the best results, improving both the GA and the remaining local-

search techniques as stand-alone techniques, and thus providing evidence of the synergy of

the combination. The reason why MAHC* behaves better than MATS* can be found in

the better tradeoff between search intensification and computational cost provided by the

former. While TS can provide improved solutions with respect to HC, its role when embedded

within an memetic algorithm is different, since it has to share exploration duties with the

underlying GA. Hence, the savings in computational effort obtained by removing some of

this diversification capability from the local-searcher (which can thus focus on intensifying

the search in promising regions) results in a net gain for the hybrid approach. This guideline

seems generalizable to other related engineering problems –e.g., single machine total weighted

tardiness (Maheswaran et al., 2005); see also (Cotta & Fernández, 2007)– in which simple

and more intensive local improvement strategies perform adequately.

Regarding the choice of the scheme for exploring the neighborhood in the process of
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local improvement embedded in an memetic algorithm, the less computationally demanding

option considering a sample instead of the whole neighborhood produces better results to

solve the ToSP. Again, this is due to the balance between the computational cost of local

search and the potentially attainable gain in solution quality. The interplay between the

local search and population-based component of the memetic algorithm demands the former

is applied at a low rate, and with a moderate intensity.

In connection to this last issue, and as an avenue for further research, it would be inter-

esting to explore in more detail the intensification/diversification balance within the memetic

algorithm. In this work we have leaned towards a more explorative combination, by using a

blind recombination operator in the GA. It would be worth exploring other models though,

e.g., by incorporating an intense exploration of the dynastic potential (i.e., set of possible

children) of the solutions being recombined. Ideas from local branching (Fischetti & Lodi,

2003) or from dynastically optimal recombination (Cotta & Troya, 2003; Gallardo et al.,

2007) could be used here. We also plan to analyze new instances and variants of the problem

(Kashyap & Khator, 1994; B lażewicz & Finke, 1994; Hong-Bae et al., 1999) in the future.
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Algorithm 1: Pseudocode of a basic MA based on a local search LS

1 for i ∈ Nµ do

2 pop[i]←Random-Solution();

3 Local-Improvement (pop[i]);

4 end for

5 i← 0;

6 while i < MaxEvals do

7 Rank-Population (pop); // sort population according to fitness

8 parent1 ←Select (pop);

9 if Rand[0, 1] < pX then // recombination is done

10 parent2 ← Select (pop);

11 child← Recombine (parent1, parent2);

12 else

13 child← parent1;

14 end if

15 child← Mutate (child, pM); // pM is the mutation probability per gene

16 if Rand[0, 1] < pLS then // LS is applied

17 Local-Improvement (child); // Local Improvement

18 end if

19 pop[µ]← child; // replace worst

20 end while

21 return best solution in pop;
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Table 1: Example of tool requirement matrix. Each cell Aij identifies if a particular job j
requires (•) tool i or not (◦).

jobs
tools 1 2 3 4 5 6 7 8 9 10

1 ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦
2 • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦
3 • • ◦ ◦ ◦ • ◦ ◦ ◦ ◦
4 ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • •
5 ◦ • ◦ ◦ • ◦ ◦ • ◦ •
6 • ◦ • ◦ ◦ • • ◦ ◦ ◦
7 ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦
8 ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦
9 ◦ • ◦ • • ◦ ◦ • ◦ ◦

Table 2: Problem Instances considered in the experimental evaluation. The minimum and
maximum of tools required for all the jobs is indicated, as well as the work(s) from which
the problem instance was obtained: [1] (Al-Fawzan & Al-Sultan, 2003), [2] (Bard, 1988), [3]
(Hertz et al., 1998), [4] (Zhou et al., 2005).

4ζ9
10 4ζ10

10 6ζ15
10 6ζ12

15 6ζ20
15 8ζ15

20 8ζ16
20 10ζ20

20

Min. 9 9 11 4 6 6 7 9
Max. 24 24 30 10 15 15 20 20

Source [2,4] [1,3] [4] [2,4] [3] [1] [2,4] [2,4]

10ζ25
30 15ζ40

30 15ζ30
40 20ζ60

40 24ζ30
20 24ζ36

20 25ζ40
50 30ζ40

20

Min. 4 6 6 7 9 9 9 11
Max. 10 15 15 20 24 24 20 30

Source [1] [3] [1] [3] [2,4] [2,4] [1] [4]
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Table 5: Results of Friedman and Iman-Davenport tests for α = 0.01.
Friedman value critical χ2 value Iman-Davenport value critical FF value

all 320.30 45.64 50.20 1.80
top 7 47.10 16.81 14.45 3.01

Table 6: Results of Holm’s test using MAHCP02 as control algorithm (α = 0.01).
i algorithm z-statistic p-value α/i
1 MAHCP10 0.941065 0.173335 0.010000
2 MAHCF10 3.314184 0.000397 0.005000
3 MASAR02 3.355100 0.000460 0.003333
4 MAHCF02 3.436932 0.000294 0.002500
5 MASAR10 4.991734 < 0.000001 0.002000
6 TSP 5.441809 < 0.000001 0.001667
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Figure 1: Example of the application of the KTNS policy. The tool requirements for each
job are those indicated in Table 1. Slots in the magazine are denoted by circles (each row
depicting the state of the magazine at a give time step). Black circles denote a tool switch.
Finally the sequence of jobs is given by the dark squares, and the cumulative number of
switches is indicated in the right side of the figure.
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Figure 2: Rank distribution of each algorithm across all instances. As usual, each box
comprises the second and third quartiles of the distribution, the median is marked with a
vertical line, whiskers span 1.5 times the inter-quartile range, and outliers are indicated with
a plus sign.
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