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Abstract

This paper presents a parameterized schema for building memetic algorithms based on cross-entropy
(CE) methods. This novel schema is general in nature, and features multiple probability mass functions
and Lamarckian learning. The applicability of the approach is assessed by considering the Tool Switching
Problem, a complex combinatorial problem in the field of Flexible Manufacturing Systems. An exhaustive
evaluation (including techniques ranging from local search and evolutionary algorithms to constructive
methods) provides evidence of the effectiveness of CE-based memetic algorithms.
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1. Introduction

Cross Entropy (CE) is a Monte Carlo approach
to optimization proposed by Rubistein1. It can
be described as a population-based iterative opti-
mization technique based on the use of probabil-
ity distributions by minimizing the cross-entropy
distance (also called the Kullback-Leibler diver-
gence) to a target distribution. It can thus be
regarded as an Estimation of Distribution Algo-
rithm (EDA)2,3. The CE method has been ap-
plied to tackle many optimization problems in
telecommunications4, engineering5,6, and combina-
torial optimization7,8, just to cite a few examples.

Traditionally, EDAs are considered as evolution-
ary algorithms despite the fact they do not use the
classical crossover and mutation operators. Instead
the information is extracted from the candidate solu-
tions via probability mass functions (pmfs). The par-
ticular form these probability distributions are mod-
eled in actually leads to different EDA versions9,10.

CE basically works as follows: starting from a
initial pmf a population is built; then, in each iter-
ation a sample from the population —the so-called
elite sample— is selected to update the probability
mass function. The so-updated pmf is then used to
generate a new population. This process is itera-
tively repeated until eventually the distribution con-
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verges to a local optimum (ideally the global opti-
mum). A complete mathematical description of the
CE method is given by de Boer et al.7. Among
other features, CE requires a large number of sam-
ples to achieve high quality solutions, thus leading
to a potentially slow optimization process7. Some
solutions have been proposed to cope with these
problems such as, e.g., the use of several pmfs (in-
stead of a simple one) along with their associated
updating mechanisms as an alternative for exploring
the search space more effectively11. Parallel ver-
sions of CE have been also proposed12,13, and La-
guna et al.14 have recently described a hybrid CE
version that follows the idea of memetic algorithms
(MA)15,16,17,18,19 by endowing CE with local search
(LS).

Now this paper presents a parameterized schema
upon which a number of many different CE versions
can be devised. Some specific instantiations of this
schema correspond to memetic models already pro-
posed in the literature14, classical CE algorithms and
CE with multiple pmfs. In addition, novel algo-
rithms (that, as far as we know, have not been pro-
posed before) can be derived as direct instances of
our schema as, for example CE-based memetic al-
gorithms with multiple pmfs. In the simplest cases
we can produce simple (i.e., non-memetic) CE al-
gorithms using only one pmf function; however the
schema also represents a model to hybridize EDAs
(in a general sense, and CEs from a more particular
perspective) with local search (LS) techniques. The
hybridization is done in an integrative way20 where
the local searcher is employed as a component that
can be activated during the execution of the primary
optimization technique, in this case an EDA/CE. In
this context, LS helps to intensify the search whereas
the primary technique provides both a population-
based search and the use of multiple pmfs that con-
tribute to diversify the optimization in the search
space of the problem under consideration. The hy-
brid algorithms devised from this model should be
synergistic, providing better results than each of its
constituent parts (i.e., underlying algorithms).

To show the adequacy of this schema as well as
the effectiveness of some algorithms devised from
it, we have considered the Tool Switching Problem

(ToSP) as application domain. The ToSP has its
origin in Flexible Manufacturing Systems (FMSs).
To be precise, we consider the case of a reconfig-
urable production machine endowed with a maga-
zine that has several slots into which different tools
can be loaded. By an appropriate scheduling of
tools to be loaded/unloaded to/from this magazine,
the machine can handle a sequence of jobs, each
of them with their own tool requirements. In this
context, the ToSP amounts to finding an appropri-
ate job sequence as well as the schedule of load-
ing/unloading operations that minimizes the total
number of tool switches within the magazine. Ex-
amples of the ToSP may be found in various areas
such as electronics industry, metal industry, man-
agement of memory computers, aerospace and man-
ufacturing in general21,22. The problem will be de-
scribed in more detail in Section 4.

In the context of this problem, we describe here
a number of specific instantiations of our generic
schema to solve it; to the best of our knowledge all
of them are novel algorithms for tackling the ToSP
as no CE-based algorithm was previously used for
it. In addition, some of these instantiations outper-
form a cooperative (i.e., agent-based) algorithm that
represented so far the state of the art for the ToSP
and thus they supersede the latter as the best-known
approach to solve this problem.

The rest of the article is organized as follows.
Section 2 provides a general overview of EDAs
and CE, and Section 3 describes our parameterized
generic schema for producing CE-based memetic al-
gorithms. Section 4 is devoted to overview the ToSP
and describing two standard EDAs for tackling the
ToSP. Section 5 shows the results of a comprehen-
sive experimental study that involves a wide set of
algorithms to solve the ToSP. The paper ends on
some conclusions and alternative lines of future re-
search.

2. Background on EDAs and CE

EDAs were proposed by Mühlenbein et al.23 and
departed from traditional evolutionary algorithms in
that the generation of new solutions depended on a
probabilistic mechanism, rather than on the use of
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Algorithm 1: Schema of a standard EDA

1 M0← GENERATEINITIALMODEL();
2 P0← GENERATEPOPULATIONFROM(N,M0); // N solution candidates

3 i← 0 ;
4 while ¬ TERMINATION(i,Pi) do
5 i← i+1;
6 Qi← SELECT(κ ,Pi−1); // Select κ 6 N individuals from Pi−1
7 Mi← BUILDMODEL(Qi); // Build probabilistic model Mi from Qi

8 Pi← GENERATEPOPULATIONFROM(N,Mi);
9 end while

10 return Best solution in Pi

a set of genetic operators. Relationships and de-
pendencies among the variables that define a solu-
tion to the problem under consideration are explic-
itly expressed in EDAs via probability distributions.
The latter are built from a subset of individuals se-
lected from a population generated from the model
obtained in a previous iteration24,25. Thus, EDAs re-
quire neither crossover nor mutation operators.

In general, the most simple schema of an EDA
is as described in Algorithm 1. An initial proba-
bilistic model is built, typically describing a uniform
distribution over the search space (although some
heuristic initialization can also be done if problem-
knowledge is available). This model is subsequently
sampled to obtain a population of solutions from
which an elite sample will be extracted and used
to rebuild the model (lines 6-7). The new model is
then resampled and the whole process is repeated
until a certain termination condition (usually reach-
ing a predetermined number of iterations, or find-
ing a good enough solution) is fulfilled. How to
address the functions SELECT/2, BUILDMODEL/1
and GENERATEPOPULATIONFROM/1 is something
for which numerous alternatives exist.

Larrañaga et al.10 and Pelikan et al.9 presented
a classification of EDAs for combinatorial optimiza-
tion based on the structure of the probabilistic model
used to capture the interdependencies among vari-
ables from selected individuals. In this classification
there are three major classes of EDAs:

• Univariate distributions: the probabilistic model
comprises marginal probabilities for each vari-

able, as in, e.g., UMDA (Univariate Marginal
Distribution Algorithm)23.

• Bivariate distributions: each variable depends at
most on another variable. The probabilistic model
is thus a tree or a collection of trees, whose
nodes represent a variable and comprises condi-
tional probabilities for its value (conditional to the
value of the parent variable in the tree). Examples
include MIMIC (Mutual Information Maximiza-
tion for Input Clustering)26 or COMIT (Combin-
ing Optimizers with Mutual Information Trees)27.

• Multiple dependencies: each variable may de-
pend on many other variables, so the probabilis-
tic model is typically represented as a Bayesian
network, as in BOA (Bayesian Optimization Al-
gorithm)28.

The CE algorithm considered in this work falls
within the bivariate class and will be described in de-
tail later on. Let us firstly focus on UMDA and PBIL
(Population Based Incremental Learning), two algo-
rithms that will be used later in the empirical com-
parison along with other methods defined in the lit-
erature.

As already mentioned, UMDA is an EDA based
on univariate probabilistic models. It was proposed
by Mühlenbein and Paaß23 and models the joint dis-
tribution of variable values as the product of in-
dependent univariate marginal distributions. Let
X be the solution space, and let us assume that
solutions x ∈ X are represented by n variables
v1, · · · ,vn, where vi takes values from a domain Di =
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{di
1, · · · ,di

mi
}. Then, the probabilistic model at step

t consists of an array of probability mass functions
(pmfs) ft = ( f t

1, . . . , f t
n), where f t

i (k) (for 1 6 i 6 n
and for 1 6 k 6 mi) is the probability of vi taking
value di

k. At each step, the model is sampled to ob-
tain a new population P, and a new model ft+1 is
obtained from the best (according to a guiding func-
tion µ : X →R) κ individuals in this population by

f t+1
i (k) =

1
κ

κ

∑
z=1

[Qzi = di
k] , (1)

where Q is the set of κ elite samples, Qzi is the value
of the i-variable of the z-th solution in Q, [·] is an
indicator function ([TRUE] = 1 and 0 otherwise).

PBIL was proposed by Baluja29, and generalizes
the functioning of UMDA by considering the fol-
lowing Hebbian rule for updating the probabilistic
model:

f t+1
i (k) = (1−α) f t

i (k)+α
1
κ

κ

∑
z=1

[Qzi = di
k] , (2)

where α ∈ (0,1] is the learning parameter. A proof
of the algorithm convergence is shown by Hohfeld
and Rudolph30. Note that PBIL is equivalent to
UMDA when α = 1.

The Cross Entropy method (CE)1 is an adap-
tive technique initially used to estimate the proba-
bility of rare events based on the minimization of the
Kullback-Leibler (KL) divergence. Roughly speak-
ing, the KL divergence (DKL) is a measure of the
“distance” between two pmfs a and b, i.e.,

DKL(a,b) = ∑
X∈X

a(X)ln
a(X)

b(X)
(3)

The idea in rare event simulation is finding the
probability ε that µ(x) > γ , where γ is a real num-
ber (a threshold) and x ∈X is a solution sampled
from X using a certain pmf f (·). To do so, a pmf g
is sought such that it minimizes the KL divergence
with an “ideal” pmf g∗(x) = [µ(x) > γ] f (x)/ε (i.e.,
g∗(x) > 0 iff µ(x) > γ). Of course, this ideal pmf
is unknown but a solution to the mentioned problem
can be estimated (for not too small values of ε) as

argmaxg =
M

∑
j=1

[ f (x j)> γ] lng(x j) (4)

where the sample x1,x2, ...,xM is obtained from
X using pmf f (·). Note that the estimation prob-
lem in Eq. (4) can be solved analytically under cer-
tain conditions, e.g., discrete solutions following a
n-dimensional Bernoulli distribution7,5 leading to a
solution analogous to Eq. (1).

In order to deploy CE on combinatorial opti-
mization problems, the method is transformed in
an iterative approach in which different rare-event
problems are solved at each stage. Such rare-events
are defined as follows: at step i a pmf fi(·) is con-
sidered; initially f1(·) is a uniform distribution, and
later fi+i(·) = gi(·), where gi(·) is the optimal solu-
tion to the i-th estimation problem. This problem is
defined as the rare-event µ(x)> γi, where x follows
the pmf fi(·) and γi is the k-th worst value of µ(x) in
a sample of M solutions, i.e., γi if the cut-off fitness
value in the elite sample. This procedure is repeated
for a suitable number of iterations.

Regarding hybridization of EDAs in general (and
CE in particular) with other optimization methods,
we can cite for instance the work of Ortiz-Garcı́a
and Pérez-Bellido31, where an integration mecha-
nism between CE and a neural network was used to
solve the frequency assignment problem. Campelo
et al.32 describe a hybrid approach of EDAs with
approximations to the most promising solutions ob-
tained via local search-based methods, and apply it
to the design of electromagnetic devices. More re-
cently, Laguna et al.14 utilized local search mecha-
nisms to optimize the whole elite sample, and test
this approach on the maximum cut problem. This
proposal was shown to be especially effective and
can be considered as an instance of our algorith-
mic schema shown in the next section. Santana et
al.33 combine a variable neighborhood search (VNS)
technique with UMDA with the aim of inferring the
structure of a protein from its aminoacid sequence.
They propose and analyze three alternatives for the
combination: incorporating VNS within the UMDA,
using probabilistic models within VNS, and alternat-
ing VNS and UMDA. Zhang et al.34 proposed the
hybridization of PBIL with a 2-opt local search al-
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gorithm. This proposal was applied successfully to
the quadratic assignment problem. Peña et al.35 de-
scribed a hybrid scheme between a steady state ge-
netic algorithm (GA) and a UMDA and where each
algorithm is responsible, according to certain partic-
ipation function, for the generation of part of the to-
tal population. Also, Zhou et al.36 propose a model
resulting from the hybridization of particle swarm
optimization (PSO) and EDAs. Recently, Ahn et
al.37 have presented a hybridization between binary
particle swarm optimization (BPSO) and a multi-
variate version of an EDA; this proposal is based on
a process of selecting the best solutions found by the
BPSO through the EDAs with the aim of promoting
the exploitation of candidate solutions.

3. A general cross entropy-based memetic
schema

The Cross Entropy (CE) method can be considered
as an EDA in the field of combinatorial optimization
problems and basically follows the schema shown
in Algorithm 1. More specifically, CE consists of
two main phases: the first one is devoted to obtain-
ing samples (i.e., the elite samples) from a specific
pmf and the second one to modify the parameters of
the probability distribution from the actual elite sam-
ple, in order to produce better samples at the next
iteration7. Following this general model, we pro-
pose here the schema shown in Algorithm 2 from
which many different variants of CE can be devised.
When referring to CE, just one pmf is traditionally
considered; note that our schema also considers the
use of multiple pmfs though, as well as the integra-
tion of a local search (LS) mechanism. Note how-
ever that this schema, in its current form, might also
be used to devise other EDA variants as no specific
detail for CE are explicitly incorporated to increase
both its legibility and understanding. In any case, in
the rest of the paper we center specifically on show-
ing how this schema can be used to generate CE-
based (possibly memetic) algorithms so we focus on
specific features of CE.

Let IP be a specific instance of a particular opti-
mization problem P to be tackled. Let us assume,
without lost of generality that P is a minimization

problem. Several parameters are considered in this
schema to solve IP :

• An ordered collection P (i.e., the population) of N
candidate solutions.

• Fw = { f 1, . . . , f w}, a set of w pmfs.
• ρ , the cutoff point, that will be used to select the

size of the elite sample. The cutoff point ρ deter-
mines the percentage of the population that will be
considered as the elite sample. For instance, sup-
pose that ρ = 0.05 and N = 100 then the elite sam-
ple would contain ρN = 5 solution candidates. As
already mentioned, the elite sample is used to up-
date the probability function(s).

• θ , the probability of local search (LS).

Firstly, all the pmfs are defined (i.e., initialized in
line 2 as uniform probability mass functions). Then,
iteratively the algorithm executes the following steps
in sequence: it creates a pool P of N candidate so-
lutions (line 6) via the pmfs in Fw, evaluates each
of the components in P via an IP -specific fitness
function (line 7), and sorts the pool in ascending
(descending, in the case of a maximization prob-
lem) order according to fitness values (line 10); then,
the algorithm incorporates an improvement phase in
which the best ρN elements of this ordered popula-
tion P (i.e., the elite sample) are locally improved
(line 13); this step is executed with a certain prob-
ability θ ; observe that while θ = 0.0 in simple ver-
sions of CE, strictly positive values of this parameter
lead to memetic versions of the algorithm. Finally,
the pmfs are updated from information extracted of
these ρN (possibly improved) elite elements (line
15). To do so, this elite subset is sorted by de-
creasing fitness values and divided in w interleaved
tiers; then, each pmf is updated from one of these
tiers, i.e., f i uses elite solutions indexed as i+ jw,
j > 0. This cycle is repeated until a certain termi-
nation condition is held (e.g., reaching a maximum
number of evaluations maxEvals). The algorithm re-
turns the best solution that can be generated from Fw
(line 17).

Observe that if w = 1 and θ = 0.0 we have the
canonical version of CE. Note also that the proce-
dures INITIALIZEFUNCT/1, GENERATEPOPULA-
TION/1, UPDATEPMFS/2, and BESTSOLUTION/1,
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Algorithm 2: Schema of memetic CE/EDA with w pmfs for ToSP

1 for k ∈ Nw do // Nw = {1, · · · ,w}
2 INITIALIZEFUNCT( f k);
3 end for
4 while NOT TERMINATION CONDITION do
5 // Generate a new population of size N from w pmfs.

6 P← GENERATEPOPULATION(Fw); // return P= {P1, . . . ,PN}
7 EVALUATEPOPULATION(P);
8 // sort population in ascending order according to fitness, to subsequently

9 // select the elite sample.

10 RANKPOPULATION(P);
11 // process of EliteSampleImprovement: LS stochastically applied to the

12 // best ρN solutions with probability θ in each case.

13 LOCALIMPROVEMENT(P,ρ,θ);
14 // update f 1, . . . , f w from an elite sample of size ρN extracted from P.
15 UPDATEPMFS(Fw,P);
16 end while
17 return BESTSOLUTION(Fw);

must be adapted specifically to the problem P (al-
though these can be also devised from standard pro-
posals for classical CE as shown in our specific ap-
plication).

As stated before, assigning θ > 0.0 means that
our schema can generate a number of memetic al-
gorithms by endowing CE with a local search oper-
ator. Thus, the hybrid algorithm described by La-
guna et al.14 can be viewed as an instance of our
schema, with w = 1 and θ = 1.0∗. This setting
means performing local search on each generated
candidate, but this is not necessarily the best choice
in standard memetic algorithms38. Indeed par-
tial Lamarckianism39, namely applying local search
only to a fraction of individuals (0 < θ < 1), can re-
sult in a better performance. Also, the individuals to
which local search will be applied can be selected in
many different ways40. We have considered a simple
approach in which local search is applied, individu-
ally, to the best ρN candidates in the population (i.e.,
an elite sample ⊆ P) with a probability θ ; in case of
application, the improvement uses up to a number of
LSevals evaluations or, in the case of a specific local

search such as Hill climbing (HC) until it stagnates,
whichever comes first.

The idea behind CE is to find the pmf to gen-
erate the best possible solutions. However, one
of the ways to include a broader exploration of
search space is to include multiple pmfs in the CE
method (i.e., assigning w > 1). The selection of
samples for upgrading pmfs and subsequently gen-
erating populations leads to different versions of the
algorithm, for example, the well-known Model Ref-
erence Adaptive Search11 that uses multiple pmfs
but establishes specific mechanisms for updating the
values of the pmfs.

The underlying idea of our hybrid CE+LS is to
combine the intensifying capabilities of the embed-
ded LS method, with the diversifying features of
both a population-based search and the use of mul-
tiple pmfs i.e., the population, generated from dif-
ferent pmfs, will spread over the search space pro-
viding starting points for a deeper local exploration.
As generations go by, promising regions will start to
be spotted, and the search will concentrate on them.
Moreover, an improved population can devise an im-

∗Laguna et al.14 introduce a parameter δ to control which fraction of the population undergoes local search. The equivalence mentioned
only holds when δ = 1.
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proved set of pmfs, and ideally, this combination
should be synergistic, providing better results that
either the CE or the LS techniques by themselves.
Empirical evidence of this fact will be provided in
the following sections.

4. A case study: the tool switching problem

To assess the schema presented in the previous sec-
tion, we have chosen the tool switching problem as a
benchmark. The ToSP is a combinatorial optimiza-
tion problem that involves scheduling a number of
jobs on a single reconfigurable machine so that the
resulting number of tool switches required is kept
to a minimum. This section is thus devoted to an
overview the problem, and describes the deployment
of the optimization method on it.

4.1. Formulation of the uniform tool switching
problem

In light of the informal description of the uniform
ToSP given in Section 1, there are two major ele-
ments in the problem: a machine M and a collection
of jobs JOBS = {Job1, · · · ,Jobn} to be processed.
Regarding the latter, the relevant information that
will drive the optimization process are the tool re-
quirements for each job. We assume that there is a
set of tools T = {τ1, · · · ,τm}, and that each job Jobi
requires a certain subset T (Jobi) ⊆ T of tools to be
processed. As to the machine, we will just consider
one piece of information: the capacity C of the mag-
azine (i.e., the number of available slots).

Given the previous elements, we can formalize
the ToSP as follows: let a ToSP instance be repre-
sented by a pair, I = ⟨C,A⟩ where

• C denotes the magazine capacity,
• A is a m×n binary matrix that defines the tool re-

quirements to execute each job, i.e., Ai j = [τi ∈
T (Job j)], thus being 1 if —and only if— tool i (i.e.,
τi) is required to execute job j (i.e. Job j), being 0
otherwise.

We assume that C < m; otherwise the problem
is trivial. The solution to such an instance is a se-
quence ⟨J1, · · · ,Jn⟩ that consists of a permutation of

JOBS (i.e., Ji ∈ {Job1, · · · ,Jobn} for 1 6 i 6 n, and
Ji ̸= J j for all i, j ∈ {1, . . . ,n} and i ̸= j) determin-
ing the order in which the jobs are executed, and a
sequence T1, · · · ,Tn of tool configurations (Ti ⊂ T )
determining which tools are loaded in the magazine
at a certain time. Note that for this sequence of
tool configurations to be feasible, it must hold that
T (J j) ⊆ Tj.

Let Nh = {1, · · · ,h} henceforth. We will index
jobs (resp. tools) with integers from Nn (resp. Nm).
An integer linear programming (ILP) formulation
for the ToSP is shown below, using two sets of zero-
one decision variables:

• x jk = 1 if job j ∈Nn is assigned to position k ∈Nn
in the sequence, and 0 otherwise —see Eqs. (6)
and (7),

• yik = 1 if tool i ∈ Nm is in the magazine at instant
k ∈ Nn, and 0 otherwise —see Eq. (8).

Processing each job requires a particular collec-
tion of tools loaded in the magazine. It is assumed
that no job requires a number of tools higher than the
magazine capacity, i.e., ∑m

i=1 Ai j 6C for all j ∈ Nn.
Tool requirements are reflected in Eq. (9). Fol-

lowing the work by Bard21, we assume the initial
condition yi0 = 1 for all i ∈ Nm. This initial condi-
tion amounts to the fact that the initial loading of the
magazine is not considered as part of the cost of the
solution (in fact, no actual switching is required for
this initial load). The objective function F(·) counts
the number of switches that have to be done for a
particular job sequence —see Eq. (5). Without loss
of generality we assume that that the cost of each
tool switching is unitary.

min F(y) =
n

∑
j=1

m

∑
i=1

yi j(1− yi, j−1) (5)

∀ j ∈ Nn :
n

∑
k=1

x jk = 1 (6)

∀k ∈ Nn :
n

∑
j=1

x jk = 1 (7)

∀k ∈ Nn :
m

∑
i=1

yik 6C (8)

∀ j,k ∈ Nn ∀i ∈ Nm : Ai jx jk 6 yik (9)
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∀ j,k ∈ Nn ∀i ∈ Nm : x jk,yi j ∈ {0,1} (10)

From a conceptual point of view, the ToSP can
be divided into three subproblems41: the first sub-
problem is machine loading and consists of deter-
mining the sequence of jobs; the second subprob-
lem is tool loading, consisting of determining which
tool to switch (if a switch is needed) before process-
ing a job; finally, the third subproblem is slot load-
ing, and consists of deciding where (i.e., in which
slot) to place each tool. Since we are considering
the uniform ToSP, the third subproblem does not ap-
ply (all slots are identical, and the order of tools is
irrelevant). Therefore only two subproblems have
to be taken into account: machine loading and tool
loading. The latter can however be optimally solved
if the sequence of jobs is known beforehand. This
is very important for optimization purposes, since it
means that the search effort can be concentrated on
the machine loading stage.

As already mentioned —and without loss of
generality— the cost of switching a tool is consid-
ered constant (the same for all tools) in the uniform
ToSP. Under this assumption, if the job sequence is
fixed, the optimal tool switching policy can be deter-
mined in polynomial time using a greedy procedure
termed Keep Tool Needed Soonest (KTNS)42,21,22,43.
The functioning of this procedure is as follows:

• At any instant, insert all the tools that are required
for the current job.

• If one or more tools are inserted and there are no
vacant slots on the magazine, keep the tools that
are needed soonest. Let J = ⟨J1, · · · ,Jn⟩ be the
job sequence, and let Tk ⊂ Nm be the tool config-
uration at time k (for 1 6 k 6 n). Let Ξ jk(J) be
defined as

Ξ jk(J) = min
{

t | (t > k)∧ (A jt = 1)
}
,

that is, the next instant after time k at which tool
τ j will be needed again given sequence J. If a tool
has to be removed, the tool τ j∗ maximizing Ξ jk(J)
is chosen, i.e., remove the tools whose next usage
is furthest away in time.

The importance of this policy is that, as men-
tioned before, given a job sequence KTNS obtains
its optimal number of tool switches. Therefore, we
can concentrate on the machine loading subproblem,
and use KTNS as a subordinate procedure to solve
the subsequent tool loading subproblem.

In the rest of the paper, KT NSA(J) will denote
the number of tool switches obtained from applying
the KTNS method to the job sequence J and consid-
ering A as the tool requirement matrix associated to
the problem instance, and write KT NS(J) whenever
A is implicit in the context.

The ToSP is NP-hard for C > 244,45 and hence
exact methods are inherently limited. We refer
to previous works46,47 for a brief survey of re-
lated work on exact methods and heuristics for the
ToSP. Among these techniques, it is worth mention-
ing beam search, a derivate of branch-and-bound
that uses a breadth-first traversal of the search tree,
heuristically keeping at each level just the best β
nodes. This method was shown to be effective for
the ToSP48 and will be included in our experimen-
tal comparison. In addition, we will also consider
metaheuristics such as the tabu search (TS) approach
presented by Al-Fawzan and Al-Sultan49, as well as
the hill climbers and memetic algorithms (MA) pre-
sented by Amaya et al.46. It must be noted that the
latter MA is the current incumbent for solving the
ToSP.

4.2. Solving the ToSP with EDAs

Let I = ⟨C,A⟩ be a specific instance of the problem
with m tools and n jobs. Then, following the schema
shown in Algorithm 2 we consider,

• P = {J1, · · · ,JN} where each Jh = ⟨Jh
1 , · · · ,Jh

n ⟩
(for h = 1, · · · ,N) is a job sequence, that is to say,
Jh is a permutation of the elements in JOBS (i.e.,
{Job1, . . . ,Jobn}) determining the order in which
the jobs are executed.

• For any k∈{1, . . . ,w}, f k ∈Fw, and Ji,J j ∈ JOBS,
f k
Ji,J j

represents the probability of executing job J j
just after having executed job Ji. Initially (line
2 of Algorithm 2) all pmfs are uniform, i.e., the
probability of executing any job after a specific
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Algorithm 3: Method GENERATEPOPULATION({ f 1, . . . , f w}). Generate a population of N job sequences
from a set of w pmfs

1 P← /0;
2 for i ∈ Nw do
3 j← 1;
4 while j 6 N/w do
5 J← GENERATEJOBSEQUENCE( f i); // Construct sequence from f i

6 if J /∈ P then
7 P← P∪{J};
8 j← j+1;
9 end if

10 end while
11 end for
12 return P

job is the same, that is to say, for any f k ∈ Fw,
f k
Ji,J j

= 1
n−1 if Ji ̸= J j and 0 otherwise.

• The fitness function FITNESS(Pi) is defined as
KT NSA(Ji)

Also, for the LS/1 method shown in line
8 of Algorithm 2 we have used Hill Climbing
and Tabu Search. The former is a steepest as-
cent method working on the swap-neighborhood of
permutations46. Note that the exploration of the
whole neighborhood becomes more and more costly
as the number of jobs increases (its size is Θ(n2)
where n is the number of jobs). In a fixed compu-
tational budget scenario, this implies the allocated
computational effort can be quickly consumed. For
this reason, we have opted for also taking into ac-
count two variants of neighborhood exploration: one
in which the swap neighborhood is fully explored
and another one in which a partial exploration is
done by obtaining a fixed-size random sample (to
be precise, the size of this sample has been cho-
sen to be λn, i.e., proportional to the number of
jobs). As for Tabu Search, it is based on the pro-
posal described by Al-Fawzan and Al-Sultan49, con-
sisting in performing strategic oscillation between
the said swap neighborhood and the block neighbor-
hood (swapping larger blocks of elements —see also
the work by Amaya et al.47). As indicated, we have
considered a simple approach in which local search

is applied to the best ρN candidates in the popula-
tion (i.e., an elite sample {J1, . . . ,JρN} ⊆ P) with a
probability θ ; in case of application, the improve-
ment uses up to a number of LSevals evaluations (or
in the case of HC until it stagnates, whichever comes
first).

Algorithm 3 shows the pseudocode for the pro-
cedure GENERATEPOPULATION/1. Our proposal is
a generational algorithm in which the population P
is renewed in each iteration. The idea is that each
pmf is used to create N/w job sequences; this means
that each pmf has the same weight on the overall
population. The procedure for generating a job se-
quence from a pmf is shown in Algorithm 4 and
is based on a method proposed by Rubinstein1 to
solve the traveling salesman problem. The idea is
to construct a sequence by selecting a new job to be
added to the sequence considering the probabilities
of moving from the job previously placed to this new
job. In fact, this method bears some similarities with
roulette-wheel selection in genetic algorithms. The
first job in the sequence is randomly selected (lines
2 and 3); let Jcurrent (for current ∈ {1, . . . ,n−1}) be
the last job placed in the (partial) sequence, then the
new job to place is selected from the set of jobs not
yet placed in the sequence, assigning to each of them
a portion of the wheel proportional to the probability
of moving from this last job Jcurrent to any other job.
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Algorithm 4: Method GENERATEJOBSEQUENCE( f )

1 processed← /0; // Jobs already processed

2 current← random(n); // Current job randomly drawn from [1,n]

3 J1← Jobcurrent ; // first element in job sequence

4 i← 2;
5 while i 6 n do
6 processed← processed∪{current};
7 µ ←URand01()∗

(
∑another/∈processed fJobcurrent ,Jobanother

)
;

8 // For another ∈ Nn

9 next← 0; sum← 0;
10 while sum < µ do
11 next← next +1;
12 if next ̸∈ processed then
13 sum← sum + fJobcurrent ,Jobnext ;
14 end if
15 end while
16 Ji← Jobnext ; current← next; i← i+1;
17 end while
18 return ⟨J1, · · · ,Jn⟩

Algorithm 5: Method UPDATEPMFS({ f 1, . . . , f w},{J1, . . . ,JN}).
1 for k ∈ Nw do
2 f k← allzeros(n,n); // f k

Jobi,Job j
= 0.0 for any Jobi and Job j

3 h← k; g← 1;
4 while (g 6 ρN) and (h 6 N) do
5 for i ∈ Nn−1 do
6 f k

Jh
i ,J

h
i+1
← f k

Jh
i ,J

h
i+1

+ 1
ρN ;

7 f k
Jh

n ,J
h
i
← f k

Jh
n ,J

h
i
+ 1

ρN(n−1) ;

8 end for
9 h← h+w; g← g+1;

10 end while
11 end for
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An schema for updating the pmfs is shown in Al-
gorithm 5. Here, the elite sample {J1, . . . ,JρN} ⊆ P
(i.e., the best ρN candidates) is used to update each
function f k ∈ F as follows:

∀h∈NρN ,∀i∈Nn−1 : f k
Jh

i ,J
h
i+1

= f k
Jh

i ,J
h
i+1

+
1

ρN
(11)

The probability of moving from a job to the next
one in the sequence is augmented by a certain factor
depending on the size of the elite sample. There is a
special case for the last job in the sequence that con-
sists of taking into account the possibility of moving
from this last job to any of the other possible jobs
(i.e., note that there are n− 1 possibilities and thus
the probability is increased by a factor 1

ρN(n−1) ).
Finally Algorithm 6 shows our proposal for the

algorithm BESTSOLUTION/1 adjusted to the ToSP
optimization. The aim is to produce the best solution
from the (best produced) set of pmfs. Observe that
for each pmf f k in Fw, this method creates n jobs se-
quences, each one starting with a different initial job.
Then, the rest of the sequence is constructed greedily
as follows (cf. Algorithm 7): assume than Jt is the
last job added to the sequence, the job Jobv ∈ JOBS
whose probability, according to f k, of moving from
Jt to Jobv is highest is chosen for being added next
(where Jobv is a job that was not added previously
to the sequence). Ties are broken randomly in case
there are several jobs that maximize this probability
value. Note that although this method BESTSOLU-
TION/1 is specific to the ToSP it is easy to adapt it to
other optimization problems by basically redefining
the greedy construction. This redefinition can also
lead to different versions of the method for the same
problem.

We have also implemented the algorithms PBIL
and UMDA as described in Section 2 for tackling
ToSP. Both of these algorithms correspond to in-
stances of our schema shown in Algorithm 2 where
P, FITNESS/1 and methods INITIALIZEFUNCT/1,
GENERATEPOPULATION/1 and BESTSOLUTION/1
are as in CE versions described above, and also w =
1 and θ = 0.0, i.e., they are standard EDAs consid-
ering only one pmf and with no local improvement

phase. However, the method UPDATEPMFS is dif-
ferent to that of our CE-based versions since the pmf
just captures the probability of a certain task occur-
ring at a certain position (of course, sampling is later
done avoiding already considered tasks, and renor-
malizing probabilities). In the following these algo-
rithms are denoted as UMDA(ρ) and PBIL (ρ,α)
according to different values of ρ and α (note that
in UMDA α = 1.0).

5. Computational results

This section describes an empirical analysis that has
been executed to handle the ToSP via a number of
distinct algorithms. Some of these algorithms are
instances of our schema shown in Algorithm 2 as
explained in Section 4.2.

5.1. General issues

As far as we know, no standard benchmark ex-
ists for this problem (at least no publicly avail-
able). For this reason, we have selected a wide set
of problem instances that have been considered in
the literature21,50,49,48; to be precise, 16 instances
have been selected, with number of jobs n∈ [10,50],
number of tools m ∈ [9,60], and machine capac-
ity C ∈ [4,30]. Table 1 shows the different prob-
lem instances chosen for the experimental evalua-
tion where a specific instance with n jobs, m tools
and machine capacity C is labeled as Cζ m

n .
Five different datasets†(i.e., tool incidence ma-

trices) were generated randomly per instance. Each
dataset was generated with the constraint, already
imposed in previous works, e.g., by Hertz et al.50,
that no job is covered by any other job in the sense
that for no two different jobs i and j, T (Jobi) ⊆
T (Job j). Were this the case, job i could be removed
from the problem instance, since scheduling it im-
mediately after job j would result in no tool switch-
ing. This consideration has been also taken into ac-
count by Bard21 and Zhou et al.48.

All the algorithms/variants that have been con-
sidered in the performance analysis (see Section 5.2)
have been executed 10 times by dataset for a total

†All datasets are available at http://www.unet.edu.ve/∼jedgar/ToSP/ToSP.htm
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Algorithm 6: Method BESTSOLUTION({ f 1, . . . , f w}).
1 max← ∞;
2 for k ∈ Nw do
3 // Each function generates n solutions

4 for i ∈ Nn do
5 // Construct a job sequence starting with job Jobi from function f k

6 J← GREEDYSEQUENCECONSTRUCTION( f k, i);
7 if KT NS(J)< max then
8 J∗← J;
9 max← KT NS(J);

10 end if
11 end for
12 end for
13 return J∗

Algorithm 7: Method GREEDYSEQUENCECONSTRUCTION( f , i)).

1 J1← Jobi; // Sequence starts with job Jobi

2 t← 1;
3 while t < n do
4 next← max{v ∈ Nn | fJt ,Jobv is maximal and Jobv ̸∈ {J1, . . . ,Jt}};
5 // Ties for different values of v are randomly broken

6 Jt+1← Jobnext ;
7 t← t +1;
8 end while
9 return ⟨J1, . . . ,Jn⟩

of 50 executions for instance. The number of eval-
uations was given by φn(m−C) with φ = 100 as
described by Amaya et al. 46.

5.2. Algorithms and parametrization

The experiments were carried out using a wide set
of different algorithms; among these we include a
Beam Search (BS) as presented by Zhou et al.48,
two LS methods: Hill Climbing (HC)46 and Tabu
Search (TS)47, a genetic algorithm (GA) and a
memetic algorithm (MAHC, a GA hybridized with
Hill Climbing) as described in 46; note that we do
not include here the cooperative models proposed
by Amaya et al.47 as in that approach it was shown
that the MAHC mentioned outperformed these col-
laborative approaches; in addition we also include

a cooperative (agent-based) algorithm, termed as
4Ri(MAHCP,MATSP,MAHCP), that can be con-
sidered the state-of-the-art for solving the ToSP as
shown in 51; this algorithm consists of a ring topol-
ogy with three agents loaded with a memetic al-
gorithm that cooperate during the search process
to handle the ToSP. Also, as novel applications
to solve the ToSP we include the following algo-
rithms: PBIL and UMDA as described in Section
4.2, and a number of different CE-based algorithms
that stem from our generic schema described in Sec-
tion 3. In particular we considered a simple cross
entropy algorithm (CE, with w= 1 and θ = 0.0), two
memetic versions (CELS(θ ), where the local search
LS ∈ {TS, HC} as defined previously, w = 1, θ ∈
{0.001,0.002,0.005,0.01,0.02,0.05,0.1,0.2,0.5},



CE-MA methods: application study over the ToSP

Table 1: Problem Instances considered in the experimental evaluation. The minimum and maximum of tools
required for all the jobs is indicated, as well as the work(s) from which the problem instance was obtained (see
bibliography section). Recall we are using the notation Cζ m

n , where C is the magazine capacity, m is the total
number of tools and n is the number of jobs.

4ζ 9
10 4ζ 10

10 6ζ 15
10 6ζ 12

15 6ζ 20
15 8ζ 15

20 8ζ 16
20 10ζ 20

20
Min. 2 2 3 3 3 3 3 4
Max. 4 4 6 6 6 8 8 10

Source 21,48 49,50 48 21,48 50 49 21,48 21,48

10ζ 25
30 15ζ 40

30 15ζ 30
40 20ζ 60

40 24ζ 30
20 24ζ 36

20 25ζ 40
50 30ζ 40

20
Min. 4 6 6 7 9 9 9 11
Max. 10 15 15 20 24 24 20 30

Source 49 50 49 50 21,48 21,48 49 48

and LSevals = 100), and the corresponding ver-
sions of both CE and CELS(θ ) with w > 1 pmfs,
namely CEM and CEMLS(θ ). In the experiments,
we set the value w = 4 as preliminary experiments
suggested that this value is reasonably good for ob-
taining a correct performance.

As for local search methods, the notation HCP
and HCF (resp. TSP and TSF) is used to indicate
the HC variant (resp. TS variant) in which the swap
neighborhood is partially or fully explored respec-
tively (in the case of partial exploration we consider
λ = 4, i.e., 4n neighbors explored 46). Other details
of each particular LS method are as follows. In the
case of HC, the search is restarted from a different
initial point if stagnation takes place before consum-
ing the allotted number of evaluations. Regarding
TS, the tabu tenure is 5, and the number of iterations
on each neighborhood for performing strategic os-
cillation is 3. In both cases, this corresponds to the
setting used by Al-Fawzan and Al-Sultan49.

In 7, de Boer et al. suggest that the size of the
samples should be a function of n2 (where n is the
number of variables), and thus for the CE method
and its different variants (i.e., CE, CEM and their
corresponding hybridized versions with LS meth-
ods), and also for UMDA and PBIL we set N to be
n2 (where n is the number of jobs) and ρ = 0.01. In
the case of UMDA we also consider ρ = 0.2 (ex-
periments with this value of ρ were also done with
PBIL, but performance was very poor so it is not in-
cluded in the tables for the sake of simplicity).

In summary, 19 types of different algo-
rithms (i.e., HCP, HCF, TSP, TSF, BS, MAHCP,
4Ri(MAHCP,MATSP,MAHCP), UMDA, PBIL, CE,
CEM, CEHCP, CEHCF, CETSP, CETSF, CEMHCP,
CEMHCF, CEMTSP, and CEMTSF) and 103 vari-
ants of these for different values of its parameters
have been considered in the experiments.

5.3. Performance results and statistical
comparisons

The performance results obtained by all algorithms
(and their different versions up to a number of
103 algorithms/variants) mentioned previously are
shown in Table 6 (LS methods, Beam Search,
MAHCP, 4Ri(MAHCP,MATSP,MAHCP), and non-
memetic CE versions), Tables 7 and 8 (CELS vari-
ants for different values of θ ), Table 9 (UMDA and
PBIL for different values of α), and Tables 10 and
11 (CEMLS versions for different values of θ ).

In all these tables x indicates the average number
of the tool switchings obtained considering all the
executions (i.e., the 50 executions per instance) and
σ shows the mean standard deviations across the 5
datasets in the instance under consideration. Best
results in terms of average are marked in bold.

As seen in Table 6, non-hybrid methods such
as HC and TS are outperformed by hybrid variants
(4Ri(MAHCP,MAT SP,MAHCP) and MAHCP and
by CE and CEM in 15 out of 16 instances (TS pro-
vides the best results in 6ζ 15

10 ). Additionally, we can
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CEHCP

CEMHCP
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Figure 1: Rank distribution of CE-based algorithms considering all instances. As usual, each box comprises
from the first to the third quartile of the distribution, the median (2nd quartile) is marked with a vertical line,
whiskers span 1.5 times the inter-quartile range, and outliers are indicated with a plus sign.

Table 2: Results of Friedman and Iman-Davenport tests for the techniques in Figure 1.
Friedman value X2

F value Iman-Davenport value FF value
CE-based algorithms 92.40 16.92 26.86 1.95

observe that CE and CEM perform comparably to
the best algorithm reported for the resolution of the
ToSP, i.e. 4Ri(MAHCP,MAT SP,MAHCP); it is par-
ticularly interesting to note that CEM outperforms
4Ri(MAHCP,MAT SP,MAHCP) in 12 out of 16 in-
stances. This said, due to the high number of al-
gorithm variants it is not easy to anatomize the per-

formance of each of them compared with the rest
by simply inspecting the numerical tables, so we
have opted for a rank-based approach. To be pre-
cise, we have firstly focused on the performance of
the family of CE-based algorithms (i.e., 10 differ-
ent algorithms) and secondly on a global analysis
comparing the best versions of each family of algo-
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Table 3: Results of Holm’s test using the CEHCP family as control algorithm (α = 0.05).
i algorithm z-statistic p-value α/i
1 CEMHCP 0.1459 0.4419 0.05
2 CEMHCF 0.4379 0.3307 0.025
3 CEHCF 0.8466 0.1986 0.0167
4 CEM 1.9559 0.0252 0.0125
5 CEMTSP 2.0727 0.0191 0.01
6 CEMTSF 3.0653 0.0011 0.0083
7 CE 3.7659 < 0.0001 0.0071
8 CETSP 5.0213 < 0.0001 0.0063
9 CETSF 6.0431 < 0.0001 0.0056

rithms. In both cases, we have computed the rank ri
j

of each algorithm j on each instance i. In the first
case we have used for ranking purposes the median
value provided by each family on each dataset (i.e.,
the median of the mean values provided by each al-
gorithm in the family), to account for the fact that
some families have more members than others. In
the second case the comparison involves individual
algorithms run for the same number of times (10)
on each dataset (for each of the 5 datasets in an
instance). Hence we consider the mean of the so-
lutions found on each dataset. The best algorithm
receives rank 1 and the worst one receives rank k,
where k is the number of algorithms involved in the
ranking.

Specifically for CE-based algorithms, we have
k = 10 different algorithms/versions namely, CE,
CEM, CETSF, CETSP, CEHCF, CEHCP, CEMTSF,
CEMTSP, CEMHCF, and CEHCP. Figure 1 shows
the rank distribution for the CE-based algorithms;
note that for the memetic versions we have used the
version that provides the least average error consid-
ering all the instances according to Tables 7, 8, 10
and 11 that show the results obtained by the memetic
versions for different values of parameter θ .

Next, we have used two well-known non-
parametric statistical tests52 to compare ranks,
namely Friedman test53 and Iman-Davenport test54.
The results, at the standard level of α = 0.05, are
shown in Table 2. The statistic values obtained are
clearly higher than the critical values, and therefore
the null hypothesis, namely that all algorithms are
equivalent, can be rejected (i.e., the statistical test
is passed, thus indicating significant differences in

their ranks at the standard α = 0.05 level).

Subsequently, we have performed Holm’s test55

in order to determine whether there exist significant
differences among these variants of CE with respect
to a control algorithm (in this case the best version
of the algorithm CEHCP, which presented the best
average rank as shown in Figure 1). To do so, we
compute the following z-statistic for the i-th algo-

rithm as z = (Ri−R0)/
√

k(k+1)
6T , where Ri is the av-

erage of the i-th algorithm, R0 is the average of the
control algorithm, k = 10 is the number of algo-
rithms and T is the number of instances. Table 3
shows the results of this test. Note that the test is
only passed for 4 of the algorithms in relation to the
mentioned control algorithm and that no significant
difference exists among the algorithms CEMHCP,
CEMHCF, CEHCF, CEM, CEMTSP, and the con-
trol algorithm CEHCP. As a preliminary conclusion,
it is clear that the CE-based memetic algorithms en-
dowed with HC show the best overall performance
and that CE-based algorithms with multiple pmfs
represent a valuable alternative to tackle the solution
of the ToSP.

Subsequently we have conducted the same anal-
ysis but considering the whole set of algorithm fam-
ilies (i.e., all those mentioned in Section 5.2) and
Figure 2 shows the rank distribution where k = 40
is the number of algorithms involved in the compar-
ison. For each particular algorithm we have consid-
ered its best versions (i.e., the three best ones that
minimizes the average error considering all the in-
stances according to the results shown in Tables 6-
11).
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Figure 2: Rank distribution of the best variants of each family of algorithms across all instances.

Table 4: Results of Friedman and Iman-Davenport tests for the techniques in Figure 2.
Friedman value X2

F value Iman-Davenport value FF value
All 40 550.34 54.57 112.07 1.42
Top 12 28.45 19.68 2.89 1.85

In general, CE and CEM show better perfor- mance than BS, HC and TS, although TS performs
better than CE in some of the instances with low
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Table 5: Results of Holm’s test using CEMHCP(0.5) as control algorithm (α = 0.05).
i algorithm z-statistic p-value α/i
1 CEMHCF(0.5) 1.1521 0.1246 0.05
2 CEMHCP(0.2) 2.2798 0.0113 0.025
3 CEMHCF(0.1) 2.3043 0.0106 0.0167
4 CEMHCF(0.2) 2.3288 0.0099 0.0125
5 CEHCP(0.05) 2.3533 0.0093 0.01
6 CEHCP(0.1) 2.5740 0.0050 0.0083
7 CEHCP(0.5) 2.6720 0.0037 0.0071
8 CEHCF(0.05) 3.1378 < 0.001 0.0063
9 CEMHCP(0.1) 3.2604 < 0.001 0.0056

10 CEHCF(0.5) 3.4810 < 0.001 0.0050
11 CEHCF(0.001) 3.5791 < 0.001 0.0045

number of jobs —see Table 6. Memetic versions of
CE (i.e., CELS with TS and HC) provide disparate
results: while the combination of CE with TS results
in worse results than CE alone (yet slightly better
than TS alone), the combination with HC is syner-
getic, providing better results than CE and HC in
isolation. This can be interpreted in light of the bet-
ter tradeoff provided by HC between the computa-
tional cost of the local searcher and its capability for
intensifying the search. As to multi-pmf versions of
CE, they generally perform better than their single-
pmf counterparts, providing support to the useful-
ness of diversifying the search by means of multi-
ple pmfs. The memetic version endowed with HC
(in both variants HCP and HCF) provide the overall
best results, and can be seen as a way of integrating
the best of both worlds (diversification by multiple
pmfs, and intensification by HC).

In general, it can be observed that the CE-based
memetic algorithms in general perform better than
the rest of algorithms. Notice that the best memetic
CE-variants incorporating HC tend to use high val-
ues of θ , i.e., more frequent application of local
search, whereas those incorporating TS typically use
lower values. Again, this highlights the different
search profile of the local searchers. While TS is
good as a stand-alone technique, when combined
with CE in a memetic framework the synergy at-
tained is limited. HC on the other hand provides
in this case a more cost-effective contribution to the
hybrid global/local search.

From a statistical point of view, we can see

that there are significant differences among both
the whole set of techniques and the top 12 (whose
relative performance is again better that the rest
of techniques), as shown in Table 4. Further-
more, Holm’s test indicates (see Table 5) that tak-
ing CEMHCP(0.5) as the control algorithm, differ-
ences are statistically significant (α = 0.05) with the
remaining techniques in the top 12 tier, except for
CEMHCF(0.5).

6. Conclusions and future work

We have proposed a generic schema from which a
number of Cross-Entropy (CE) based algorithms can
be devised, including memetic versions hybridized
with local search operators. Among the instantia-
tions of the schema, there are algorithms that —to
the best of our knowledge— are novel, in particu-
lar the CE-based memetic algorithms endowed with
local search and multiple pmfs. In order to show
the applicability of the schema, and also with the
aim of checking the goodness of the novel hybrid
algorithms proposed, we have conducted an exhaus-
tive experimental analysis involving 19 different al-
gorithms, and 103 versions of these, on the tool
switching problem (ToSP), a complex combinatorial
optimization problem in the field of flexible man-
ufacturing systems. All CE-based algorithms pro-
duced as instances of the generic schema and con-
sidered in the experimental section have been, as far
as we know, applied for the first time to this problem.
Moreover, the results effectively demonstrate that
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the new proposals, namely the CE-based memetic
algorithms with multiple pmfs, are not only promis-
ing but also show better performance than the rest of
the algorithms considered in the comparison, includ-
ing a (non CE-based) memetic algorithm that was
the state-of-the-art algorithm in the optimization of
this problem.

There are many avenues for future developments.
An immediate line of research will try to provide
further results of the techniques devised in this work.
To be precise, we are currently working on other
problems in the area of machine scheduling with
encouraging results. Work is also in progress in
the area of cooperative models for optimization47,
where we aim to integrate memetic CE-based tech-
niques with other memetic methods.
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Table 6: Computational results with HC, TS, Beam Search —as proposed in 48— for several values of the width
beam (i.e., β ), memetic algortihms with HC, standard CE and CEM with 4 pmfs. x = mean number of tool
switches.σ = mean standard deviation. Recall we are using the notation Cζ m

n , where C is the magazine capacity,
m is the total number of tools and n is the number of jobs.

HCF HCP TSF TSP β = 1 β = 2 β = 3 β = 4 β = 5 4Ri(MAHCP, MATSP, MAHCP) MAHCP CE CEM

4ζ 9
10 x 8.4 8.4 8.12 8.08 8.4 8.4 8.4 8.4 8.4 7.9 8.1 8.12 8.06

σ 0.39 0.35 0.22 0.22 0.0 0.0 0.0 0.0 0.0 0.81 0.75 0.36 0.44
4ζ 10

10 x 9.34 9.6 9.06 8.8 10.0 9.8 9.6 9.6 9.6 8.78 8.94 9.04 9.04
σ 0.39 0.43 0.24 0.27 0.0 0.0 0.0 0.0 0.0 1.72 1.62 0.43 0.26

6ζ 15
10 x 14.38 14.7 13.82 13.68 15.2 14.8 14.8 14.8 14.8 13.82 13.89 14.02 14.0

σ 0.32 0.57 0.26 0.15 0.0 0.0 0.0 0.0 0.0 2.01 1.99 0.47 0.51
6ζ 12

15 x 18.32 20.1 17.08 16.46 18.2 17.6 17.6 17.4 17.4 15.92 16.26 16.04 15.64
σ 0.24 0.83 0.53 0.55 0.0 0.0 0.0 0.0 0.0 1.86 1.79 0.9 0.63

6ζ 20
15 x 24.76 26.54 23.4 23.02 26.2 25.8 25.2 25.2 25.2 22.98 23.18 23.3 23.26

σ 0.76 0.89 0.63 0.58 0.0 0.0 0.0 0.0 0.0 1.92 1.96 1.0 0.9
8ζ 15

20 x 24.46 28.9 24.3 23.62 27.0 26.0 25.6 25.2 25.2 22.66 22.86 22.28 21.58
σ 0.7 1.36 0.86 0.95 0.0 0.0 0.0 0.0 0.0 3.22 3.41 0.89 0.7

8ζ 16
20 x 28.76 33.78 28.76 27.92 29.4 29.4 29.4 29.4 29.4 26.96 27.24 26.18 25.78

σ 0.17 1.35 0.93 0.95 0.0 0.0 0.0 0.0 0.0 2.07 2.22 1.09 0.67
10ζ 20

20 x 34.4 37.46 31.78 30.72 34.2 33.6 33.4 33.4 33.4 30.18 30.53 30.28 29.28
σ 0.41 1.5 0.91 0.89 0.0 0.0 0.0 0.0 0.0 2.16 2.49 0.69 0.72

10ζ 25
30 x 69.6 85.46 85.34 67.72 73.6 70.8 70.8 70.8 70.6 64.2 64.32 60.24 59.04

σ 0.0 2.79 0.78 1.47 0.0 0.0 0.0 0.0 0.0 2.23 2.4 1.46 0.97
15ζ 40

30 x 103.0 121.2 104.28 101.72 111.6 110.0 109.2 107.8 107.8 99.1 99.7 96.72 94.94
σ 0.63 2.39 1.56 1.71 0.0 0.0 0.0 0.0 0.0 12.39 12.82 1.59 1.28

15ζ 30
40 x 100.34 127.54 130.5 101.9 105.2 103.2 102.8 102.8 102.4 95.08 95.86 88.62 86.3

σ 0.99 3.5 0.82 1.97 0.0 0.0 0.0 0.0 0.0 8.09 7.52 1.33 1.32
20ζ 60

40 x 214.42 248.7 255.8 213.74 221.8 220.0 218.8 218.6 218.6 205.78 206.3 199.1 195.98
σ 2.95 4.31 1.08 2.43 0.0 0.0 0.0 0.0 0.0 7.82 8.81 2.13 2.01

24ζ 30
20 x 25.8 30.24 25.72 25.04 33.0 32.6 32.4 32.4 32.4 24.42 24.78 23.98 23.46

σ 0.0 1.23 0.99 0.76 0.0 0.0 0.0 0.0 0.0 3.48 3.29 0.83 0.59
24ζ 36

20 x 48.48 53.24 47.04 45.9 54.0 54.0 53.8 53.8 53.4 44.82 44.87 45.12 43.96
σ 0.34 1.3 1.1 0.8 0.0 0.0 0.0 0.0 0.0 8.46 7.55 1.28 0.98

25ζ 40
50 x 150.88 191.02 196.28 153.58 167.2 164.0 162.8 162.8 161.8 143.22 144.18 131.88 130.76

σ 6.1 4.52 0.9 2.61 0.0 0.0 0.0 0.0 0.0 11.46 11.94 2.0 1.74
30ζ 40

20 x 44.4 49.12 42.82 42.12 52.2 50.2 50.2 50.2 50.2 40.6 41,.3 40.84 40.08
σ 0.0 1.58 1.12 1.01 0.0 0.0 0.0 0.0 0.0 4.34 4.41 1.24 1.1



J.E. Amaya, C. Cotta, A.J. Fernández-Leiva

Table
7:C

om
putationalresults

w
ith

m
em

etic
versions

ofC
E

hybridized
w

ith
H

C
–

i.e.,w
ith

fullneighborhood
exploration

C
E

H
C

F
(θ

)
and

partialneighborhood
exploration

C
E

H
C

P
( θ

)
–

and
severalvalues

ofθ
,i.e.,probability

oflocalsearch.
x=

m
ean

num
beroftoolsw

itches.
σ

=
m

ean
standard

deviation.R
ecallw

e
are

using
the

notation
C

ζ
mn

,w
here

C
is

the
m

agazine
capacity,m

is
the

totalnum
beroftools

and
n

is
the

num
berofjobs.CEHCF(0.001)

CEHCF(0.002)

CEHCF(0.005)

CEHCF(0.01)

CEHCF(0.02)

CEHCF(0.05)

CEHCF(0.1)

CEHCF(0.2)

CEHCF(0.5)

CEHCP(0.001)

CEHCP(0.002)

CEHCP(0.005)

CEHCP(0.01)

CEHCP(0.02)

CEHCP(0.05)

CEHCP(0.1)

CEHCP(0.2)

CEHCP(0.5)

4ζ
910

x
8.06

8.0
7.98

8.0
7.98

8.04
8.0

8.06
8.08

7.96
7.96

8.04
7.92

7.94
7.98

7.94
8.0

7.94
σ

0.33
0.2

0.2
0.23

0.2
0.32

0.31
0.26

0.28
0.2

0.2
0.19

0.22
0.19

0.31
0.19

0.2
0.24

4ζ
10
10

x
8.92

8.88
8.88

9.0
8.82

8.92
9.04

8.96
8.9

8.94
8.94

8.88
8.92

8.96
8.94

9.0
8.94

8.94
σ

0.22
0.27

0.3
0.2

0.33
0.33

0.38
0.36

0.34
0.38

0.33
0.33

0.31
0.32

0.3
0.38

0.43
0.22

6ζ
15
10

x
13.74

13.76
13.72

13.74
13.82

13.7
13.86

13.76
13.78

13.74
13.92

13.74
13.78

13.8
13.74

13.76
13.82

13.82
σ

0.24
0.19

0.23
0.22

0.32
0.21

0.36
0.33

0.31
0.24

0.51
0.19

0.28
0.42

0.34
0.25

0.28
0.32

6ζ
12
15

x
15.46

15.48
15.32

15.32
15.4

15.28
15.38

15.52
15.5

15.42
15.6

15.6
15.52

15.4
15.32

15.36
15.44

15.3
σ

0.59
0.62

0.73
0.54

0.58
0.7

0.67
0.66

0.63
0.62

0.73
0.64

0.64
0.74

0.66
0.7

0.68
0.57

6ζ
20
15

x
22.54

22.54
22.6

22.42
22.74

22.36
22.78

22.5
22.46

22.68
22.58

22.66
22.64

22.74
22.54

22.5
22.64

22.76
σ

0.78
0.69

0.76
0.7

0.75
0.7

0.82
0.58

0.74
0.76

0.83
0.76

0.94
0.77

0.85
0.78

0.68
0.83

8ζ
15
20

x
21.18

21.2
21.26

21.44
21.04

21.2
21.28

21.18
21.2

21.26
21.32

21.16
21.18

21.08
21.1

21.24
21.42

21.3
σ

0.82
0.81

0.52
0.74

0.64
0.82

0.79
0.65

0.72
0.81

0.76
0.54

0.72
0.61

0.57
0.56

0.83
0.63

8ζ
16
20

x
25.36

25.36
25.26

25.46
25.32

25.26
25.4

25.54
25.32

25.36
25.26

25.32
25.36

25.5
25.28

25.46
25.34

25.18
σ

0.68
0.95

0.71
0.79

0.82
0.85

0.67
0.85

0.62
0.81

0.78
0.59

0.66
0.79

0.79
0.76

0.75
0.52

10ζ
20
20

x
28.56

28.72
28.84

28.54
28.66

28.62
28.66

28.84
28.62

28.72
28.96

28.74
28.74

28.62
28.92

28.7
28.42

28.8
σ

0.65
0.71

0.68
0.87

0.8
0.8

0.72
0.78

0.8
0.81

0.71
0.68

0.88
0.75

0.76
0.72

0.78
0.79

10ζ
25
30

x
58.98

59.02
59.06

58.96
58.9

58.66
58.76

58.88
59.06

58.5
58.68

58.58
58.52

58.32
58.72

58.62
58.6

58.7
σ

0.85
0.91

1.09
0.79

1.1
1.04

1.04
1.04

1.22
0.86

1.02
0.83

0.84
0.81

1.12
0.96

0.93
0.88

15ζ
40
30

x
93.38

93.1
93.28

93.8
93.4

93.96
93.3

93.92
93.56

93.4
93.24

93.4
93.54

93.46
93.32

93.12
93.78

93.24
σ

1.31
1.52

1.5
1.29

1.36
1.22

1.37
1.38

1.43
1.21

1.63
1.26

1.4
1.57

1.49
1.41

1.18
1.5

15ζ
30
40

x
95.96

95.48
96.58

96.42
96.06

96.52
96.1

96.0
95.56

88.84
89.08

89.9
88.1

89.16
89.3

88.96
89.52

89.12
σ

2.38
2.48

2.56
2.64

2.41
2.16

2.25
3.04

2.49
1.9

2.27
2.3

1.88
1.74

2.08
2.05

2.07
2.24

20ζ
60
40

x
196.26

196.58
196.68

197.14
196.46

196.04
196.2

196.48
196.8

194.72
194.18

194.5
194.02

194.0
194.5

194.68
194.16

194.48
σ

2.28
2.4

2.4
2.69

2.07
2.47

2.1
2.47

2.3
1.68

2.06
1.49

1.48
1.79

1.9
1.62

2.16
1.44

24ζ
30
20

x
23.0

23.18
23.24

22.94
23.1

23.06
22.96

23.14
22.96

23.14
23.24

23.16
23.26

23.12
23.06

22.9
22.96

23.08
σ

0.85
0.75

0.9
0.66

0.64
0.7

0.74
0.74

0.79
0.64

0.67
0.66

0.56
0.79

0.67
0.67

0.64
0.65

24ζ
36
20

x
43.04

43.2
42.96

42.82
42.98

43.16
42.88

43.0
42.98

43.08
43.0

42.94
43.16

43.14
42.9

43.3
42.98

42.96
σ

1.01
0.95

1.0
1.04

1.07
1.23

1.16
0.88

1.08
1.06

1.3
1.04

0.97
1.03

0.72
1.09

0.92
1.05

25ζ
40
50

x
157.7

156.72
156.88

157.92
157.86

156.12
155.9

156.76
156.32

138.72
139.58

138.58
138.78

138.2
138.22

138.44
138.26

138.64
σ

3.49
3.61

3.66
3.73

4.03
3.65

3.51
3.61

3.72
2.93

3.04
3.17

2.17
2.77

2.38
2.57

2.49
2.9

30ζ
40
20

x
39.38

39.36
39.44

39.26
39.48

39.38
39.32

39.4
39.2

39.34
39.4

39.38
39.46

39.16
39.28

39.26
38.98

39.06
σ

1.17
1.01

0.99
0.85

1.04
0.91

0.96
0.87

1.13
0.79

0.99
1.01

0.97
1.0

1.05
1.22

0.93
0.96



CE-MA methods: application study over the ToSP

Ta
bl

e
8:

C
om

pu
ta

tio
na

lr
es

ul
ts

w
ith

m
em

et
ic

ve
rs

io
ns

of
C

E
hy

br
id

iz
ed

w
ith

T
S

–
i.e

.,
w

ith
fu

ll
ne

ig
hb

or
ho

od
ex

pl
or

at
io

n
C

E
T

SF
(θ

)
an

d
pa

rt
ia

ln
ei

gh
bo

rh
oo

d
ex

pl
or

at
io

n
C

E
T

SP
(θ

)
–

an
d

se
ve

ra
lv

al
ue

s
of

θ,
i.e

.,
pr

ob
ab

ili
ty

of
lo

ca
ls

ea
rc

h.
x=

m
ea

n
nu

m
be

r
of

to
ol

sw
itc

he
s.

σ
=

m
ea

n
st

an
da

rd
de

vi
at

io
n.

R
ec

al
lw

e
ar

e
us

in
g

th
e

no
ta

tio
n

C
ζm n

,w
he

re
C

is
th

e
m

ag
az

in
e

ca
pa

ci
ty

,m
is

th
e

to
ta

ln
um

be
ro

ft
oo

ls
an

d
n

is
th

e
nu

m
be

ro
fj

ob
s. CETSF(0.001)

CETSF(0.002)

CETSF(0.005)

CETSF(0.01)

CETSF(0.02)

CETSF(0.05)

CETSF(0.1)

CETSF(0.2)

CETSF(0.5)

CETSP(0.001)

CETSP(0.002)

CETSP(0.005)

CETSP(0.01)

CETSP(0.02)

CETSP(0.05)

CETSP(0.1)

CETSP(0.2)

CETSP(0.5)

4ζ
9 10

x
8.

18
8.

2
8.

26
8.

14
8.

18
8.

34
8.

16
8.

04
8.

16
8.

1
8.

14
8.

22
8.

16
8.

12
8.

16
8.

12
8.

1
8.

06
σ

0.
4

0.
25

0.
35

0.
29

0.
42

0.
51

0.
39

0.
32

0.
41

0.
41

0.
36

0.
38

0.
39

0.
41

0.
32

0.
4

0.
32

0.
19

4ζ
10 10

x
9.

2
9.

14
9.

14
9.

18
9.

2
9.

16
9.

22
9.

26
9.

22
9.

3
9.

18
9.

28
9.

06
9.

12
9.

14
9.

22
9.

1
9.

18
σ

0.
4

0.
41

0.
49

0.
39

0.
49

0.
48

0.
42

0.
39

0.
41

0.
52

0.
37

0.
46

0.
34

0.
47

0.
51

0.
49

0.
41

0.
36

6ζ
15 10

x
14

.0
2

14
.1

8
14

.0
4

14
.1

14
.2

14
.1

6
14

.1
14

.2
6

14
.0

6
14

.2
2

13
.9

8
14

.0
8

14
.1

2
14

.0
4

14
.1

6
14

.0
4

14
.1

2
14

.0
2

σ
0.

46
0.

57
0.

47
0.

51
0.

64
0.

63
0.

62
0.

63
0.

48
0.

57
0.

46
0.

54
0.

5
0.

6
0.

62
0.

56
0.

6
0.

51
6ζ

12 15
x

16
.1

8
16

.2
6

16
.3

2
16

.1
4

16
.3

4
16

.1
4

16
.3

4
16

.2
2

16
.2

8
16

.2
2

16
.3

2
16

.3
2

16
.2

8
16

.1
8

16
.1

8
16

.2
16

.0
6

16
.0

4
σ

0.
88

0.
75

0.
81

0.
64

0.
99

0.
64

0.
82

0.
6

0.
86

0.
97

0.
82

0.
84

0.
83

0.
86

0.
74

0.
65

0.
88

0.
62

6ζ
20 15

x
23

.5
4

23
.7

23
.8

2
23

.6
2

23
.4

23
.6

2
23

.8
2

23
.9

8
23

.3
4

23
.4

23
.8

2
23

.6
2

23
.3

6
23

.5
8

23
.3

2
23

.5
6

23
.4

8
23

.6
4

σ
0.

89
0.

87
0.

81
0.

96
0.

85
0.

89
0.

76
0.

93
0.

98
0.

87
0.

97
0.

92
0.

9
1.

0
0.

77
0.

9
0.

94
0.

77
8ζ

15 20
x

23
.3

8
23

.6
6

23
.3

8
23

.3
23

.3
8

23
.1

23
.8

8
23

.4
4

23
.8

6
22

.5
4

22
.6

22
.2

4
22

.4
4

22
.6

2
22

.0
8

22
.2

4
22

.5
22

.5
2

σ
1.

18
1.

06
0.

93
1.

11
1.

25
0.

96
1.

22
1.

27
1.

21
0.

95
0.

85
0.

88
0.

95
0.

97
0.

87
0.

88
1.

02
0.

74
8ζ

16 20
x

27
.3

27
.6

27
.3

6
27

.5
6

27
.4

27
.4

4
27

.3
6

27
.5

6
27

.3
8

26
.6

4
26

.7
2

26
.6

2
26

.4
2

26
.6

4
26

.5
8

26
.6

4
26

.5
8

26
.5

6
σ

0.
91

1.
08

0.
96

1.
2

1.
06

0.
86

1.
04

1.
14

1.
08

1.
14

1.
02

0.
82

0.
97

0.
96

0.
82

0.
77

1.
04

0.
79

10
ζ20 20

x
31

.0
8

30
.5

8
30

.7
8

30
.8

30
.7

6
30

.6
8

30
.6

6
30

.4
6

30
.7

6
30

.4
30

.4
6

29
.9

8
30

.0
4

30
.3

30
.2

2
30

.4
4

30
.0

4
30

.4
4

σ
1.

08
1.

2
1.

1
1.

08
0.

95
1.

0
1.

14
0.

92
0.

99
0.

79
1.

01
0.

93
0.

75
0.

83
0.

88
0.

98
1.

02
1.

06
10

ζ25 30
x

70
.5

6
70

.0
2

71
.3

2
71

.0
6

70
.7

2
71

.0
8

70
.5

71
.0

6
69

.7
61

.9
6

61
.5

2
61

.4
2

61
.8

61
.8

8
61

.5
6

61
.8

61
.9

8
61

.7
8

σ
2.

9
2.

81
3.

02
2.

69
2.

87
3.

04
2.

65
2.

44
2.

98
1.

2
1.

27
1.

34
1.

33
1.

25
1.

64
1.

21
1.

65
1.

56
15

ζ40 30
x

10
2.

94
10

3.
66

10
3.

84
10

4.
84

10
3.

9
10

4.
2

10
4.

52
10

3.
98

10
4.

36
96

.8
4

96
.4

4
96

.4
8

96
.9

97
.0

4
97

.3
96

.8
2

97
.2

96
.5

6
σ

2.
57

3.
2

3.
27

2.
75

2.
71

3.
22

2.
85

2.
61

3.
45

1.
77

1.
53

1.
41

1.
84

1.
81

1.
57

1.
33

1.
87

1.
84

15
ζ30 40

x
11

7.
48

11
8.

1
11

8.
18

11
7.

36
11

7.
82

11
6.

96
11

8.
08

11
7.

26
11

7.
36

10
0.

66
10

1.
1

10
0.

46
10

0.
92

10
0.

9
10

0.
38

10
0.

46
10

0.
28

10
0.

9
σ

4.
52

4.
1

4.
03

4.
83

4.
2

4.
11

4.
68

3.
77

3.
6

3.
31

2.
68

3.
29

2.
43

2.
04

2.
86

2.
8

2.
44

2.
78

20
ζ60 40

x
22

4.
32

22
2.

32
22

3.
52

22
3.

84
22

2.
3

22
4.

06
22

2.
28

22
2.

58
22

4.
0

20
0.

54
20

0.
78

20
0.

64
20

0.
46

20
1.

32
20

0.
32

20
1.

22
20

0.
8

20
0.

42
σ

4.
17

4.
47

4.
62

4.
29

4.
62

4.
0

4.
47

4.
24

5.
49

2.
2

2.
14

2.
01

2.
15

2.
73

2.
5

1.
94

2.
57

2.
27

24
ζ30 20

x
25

.8
2

26
.2

25
.9

25
.6

25
.8

6
25

.6
25

.6
2

25
.8

6
26

.1
24

.6
6

24
.5

8
24

.3
2

24
.5

24
.3

4
24

.3
2

24
.6

6
24

.2
8

24
.2

2
σ

1.
16

1.
05

1.
34

1.
34

1.
14

1.
24

1.
13

1.
16

1.
36

0.
91

0.
83

0.
93

0.
81

1.
09

0.
95

0.
83

1.
0

0.
83

24
ζ36 20

x
45

.5
45

.3
6

45
.6

45
.4

4
45

.6
45

.2
6

45
.6

45
.4

8
45

.6
6

45
.2

4
45

.2
8

44
.5

8
45

.0
2

45
.1

45
.0

45
.1

44
.7

6
44

.9
σ

1.
34

1.
32

1.
27

1.
29

1.
42

1.
33

1.
46

1.
43

1.
19

1.
27

1.
25

1.
05

1.
17

1.
11

1.
3

1.
35

0.
88

1.
2

25
ζ40 50

x
18

6.
16

18
7.

36
18

7.
84

18
7.

32
18

7.
1

18
6.

68
18

6.
04

18
7.

36
18

7.
62

16
0.

06
16

0.
76

16
0.

66
15

9.
74

15
9.

42
15

9.
82

16
0.

4
15

9.
5

15
9.

84
σ

5.
61

5.
87

5.
37

6.
23

5.
65

6.
54

7.
74

5.
52

5.
5

3.
78

3.
88

4.
48

3.
79

4.
37

4.
64

3.
88

3.
94

3.
74

30
ζ40 20

x
42

.0
41

.8
4

41
.9

6
42

.1
6

42
.0

2
41

.6
8

41
.7

8
42

.0
4

42
.1

2
41

.2
6

41
.0

8
41

.0
4

41
.0

6
41

.2
8

41
.0

8
41

.3
6

41
.0

2
41

.3
σ

1.
48

1.
08

1.
18

1.
37

1.
51

1.
16

1.
28

1.
24

1.
55

1.
32

1.
07

1.
04

0.
93

0.
97

1.
23

1.
28

1.
16

1.
26



J.E. Amaya, C. Cotta, A.J. Fernández-Leiva

Table
9:C

om
putationalresults

w
ith

PB
IL

(ρ
,α

)and
U

M
D

A
(ρ

)forρ
∈
{0.01

,0.2}
and

severalvalues
ofα

ranging
in

[0.60
,0.95

].x=
m

ean
num

ber
of

toolsw
itches.

σ
=

standard
deviation.

R
ecallw

e
are

using
the

notation
C

ζ
mn

,w
here

C
is

the
m

agazine
capacity,m

is
the

total
num

beroftools
and

n
is

the
num

berofjobs.

PBIL(0.01/0.60)

PBIL(0.01/0.65)

PBIL(0.01/0.70)

PBIL(0.01/0.75)

PBIL(0.01/0.80)

PBIL(0.01/0.85)

PBIL(0.01/0.90)

PBIL(0.01/0.95)

UMDA(0.01)

PBIL(0.2/0.60)

PBIL(0.2/0.65)

PBIL(0.2/0.70)

PBIL(0.2/0.75)

PBIL(0.2/0.80)

PBIL(0.2/0.85)

PBIL(0.2/0.90)

PBIL(0.2/0.95)

UMDA(0.2)

4ζ
910

x
9.8

9.7
10.08

10.18
9.92

10.1
10.26

10.5
10.72

12.7
12.38

12.46
12.36

12.5
12.42

12.44
12.78

12.6
σ

0.92
0.75

0.76
0.95

0.68
0.95

1.05
1.1

0.74
1.41

1.32
1.64

1.46
1.36

1.46
1.21

1.44
1.71

4ζ
10
10

x
10.74

11.02
11.16

11.22
11.38

11.16
11.78

11.62
12.72

13.5
13.56

13.36
13.84

13.28
13.12

13.14
13.38

13.5
σ

0.75
1.04

0.81
0.82

0.88
1.0

1.07
1.04

1.2
1.52

1.41
1.33

1.73
1.7

1.38
1.47

1.43
1.39

6ζ
15
10

x
16.44

17.12
16.58

17.14
17.24

17.16
17.76

17.96
18.56

19.58
20.18

19.36
19.86

19.8
19.84

19.82
19.8

19.72
σ

1.1
1.04

0.98
1.14

0.92
1.26

0.99
1.35

1.35
1.88

1.92
1.71

1.73
1.71

1.63
1.86

1.56
1.49

6ζ
12
15

x
25.34

24.94
24.86

25.16
25.2

25.36
25.72

24.86
25.94

26.92
27.3

27.78
27.48

27.28
26.68

27.1
27.0

27.24
σ

2.37
2.57

2.35
2.2

2.32
2.67

2.44
2.42

3.39
2.61

2.34
1.71

2.39
2.34

2.2
2.67

2.31
2.52

6ζ
20
15

x
31.84

31.68
32.3

31.66
31.76

31.72
32.12

31.6
31.82

33.56
33.66

33.86
34.22

34.12
33.42

33.48
33.8

33.9
σ

2.19
2.49

2.14
2.21

2.34
2.28

2.67
2.21

2.33
2.25

2.06
2.31

1.89
2.16

2.42
2.22

2.13
2.21

8ζ
15
20

x
37.44

37.24
37.3

37.4
38.22

37.46
36.94

37.82
37.12

39.08
38.44

39.36
39.26

38.16
39.36

38.66
39.68

38.28
σ

2.63
3.06

2.56
2.65

2.8
2.62

2.37
2.9

3.79
2.65

2.25
2.65

3.06
2.49

2.81
3.08

3.0
2.65

8ζ
16
20

x
41.68

42.4
43.16

42.42
42.0

42.06
42.72

43.18
42.46

44.44
43.32

43.5
43.58

43.48
43.72

44.3
43.3

43.22
σ

3.21
2.92

2.81
3.19

3.71
3.19

3.44
3.12

4.56
2.83

3.0
3.63

2.69
3.15

3.06
2.65

2.88
2.91

10ζ
20
20

x
47.12

47.04
47.8

47.2
46.68

47.32
47.16

46.54
48.9

48.3
47.74

47.74
47.62

47.92
48.64

47.88
49.06

47.7
σ

3.31
2.9

2.58
3.15

3.12
3.4

3.39
3.41

6.2
3.82

2.74
3.33

3.05
3.46

3.17
3.77

2.72
3.74

10ζ
25
30

x
102.16

101.98
101.7

99.66
101.36

100.22
101.36

100.26
101.76

101.78
102.08

103.32
102.92

102.98
102.32

102.56
102.46

102.92
σ

4.33
5.12

4.41
3.94

4.82
5.17

4.12
4.49

5.06
4.92

3.4
3.8

3.83
4.18

4.59
5.32

4.53
5.14

15ζ
40
30

x
138.48

139.16
139.48

140.86
139.14

139.42
139.52

137.8
143.28

140.78
139.98

141.82
139.66

142.06
141.22

140.72
141.56

140.3
σ

4.19
4.56

6.7
4.6

5.31
5.24

5.09
5.56

7.75
5.34

4.78
5.68

4.93
4.67

4.12
5.74

5.48
5.5

15ζ
30
40

x
146.16

148.04
147.92

148.28
147.68

147.76
149.4

148.1
148.76

150.3
149.4

147.94
150.16

148.8
148.5

146.94
149.48

147.96
σ

6.5
5.08

4.44
5.41

5.24
5.01

6.35
6.47

6.24
6.3

6.8
6.17

4.99
5.21

4.8
5.29

4.69
5.09

20ζ
60
40

x
276.94

276.7
274.7

274.08
275.1

277.14
274.8

277.02
280.2

277.86
278.02

277.02
278.7

276.5
275.9

275.3
278.76

275.0
σ

8.23
7.83

6.12
8.5

6.03
8.6

6.77
6.77

10.27
6.28

8.31
7.93

8.42
8.26

6.39
6.11

8.19
7.59

24ζ
30
20

x
37.96

37.6
37.2

37.34
37.58

37.98
37.88

37.3
39.5

37.54
38.84

38.3
38.86

38.16
39.02

38.82
39.0

39.28
σ

2.75
3.03

3.0
2.7

2.8
2.44

2.67
2.58

4.44
2.67

2.76
2.99

2.87
2.71

2.65
2.26

2.57
2.51

24ζ
36
20

x
63.92

63.16
63.3

63.7
63.64

63.76
63.94

64.26
66.88

65.12
64.78

64.88
65.24

65.94
64.96

63.62
64.44

65.78
σ

3.71
3.66

2.71
4.38

4.04
3.96

3.45
4.39

6.93
3.27

3.11
3.29

3.68
3.55

3.72
4.01

3.85
4.06

25ζ
40
50

x
215.88

216.54
217.76

216.66
217.88

217.2
217.6

217.96
222.9

216.6
218.58

217.4
218.04

219.36
216.46

219.54
218.52

215.42
σ

7.31
6.42

7.01
5.84

6.84
7.9

7.08
7.25

7.81
6.46

6.71
7.1

5.99
7.11

6.37
6.29

7.02
6.59

30ζ
40
20

x
59.52

60.68
57.88

59.62
59.44

59.88
58.96

60.08
62.94

61.06
60.94

60.74
61.4

61.52
62.36

60.84
61.1

60.62
σ

4.34
3.34

3.98
3.65

3.38
3.55

3.57
3.71

6.34
3.71

3.6
3.76

4.28
3.24

3.07
3.38

3.19
3.54



CE-MA methods: application study over the ToSP

Ta
bl

e
10

:
C

om
pu

ta
tio

na
lr

es
ul

ts
w

ith
m

em
et

ic
ve

rs
io

ns
of

C
E

w
ith

4
pm

fs
hy

br
id

iz
ed

w
ith

H
C

–
i.e

.,
w

ith
fu

ll
ne

ig
hb

or
ho

od
ex

pl
or

at
io

n
C

E
M

H
C

F(
θ)

an
d

pa
rt

ia
l

ne
ig

hb
or

ho
od

ex
pl

or
at

io
n

C
E

M
H

C
P(

θ)
–

an
d

se
ve

ra
l

va
lu

es
of

θ,
i.e

.,
pr

ob
ab

ili
ty

of
lo

ca
l

se
ar

ch
.

x=
m

ea
n

nu
m

be
r

of
to

ol
sw

itc
he

s.
σ

=
m

ea
n

st
an

da
rd

de
vi

at
io

n.
R

ec
al

lw
e

ar
e

us
in

g
th

e
no

ta
tio

n
C

ζm n
,w

he
re

C
is

th
e

m
ag

az
in

e
ca

pa
ci

ty
,m

is
th

e
to

ta
ln

um
be

ro
ft

oo
ls

an
d

n
is

th
e

nu
m

be
ro

fj
ob

s.

CEMHCF(0.001)

CEMHCF(0.002)

CEMHCF(0.005)

CEMHCF(0.01)

CEMHCF(0.02)

CEMHCF(0.05)

CEMHCF(0.1)

CEMHCF(0.2)

CEMHCF(0.5)

CEMHCP(0.001)

CEMHCP(0.002)

CEMHCP(0.005)

CEMHCP(0.01)

CEMHCP(0.02)

CEMHCP(0.05)

CEMHCP(0.1)

CEMHCP(0.2)

CEMHCP(0.5)

4ζ
9 10

x
8.

1
8.

02
8.

06
8.

14
8.

08
8.

0
7.

92
8.

04
7.

92
7.

79
7.

8
7.

73
7.

7
7.

73
7.

79
7.

71
7.

69
7.

67
σ

0.
21

0.
26

0.
41

0.
35

0.
41

0.
33

0.
22

0.
26

0.
23

1.
04

1.
06

1.
04

1.
04

1.
06

1.
12

1.
01

1.
01

0.
95

4ζ
10 10

x
9.

16
9.

04
9.

12
9.

06
8.

98
8.

92
8.

96
8.

78
8.

9
9.

24
9.

02
9.

2
9.

02
9.

02
9.

02
8.

94
8.

98
8.

96
σ

0.
34

0.
31

0.
33

0.
39

0.
33

0.
34

0.
32

0.
27

0.
35

0.
47

0.
29

0.
4

0.
37

0.
32

0.
27

0.
25

0.
44

0.
34

6ζ
15 10

x
14

.0
4

14
.0

14
.1

6
13

.9
2

13
.8

8
13

.8
13

.7
13

.8
6

13
.8

14
.0

4
14

.0
2

13
.7

6
13

.9
6

13
.8

8
13

.8
4

13
.7

6
13

.8
2

13
.6

6
σ

0.
49

0.
49

0.
51

0.
45

0.
45

0.
39

0.
22

0.
38

0.
27

0.
56

0.
58

0.
26

0.
54

0.
41

0.
42

0.
39

0.
23

0.
14

6ζ
12 15

x
15

.4
8

15
.5

8
15

.6
15

.6
2

15
.5

15
.4

15
.4

2
15

.5
2

15
.2

6
15

.5
4

15
.7

2
15

.7
2

15
.5

4
15

.6
4

15
.4

2
15

.5
8

15
.3

6
15

.2
8

σ
0.

65
0.

68
0.

66
0.

61
0.

66
0.

51
0.

64
0.

71
0.

56
0.

53
0.

76
0.

72
0.

6
0.

54
0.

62
0.

67
0.

58
0.

63
6ζ

20 15
x

23
.0

8
23

.0
8

22
.9

22
.8

2
22

.8
6

22
.7

22
.7

22
.6

22
.4

6
22

.9
8

23
.1

6
22

.7
22

.7
4

22
.6

8
22

.6
6

22
.6

6
22

.6
22

.5
4

σ
0.

85
0.

95
0.

77
0.

79
0.

77
0.

81
0.

8
0.

86
0.

68
0.

84
0.

81
0.

9
0.

71
0.

76
0.

73
0.

65
0.

78
0.

63
8ζ

15 20
x

21
.4

4
21

.3
8

21
.3

2
21

.4
4

21
.2

2
21

.2
6

21
.0

8
20

.9
4

20
.9

4
21

.4
8

21
.4

6
21

.7
6

21
.4

4
21

.5
21

.6
21

.1
6

21
.1

6
20

.8
4

σ
0.

69
0.

66
0.

61
0.

61
0.

62
0.

61
0.

63
0.

62
0.

65
0.

73
0.

68
0.

76
0.

7
0.

82
0.

71
0.

66
0.

75
0.

67
8ζ

16 20
x

25
.4

6
25

.4
2

25
.6

6
25

.3
2

25
.3

2
25

.3
6

25
.2

4
25

.1
8

24
.9

6
25

.7
4

25
.4

2
25

.4
6

25
.7

25
.5

2
25

.2
8

25
.2

6
24

.9
8

25
.1

8
σ

0.
66

0.
73

0.
66

0.
66

0.
77

0.
64

0.
79

0.
6

0.
56

0.
75

0.
82

0.
64

0.
77

0.
81

0.
71

0.
73

0.
55

0.
66

10
ζ20 20

x
29

.1
2

28
.9

28
.8

4
29

.0
2

28
.9

28
.6

8
28

.8
28

.6
2

28
.7

4
29

.3
29

.3
2

29
.0

6
29

.1
29

.1
2

28
.7

2
28

.8
4

28
.6

4
28

.3
6

σ
0.

69
0.

75
0.

82
0.

83
0.

83
0.

67
0.

63
0.

71
0.

59
0.

7
0.

78
0.

84
0.

7
0.

82
0.

82
0.

73
0.

69
0.

66
10

ζ25 30
x

58
.9

3
59

.0
1

59
.1

1
58

.9
4

58
.8

2
58

.8
2

58
.6

2
58

.4
8

58
.9

6
59

.0
8

58
.7

8
59

.0
6

58
.8

4
58

.8
6

58
.7

8
58

.8
58

.4
8

58
.2

4
σ

5.
07

4.
51

5.
06

5.
0

4.
64

1.
04

0.
77

0.
78

1.
02

0.
81

0.
93

0.
83

0.
92

0.
86

0.
89

0.
98

0.
87

0.
76

15
ζ40 30

x
94

.5
94

.1
4

94
.4

4
94

.3
2

94
.1

6
93

.9
8

93
.4

6
93

.4
93

.0
2

94
.3

6
94

.2
93

.9
6

94
.1

2
93

.7
8

93
.9

8
93

.9
2

93
.6

4
92

.3
σ

1.
63

1.
35

1.
22

1.
38

1.
28

1.
52

1.
13

1.
34

1.
32

1.
16

1.
29

1.
26

1.
35

1.
2

1.
39

1.
07

1.
25

1.
42

15
ζ30 40

x
85

.0
7

84
.7

3
85

.1
2

84
.9

3
84

.9
8

85
.2

86
.5

2
88

.8
3

96
.0

2
86

.3
6

86
.3

2
86

.2
86

.9
2

86
.2

6
86

.2
6

86
.6

87
.1

8
90

.8
6

σ
6.

85
5.

94
7.

94
5.

85
6.

19
7.

32
8.

1
10

.1
10

.0
8

1.
22

0.
97

1.
15

6.
51

1.
13

1.
24

0.
97

1.
15

1.
9

20
ζ60 40

x
19

5.
28

19
5.

56
19

5.
3

19
5.

6
19

4.
96

19
4.

76
19

4.
88

19
4.

76
19

8.
16

19
5.

76
19

5.
88

19
5.

4
19

5.
26

19
5.

12
19

5.
56

19
5.

1
19

5.
0

19
3.

09
σ

1.
8

1.
61

1.
77

1.
65

1.
77

1.
62

1.
8

1.
6

2.
66

1.
3

1.
86

1.
83

1.
94

2.
08

1.
92

2.
16

1.
91

10
.1

3
24

ζ30 20
x

23
.3

8
23

.3
8

23
.2

4
23

.2
4

23
.4

23
.1

6
23

.1
2

23
.0

6
22

.7
8

23
.2

8
23

.2
6

23
.3

4
23

.3
2

23
.1

8
23

.1
4

23
.0

4
23

.0
4

22
.9

8
σ

0.
6

0.
82

0.
68

0.
65

0.
66

0.
74

0.
65

0.
65

0.
7

0.
54

0.
65

0.
59

0.
6

0.
66

0.
61

0.
76

0.
62

0.
65

24
ζ36 20

x
43

.8
43

.6
6

45
.4

2
43

.4
7

43
.3

4
43

.2
6

42
.9

4
42

.6
7

42
.6

3
43

.7
2

44
.0

8
43

.4
8

43
.5

8
43

.6
4

43
.3

2
43

.0
6

43
.1

8
42

.9
6

σ
1.

07
1.

0
5.

42
5.

23
5.

23
4.

98
5.

22
5.

1
4.

73
1.

28
1.

14
0.

95
1.

11
1.

27
1.

2
1.

08
0.

93
1.

0
25

ζ40 50
x

13
1.

36
13

1.
6

13
2.

5
13

3.
12

13
4.

54
13

7.
2

14
1.

74
14

6.
08

15
5.

74
13

1.
22

13
2.

0
13

1.
7

13
1.

52
13

1.
58

13
2.

18
13

3.
3

13
5.

6
13

9.
42

σ
1.

61
2.

04
1.

79
1.

86
2.

63
2.

21
2.

32
2.

78
2.

93
1.

79
2.

08
2.

12
1.

93
1.

96
2.

35
1.

9
2.

55
2.

1
30

ζ40 20
x

40
.1

39
.8

39
.7

6
40

.0
39

.4
39

.8
2

39
.0

8
39

.4
4

38
.7

8
39

.8
2

40
.0

2
39

.9
2

40
.0

40
.2

2
39

.4
3

39
.4

39
.2

4
38

.8
7

σ
1.

0
0.

86
0.

83
0.

94
0.

78
0.

95
0.

98
0.

89
0.

82
0.

78
1.

0
0.

93
4.

04
4.

8
5.

17
5.

06
4.

54
4.

32



J.E. Amaya, C. Cotta, A.J. Fernández-Leiva

Table
11:

C
om

putationalresults
w

ith
m

em
etic

versions
of

C
E

w
ith

4
pm

fs
hybridized

w
ith

T
S

–
i.e.,w

ith
fullneighborhood

exploration
C

E
M

T
SF

(θ
)and

partialneighborhood
exploration

C
E

M
T

SP
(θ

)–
and

severalvaluesofθ
,i.e.,probability

oflocalsearch.x=
m

ean
num

ber
of

toolsw
itches.

σ
=

m
ean

standard
deviation.

R
ecallw

e
are

using
the

notation
C

ζ
mn

,w
here

C
is

the
m

agazine
capacity,m

is
the

total
num

beroftools
and

n
is

the
num

berofjobs.

CEMTSF(0.001)

CEMTSF(0.002)

CEMTSF(0.005)

CEMTSF(0.01)

CEMTSF(0.02)

CEMTSF(0.05)

CEMTSF(0.1)

CEMTSF(0.2)

CEMTSF(0.5)

CEMTSP(0.001)

CEMTSP(0.002)

CEMTSP(0.005)

CEMTSP(0.01)

CEMTSP(0.02)

CEMTSP(0.05)

CEMTSP(0.1)

CEMTSP(0.2)

CEMTSP(0.5)

4ζ
910

x
8.06

8.22
8.14

8.18
8.06

8.08
8.1

8.08
8.22

8.06
8.0

8.1
7.96

8.16
8.14

8.08
8.18

8.22
σ

0.34
0.38

0.35
0.42

0.22
0.29

0.28
0.35

0.43
0.43

0.2
0.37

0.33
0.35

0.38
0.37

0.41
0.4

4ζ
10
10

x
9.02

9.12
9.12

8.92
9.1

9.0
9.32

9.16
9.24

9.12
9.12

9.02
9.1

9.16
9.22

9.02
9.16

9.12
σ

0.36
0.35

0.28
0.33

0.43
0.32

0.46
0.31

0.48
0.38

0.41
0.29

0.38
0.43

0.4
0.41

0.46
0.4

6ζ
15
10

x
14.06

13.96
13.98

14.04
14.12

14.02
14.04

14.02
14.16

13.94
13.92

13.96
14.1

13.98
14.08

14.0
14.04

14.1
σ

0.45
0.47

0.52
0.55

0.53
0.56

0.65
0.64

0.66
0.37

0.49
0.48

0.47
0.43

0.58
0.53

0.57
0.53

6ζ
12
15

x
15.64

15.5
15.64

15.62
15.72

15.6
15.6

15.76
15.94

15.8
15.74

15.7
15.7

15.7
15.72

15.66
15.6

15.74
σ

0.63
0.71

0.61
0.6

0.73
0.69

0.94
0.7

0.84
0.78

0.63
0.71

0.63
0.53

0.74
0.67

0.57
0.61

6ζ
20
15

x
23.2

23.3
23.16

23.02
23.08

23.0
23.28

23.22
23.06

23.32
23.14

22.9
23.18

22.98
23.24

23.34
23.02

23.26
σ

0.88
0.67

0.81
0.84

0.81
0.72

0.94
0.85

0.84
0.77

0.86
0.86

0.77
0.86

0.77
0.81

0.77
0.82

8ζ
15
20

x
21.58

21.52
21.4

21.48
21.56

21.66
21.46

21.78
22.86

21.54
21.48

21.38
21.6

21.58
21.62

21.62
21.52

21.8
σ

0.78
0.69

0.65
0.71

0.58
0.66

0.59
0.79

1.07
0.76

0.72
0.71

0.72
0.73

0.57
0.61

0.75
0.56

8ζ
16
20

x
25.48

25.54
25.4

25.7
25.56

25.54
25.58

25.78
26.7

25.6
25.66

25.62
25.64

25.44
25.56

25.64
25.74

25.7
σ

0.56
0.63

0.65
0.82

0.66
0.62

0.7
0.74

0.82
0.71

0.63
0.65

0.74
0.77

0.83
0.69

0.74
0.81

10ζ
20
20

x
29.14

29.1
29.16

29.36
29.36

29.18
29.2

29.3
29.98

29.24
29.14

29.24
29.1

29.2
29.32

29.14
29.28

29.36
σ

0.62
0.73

0.8
0.7

0.91
0.69

0.79
0.68

1.0
0.83

0.62
0.87

0.78
0.8

0.75
0.87

0.7
0.77

10ζ
25
30

x
59.1

59.1
59.0

59.08
59.16

59.32
60.18

62.74
69.82

59.1
58.78

59.38
58.88

58.98
59.36

59.15
59.22

60.8
σ

1.0
0.99

4.97
0.87

0.94
0.88

1.09
1.55

2.45
0.84

1.09
1.19

0.94
0.98

1.12
4.46

0.76
1.24

15ζ
40
30

x
94.5

94.72
94.56

94.4
96.34

94.94
94.7

96.78
103.12

94.88
94.2

94.14
94.3

94.26
94.18

94.4
94.42

95.36
σ

1.44
1.19

1.43
1.66

5.81
0.88

1.39
1.83

2.07
1.34

1.4
1.36

1.43
1.5

1.44
1.59

1.48
1.3

15ζ
30
40

x
86.62

86.42
86.5

87.28
88.6

93.72
99.64

104.96
114.86

86.62
86.4

86.0
86.38

86.62
87.3

88.7
117.12

99.34
σ

1.05
1.41

1.13
1.33

1.97
2.92

3.36
3.54

3.4
6.3

6.55
1.26

1.14
1.43

1.38
1.9

3.9
2.16

20ζ
60
40

x
195.68

195.6
195.66

195.76
196.52

196.08
199.92

208.52
220.84

196.56
196.04

195.82
195.52

195.86
196.22

195.36
196.3

200.38
σ

1.89
1.84

2.07
1.76

2.64
1.88

2.5
3.55

4.4
9.97

2.04
1.87

1.94
1.9

1.58
1.85

1.65
2.7

24ζ
30
20

x
23.16

23.36
23.24

23.5
23.1

23.28
23.38

23.56
25.7

23.1
23.14

23.16
23.56

23.3
23.36

23.34
23.62

23.7
σ

0.66
0.85

0.7
0.7

0.56
0.74

0.69
0.85

1.14
0.6

0.63
0.66

0.85
0.72

0.76
0.79

0.67
0.76

24ζ
36
20

x
44.14

43.64
43.74

43.68
43.5

43.72
44.16

43.64
44.56

43.78
43.92

43.77
43.89

43.88
43.91

43.73
43.89

43.9
σ

1.05
0.89

0.91
1.14

0.89
1.0

1.15
1.02

1.04
0.93

1.31
5.39

5.48
5.45

5.28
5.57

5.35
4.98

25ζ
40
50

x
132.36

133.02
134.64

138.64
143.82

151.91
160.76

170.1
182.5

131.62
131.88

131.48
132.44

134.0
136.66

142.0
146.78

157.46
σ

2.41
2.35

3.22
3.18

3.25
28.52

23.65
5.07

6.12
1.95

1.64
1.89

2.02
2.21

2.27
2.28

3.0
3.21

30ζ
40
20

x
39.7

39.96
39.72

39.84
40.02

40.14
39.98

39.9
40.94

39.88
40.22

39.96
39.5

40.12
39.84

40.1
39.96

40.37
σ

0.88
1.0

0.68
0.95

0.84
0.93

0.91
1.08

1.18
0.76

0.77
1.07

0.86
0.93

1.07
0.83

0.87
4.3


