
Noname manuscript No.
(will be inserted by the editor)

On User-Centric Memetic Algorithms

Ana Reyes Badillo · Juan Jesús Ruiz · Carlos Cotta · Antonio J.

Fernández-Leiva

the date of receipt and acceptance should be inserted later

Abstract Memetic algorithms (MAs) constitute a meta-

heuristic optimization paradigm (usually based on the

synergistic combination of an evolutionary algorithm

(EA) and trajectory-based optimization techniques) that

systematically exploits the knowledge about the prob-

lem being solved and that has shown its efficacy to solve

many combinatorial optimization problems. However,

when the search depends heavily on human-expert’s in-

tuition the task of managing the problem knowledge

might be really difficult or even indefinable/impossible;

the so-called interactive evolutionary computation (IEC)

helps to mitigate this problem by enabling the human

user to interacts with an EA during the optimization

process.

Interactive memetic algorithms can be constructed

as reactive models in which the MA continuously de-
mands the intervention of the human user; this ap-

proach has the drawback that provokes fatigue to the

user. This paper considers user-centric memetic algo-

rithms, a more global perspective of interactive MAs

since it hints possibilities for the system to be proactive

rather than merely interactive, i.e., to anticipate some

of the user behavior and/or exhibit some degree of cre-

ativity, and provides some guidelines for the design of

two different models for user-centric MAs, namely reac-

tive and proactive search-based schema. An experimen-

tal study over two complex NP-hard problems, namely

the Traveling Salesman problem and a Gene Ordering

Problem, shows that user-centric MAs are in general

effective optimization methods although the proactive

approach provides additional advantages

Dept. Lenguajes y Ciencias de la Computación, ETSI In-
formática,
Campus de Teatinos, Universidad de Málaga,
29071 Málaga – Spain
E-mail: {ccottap,afdez}@lcc.uma.es

Keywords Memetic algorithm · Interactive evolu-

tionary computation · User-centric optimization ·
Combinatorial optimization

CR Subject Classification I.2.8 · G.2.1.

1 Introduction

The need of exploiting problem knowledge inside evo-

lutionary algorithms (EA), and metaheuristics in gen-

eral, in order to both obtain solutions of better quality

and accelerate the optimization process has been re-

peatedly highlighted [1–5]. A number of different ways

to incorporate knowledge have been reported in the lit-

erature and one can find proposals such as the design

of specific genetic operators, the definition of intelligent
representations with inherent information on them, or

the hybridization with another techniques, just to name

a few [6,7]. In this context, memetic algorithms [8–13]

(MAs) is probably one of the most successful proposals

(in the sense of being effective optimization methods)

to date [14].

However, both evolutionary and memetic algorithms

have still evident limitations and there still exists one

main complication that lies precisely in the difficulty

to characterize the subjective interest through a cer-

tain mathematical expression or algorithm that can be

optimized. This difficulty is generally common to those

problems in which the search has to be conducted (di-

rectly or indirectly, completely or partially) in a psy-

chological space. We speak thus about those problems

in which the search has to be conducted on spaces com-

prising candidate solutions which are not easy to eval-

uate mathematically.

Within the framework of metaheuristics –and more

specifically of evolutionary computing– the solution that

2 A.R. Badillo et al.

has been proposed is the so-called interactive evolution-

ary computing (IEC). In a broad sense, IEC is an ap-

proach based on the optimization of a certain target

system, using evolutionary computing and interacting

with a human user; in other words, the user can influ-

ence the evolutionary process when this is being exe-

cuted. Traditionally, this interaction was based on the

subjective assessment of the solutions generated by the

algorithm; in this line see for instance the seminal work

of Dawkins [15] as well as different applications in artis-

tic fields (see, e.g., the proceedings of EvoMUSART),

industrial processing of audiovisual information, data

mining or robotics, among other fields [16]. The com-

mon nexus of classical IEC is the existence of a reac-

tive search-based mechanism in which the user provides

some feedback to the demands of the running evolution-

ary algorithm.

Although IEC represents an extension to EC that

makes it useful on problems that demands knowledge

provided by human user, it is also true that classical

IEC methods have still an important limitation (that

is also inherent to the IEC model): the fatigue of the

human user that is produced by the continuous feed-

back that the subjacent EC technique demands to the

user. Advanced IEC techniques smooth this drawback

by extending its concept to an optimization centered in

the user in the sense that the interactive optimization

process tries to guess the further user interactions and

thus reduce the requirement of user interventions. This

form of optimization has been termed as user-centric

evolutionary computation [17,18] (note that the term

“Human-centric” has also been used instead of “user-

centric” [19]).

There still remains an important issue to analyze:

the combination of user-centric evolutionary optimiza-

tion and MAs. As already mentioned, perhaps the most

prominent characteristic of a MA is the systematic ex-

ploitation of knowledge about the problem being solved,

and IEC represents another form of incorporating knowl-

edge to the problem. Therefore it seems natural to in-

vestigate a global combination of both components, termed

here as user-centric memetic algorithms, with the goal

of providing an extra dimension to each of their con-

stituent parts. Actually, some works have already high-

lighted the benefits attainable via the use of the hu-

man user interaction with the MA, in particular in the

context of multi-objective optimization [20,21]. We ex-

plore here some of these capabilities (extended to proac-

tive models) in this work. In particular, this paper pro-

vides a general overview on user-centric memetic com-

putation, providing principles for their design, identi-

fying the places where a human user can interact with

the subjacent MA under the demand of this algorithm

(i.e., a reactive approach), and drawing a more general

schema for a proactive model. Two study cases for the

optimization of the Traveling Salesman Problem (TSP)

and a Gene ordering problem (GOP) are also analyzed

to show the adequacy of human-guided MA-based op-

timization.

2 Memetic Algorithms

The adjective ‘memetic’ comes from the term ‘meme’,

coined by R. Dawkins [22] to denote an analogous to

the gene in the context of cultural evolution. As evo-

lutionary algorithms, MAs are also population based

metaheuristics. The main difference is that the compo-

nents of the population are active entities that coop-

erate and compete in order to find improved solutions.

rather than mere passive solutions.

There are many possible ways to implement MAs.

The most common implementation consists of combin-

ing an EA with a procedure to perform local search

(LS) that is usually done after evaluation, although it

must be noted however that the integration does not

simply reduce itself to this particular scheme. In fact,

the purpose of using LS inside a MA is to provide spe-

cific knowledge that can help to a better optimization

process [23]. For instance, Figure 1 shows the classi-

cal view of a MA and indicates places were problem

specific knowledge, in form of a local searcher, can be

incorporated inside a specific metaheuristic (i.e., a ge-

netic algorithm) according to [24]. Also, Algorithm 1

shows a general picture where a local search (LS) can

be incorporated inside an MA (note that this classical

combination follows an integrative approach as consid-

ered in [6]).

This classical schema considers partial Lamarckian-

ism [25]) in which the application of LS depends on cer-

tain probability pLS so that LS might be applied only

to a fraction of individuals (the individuals to which

local search will be applied can be selected in many dif-

ferent ways [26]). Note that applying always the LS in

each generation of the MA (or initially on each indi-

vidual in the initial population) is not always the best

option (as shown in [27] for the application of LS on

each generated new individual).

In general, the underlying idea of this kind of in-

tegration is to combine the intensifying capabilities of

the embedded LS method, with the diversifying features

of MA, i.e., the population will spread over the search

space providing starting points for a deeper (probably

local) exploration. As generations go by, promising re-

gions will start to be spotted, and the search will con-

centrate on them. Ideally, this combination should be

On User-Centric Memetic Algorithms 3

Fig. 1 Places to incorporate problem knowledge within an
evolutionary algorithm, according to [24].

Algorithm 1: Pseudocode of a basic MA based

on a integrative collaboration with a local search

(LS) technique

1 for i ∈ {1, . . . , population size} do
2 pop[i]←Random-Solution();
3 if Rand[0, 1] < pLS then // LS is applied with

probability pLS

4 LS(pop[i]);
5 end if

6 end for

7 i← 0;
8 while i < MaxEvals do
9 Rank-Population (pop); // sort population

according to fitness

10 parent1 ←Select (pop);
11 if Rand[0, 1] < pX then // recombination is done

12 parent2 ← Select (pop);
13 child← Recombine (parent1, parent2);

14 else
15 child← parent1;
16 end if
17 child← Mutate (child, pM); // pM is the

mutation probability per gene

18 if Rand[0, 1] < p′LS then // LS is applied

19 LS (child);
20 end if

21 pop[µ]← child; // replace worst

22 end while

23 return best solution in pop;

synergistic, providing better results that either the MA

or the LS by themselves.

Regarding this issue, one can find in the litera-

ture a number of proposals that explore the intensi-

fication/diversification balance within the memetic al-

gorithm. Some works lean towards a more explorative

combination, by using a blind recombination operator

in the MA whereas other models incorporate an intense

exploration of the dynastic potential (i.e., set of possi-

ble children) of the solutions being recombined [28,29].

In addition to other domains, MAs have proven to

be very successful across a wide range of combinatorial

optimization problems, where they are state-of-the-art

approaches for many problems. For a comprehensive

bibliography, the reader may consult [12,13,30].

3 Why Human-Guided Memetic Algorithms?

EAs require that the user defines, before the process of

evolution, the fitness measure (i.e., the evaluation func-

tion) that will be used to guide the evolution of can-

didate solutions. Those problems in which the fitness

function is difficult (or even impossible) to formulate

can hardly be handled by classical EAs; in this con-

text Interactive evolutionary computation (IEC) has

recently been proposed as a part of evolutionary com-

putation (EC) to cope with those problems that pos-

sess aesthetical or psychological features and as a conse-

quence fitness evaluation functions are difficult, or even

impossible, to formulate mathematically.

Generally speaking, IEC (also termed indistinctly

here as user-centric EC or human-guided EC) repre-

sents an optimization paradigm that promotes the com-

munication between a human user and an automated

evolutionary algorithm. The human usually intervenes

under the demand of the subjacent EA, for instance to

provide subjective fitness evaluation of candidate solu-

tions. The classical version of IEC basically consists of

incorporating human user evaluation during the evolu-

tionary procedure.

In any case, more modern models of IEC have been

proposed to attain the collaboration between the hu-

man user and the EA. For instance, [31] proposes using

techniques of dimensionality reduction to project the

population of the EA to a bidimensional plane that

is displayed to the user and over which the user se-

lects the most promising candidates. It is also worth-

while to mention the work conducted in the area of

multi-objective IEC [32,33] in which the aim is to direct

the exploration toward particular regions of the Pareto

front. Again this kind of participation only represents

one of the manifold forms that exist to fix search priori-

ties. Interactive EAs have already been implemented in

all the standard types of EC (as for instance in genetic

programming [34,35], genetic algorithms [36], evolution

strategies [37], and evolutionary programming [38] just

to name a few. Interactivity has also been added to a

number of cooperatives models (e.g., [39–41]).

4 A.R. Badillo et al.

A recent work [42] describes the basic fundament

of IEC, presents some guidelines to the design of in-

teractive evolutionary algorithms to handle combinato-

rial optimization problems, and discusses the two main

models over which IEC is constructed, namely reac-

tive and proactive search-based schemas. In the reac-

tive model the subjacent algorithm demands the direct

intervention of the user whereas in the proactive model

the subjacent algorithm constructs a model of the user’s

preferences that takes the role of the human user in the

reactive schema. The objective of the proactive model

is to mitigate the main problem of the reactive model,

that is to say, the fatigue/tiredness that the human user

accumulates as result of being continuously demanded

from the underlying algorithm. Such fatigue can take

different forms. One is the exhaustion after hours of

work. However, even in shorter periods of time, a user

subject to a repetitive task can inadvertently reduce his

effort by paying less attention or providing less careful

feedback.

In general interactive evolutionary computation

(IEC) and human-guided search have been widely stud-

ied (see for instance [16] and [43] that present surveys

respectively on these mentioned issues). However, no

general approach for the design of effective interactive

MAs exists in a well-defined sense, and hence this de-

sign phase must be addressed from an intuitive point of

view as well. Recently, in [44] we have provided a first

approximation to this issue and have formulated some

principles for the design of reactive hybrid evolutionary

algorithms; in this mentioned paper we also described

a reactive memetic algorithm for the search of optimal

Golomb rulers, a very hard to solve combinatorial prob-

lem. Now, here we analyze interactive memetic algo-

rithms from a more general perspective, discussing the

principles for human-guided MAs, including both reac-

tive and proactive interactive MAs. The aim is to help

the reader to understand the mechanisms of human-

guided MAs and provide some indications for their de-

sign.

4 Human-guided Reactive MAs

In [44] we provided the first attempt (to the best of our

knowledge) of establishing a global approach for the

design of effective interactive memetic algorithms and

defined a general schema for constructing reactive inter-

active MAs in which the human user interacts with the

subjacent MA when the automated algorithm demands

her intervention. In general, the human user might in-

teract with the MA in a number of ways (the reader is

referred to [44] for a more comprehensive explanation

of these ways). This schema corresponded to a reactive

model in which, from a global perspective, the basic

idea is to let the user affect the search dynamics with

the objective of driving (resp. deviating) the search to-

wards (resp. from) specific regions of the solution space.

The intervention of the user might be required asyn-

chronously (e.g., the memetic algorithm demands the

user intervention because the search does not progress

adequately and needs assistance from the human user),

or synchronously (for instance by imposing a fixed num-

ber of human interventions). Of course, the human user

might also act as a mere supervisor of the search pro-

cess so that her intervention might be voluntary in any

moment. In the following we analyze a study case in the

context of the well-known Traveling Salesman problem

(TSP).

4.1 A study case: a User-Centric Approach to

Memetic Algorithms for TSP

As already mentioned in Sect. 1, memetic algorithms

(MAs) are particularly suited to integrate different

sources of problem-knowledge into a single optimiza-

tion tool. We refer to [7] for an up-to-date review of the

state-of-the-art in MAs. In the following we shall de-

scribe how we have integrated user-centric capabilities

in MAs. In particular, we focus in the dynamic manage-

ment of user-defined constraints, and in user-controlled

local search.

4.1.1 Rationale

Some of the most common themes in IEC are using

a human-expert to provide subjective evaluation infor-

mation, or to perform subjective selection of solutions

for breeding, among many others. We defer to [16] for

an overview of the area. One of the recurring issues in

this context is dealing with human fatigue, i.e., coping

with the fact that the human expert cannot be forced to

provide a continuous supply of information, and hence

the search algorithm has to exhibit a degree of auton-

omy. This is particularly feasible in domains in which

some objective optimization measure is already avail-

able, and therefore the human expert is a source on

knowledge that can improve results, but is not neces-

sarily required for obtaining some solutions (even if just

low-quality ones). In this sense, we adhere to this vision

of having an human expert overseeing the evolution of

resolution process, and providing hints [45] on which

directions the search should proceed but only sporadi-

cally (and asynchronously if possible).

More precisely, we have considered three particular

ways to put the user in the loop, biasing the search

dynamics:

On User-Centric Memetic Algorithms 5

– Allowing her to change dynamically some parame-

ters of the algorithm, including the application prob-

ability and choice of operators (in order to change

the way solutions are generated and thus direct the

exploration process). Note in this sense that there

are many works focusing in self-parameterization of

evolutionary algorithms [46]. Thus, the human ex-

pert would here act as a high-level controller that

would exert direct control of these parameters, or

supervise the procedure of self-adaptation, super-

seding the latter if necessary.

– Allowing her to provide search bias via the dynamic

introduction (and removal) of additional constraints,

i.e., constraints that are not a part of the problem

definition, but are forced by the user in order to

drive the search towards-to/away-from specific re-

gions of solution space. Such constraints are han-

dled as soft-constraints, i.e., their violation results

in a penalty term being added to the raw fitness of

solutions.

– Allowing her to selectively use local-search add-ons.

This is particularly relevant in the case of MAs, in

which several studies exist focusing on which solu-

tions should undergo local improvement, and how

this local improvement should be done (i.e., which

local search –LS– operator to use, how intense this

local improvement has to be, etc.) – e.g., see [47,

48]. Allowing the user to interfere in this regard

allows further possibilities such as applying local-

improvement just to particular portions of solutions

rather than undergoing a full-fledged local optimiza-

tion.

Next section will describe how we have accommo-

dated the above capabilities in a memetic solver for the

Traveling Salesman Problem (TSP).

4.1.2 Implementation and Management of User Input:

the TSP Case

We have built a prototype of user-centric reactive MA

on the basis of the ECJ library1. ECJ is an evolu-

tionary computation framework written in java avail-

able under the Academic Free License (AFL) version

3.0, and it has been chosen due to its high flexibility

and modularity among other reasons. Our implementa-

tion comprises problem-specific classes (corresponding

to the representation of solutions and variation oper-

ators used) and interaction-specific classes (providing

the functionality for supplying information to the user

and accepting feedback from her). Among the latter we

can cite:

1 http://www.cs.gmu.edu/~eclab/projects/ecj/

– Output: this class has been modified in order to al-

low the user select specific actions, e.g., modify pa-

rameters, introduce constraints, etc.

– VectorSpecies: a derived class PermutationVector-
Species has been defined for the TSP in order to

store problem-specific parameters and dynamic con-

straints.

– Statistics: a derived class from the former is responsi-

ble for controlling when user interaction takes place.

In this prototype we have opted for two interaction

possibilities: a pre-scheduled mechanism (interact-

ing every certain number of generations; this is dy-

namically reconfigurable by the user, who can ef-

fectively set up when the next interaction will take

place), and a trigger mechanism (interacting when

the algorithms fulfills some condition, i.e., diversity

drops below a certain threshold).

– Canvas: several problem-specific classes are derived

from the latter in order to provide the means to

display sensible information to the user.

The latter aspect is particularly important if the in-

teraction with the user is to be fruitful. The user needs

being provided with relevant (yet not overwhelming)

information upon which to base her decisions on the

course the search has to take. In this sense, the TSP

has been chosen as test-suite precisely because of its

amenability for graphical depiction, and intuitive visual

nature. Fig. 2 shows the basic interface. The left panel

provides a description of the population: a graph is built

by merging all tours in the population, subsequently,

it is drawn making edge-width be proportional to the

frequency of that edge in the population. As to the

right panel, it provides a description of the best solu-

tion found and its quality. At the bottom, a drop-down

menu provides the user a list of available actions (some

of which can in turn result in additional lists of options

and/or text inputs). An important feature is the pos-

sibility of selectively applying local-improvement to a

specific portion of a solution. This is shown in Fig. 3. As

it can be seen, the user can select a subset of the solu-

tion upon which 2-opt local search will be applied (i.e.,

only edges adjacent to selected cities can be modified).

From a general point of view, this feature is important

in order to make a better use of the computational ef-

fort (consider that local search consumes a large part

of the computational budget of a MA) by focusing on

specific portions of the solution that can benefit most

of the application of local search, rather than blindly

exploring the whole neighborhood of the solution. Ob-

viously, this relies on the capability of the user to detect

this issue which in turn is influenced by the particular

problem considered, the visualization method used, and

the size of the problem instance at hand. As the latter

6 A.R. Badillo et al.

Fig. 2 General depiction of the user interface for interacting with the memetic solver in the context of the TSP.

grows larger there may appear difficulties in conveying

the information to the user. Then again, this is more

an issue of data visualization –an interesting a substan-

tial topic by itself– rather than an issue of the search

algorithm.

4.1.3 Experiments

The experiments have been done using an elitist

steady-state evolutionary algorithm (popsize = 100,

maxevals = 10, 000, binary tournament selection) with

edge-recombination crossover (pX = 1.0), and subtour-

inversion mutation (pM = 0.005). Two TSP instances

from the TSPLIB2, namely kroA100 and kroA200 have

been used. In order to obtain baseline results, 20 runs of

the algorithm have been done without user interaction.

Subsequently, we have done single runs with 1, 2, 4 and

8 user-interactions. These interactions have been logged

(specific actions and time at which they are done), and

are subsequently replicated in automatic runs of the al-

gorithm in order to determine their general goodness.

2 http://comopt.ifi.uni-heidelberg.de/software/

TSPLIB95/

Table 1 shows an example of the kind of actions per-

formed on the kroA100 instance. Six different users par-

ticipated in these experiments.

The results are shown in Fig. 4. Notice how in the

case of the kroA100 instance the results are better for

an increasing number of iterations, mostly due to the

selective application of LS (which is much less expen-

sive than a full-fledged LS, and whose cost is already

accounted in the total computational budget). In the

case of the kroA200 such improvement is only attained

for a larger number of interactions (which is where LS

is effectively deployed). Except in kroA100 and 1 in-

teraction, in all cases the differences with respect to

the autonomous algorithm are statistically significant

at 5% level using a Wilcoxon ranksum test.

5 User-centric Proactive MAs

One of the drawbacks that can be observed in the use

of user-centric reactive MAs (also termed here as reac-

tive interactive MAs) corresponds exactly with one of

the main concerns of classical IEC, that is to say, the

On User-Centric Memetic Algorithms 7

Fig. 3 The user can control the application of local search to specific portions of the current best solution.

Table 1 User interaction in the kroA100 instance

interactions Action performed
1 forbid 〈15− 50〉, 〈25− 65〉, 〈4− 72〉 and 〈43− 68〉
2 forbid 〈43− 79〉, 〈14− 89〉 and 〈62− 73〉

2-opt LS in the bottom right corner
4 forbid 〈65− 98〉, 〈50− 56〉 and 〈50− 60〉

forbid 〈21− 82〉, 〈22− 68〉 and 〈22− 48〉
forbid 〈13− 50〉, 〈64− 82〉 and 2-opt LS in the bottom right corner
forbid 〈57− 62〉 and 2-opt LS in the top left corner

8 forbid 〈14− 30〉, 〈13− 46〉 and 〈18− 61〉
forbid 〈3− 50〉 and 〈43− 54〉
forbid 〈23− 71〉 and 〈55− 71〉
forbid 〈17− 47〉
2-opt LS in the bottom right corner
2-opt LS in the top left corner
2-opt LS in the top right corner
2-opt LS in the bottom left corner

fatigue of the human user that appears when reactive

IEC algorithms are employed. The fatigue that an in-

teractive MA causes in the human user is, as in an inter-

active evolutionary algorithm, the result of demanding

continuously feedback to the user. Several mechanisms

described in the literature have been proposed in the

literature to mitigate this fatigue in the context of IEC

and these can be naturally extrapolated to the context

of interactive MAs [49,50].

One proposal that mitigates this problem consists

of replacing the reactive answer of the user by a proac-

tive approach in which the subjacent running algorithm

usually infers the user’s answer before the feedback de-

mand. In other words, during the interactive optimiza-

tion, the underlying evolutionary algorithm (in this case

8 A.R. Badillo et al.

a MA) works to construct a model of the user’s pref-

erences; the objective is to reduce the number of user

interventions by guessing her actions in those cases in

which it would be necessary to demand her intervention

(in these cases the user demand is replaced by the au-

tomated application of the guessed actions). This user

model can be viewed as a prediction model and as a

consequence might be constructed using computational

learning techniques. This is a sophisticated approach in

which the intervention of the user is optional and the

algorithm runs autonomously [37].

Proactive algorithms are not new and one can find a

number of proposals in the literature; for instance Beck

and Wilson proposed a set of proactive algorithms for

the job shop scheduling problem with probabilistic du-

rations [51,52]; also, an ant colony optimization-based

routing approach that proactively set up multiple paths

between the source and the destination in a Mobile ad

hoc network was described in [53]. We can also mention

other works such as [54]. Moreover, an illustrative ex-

ample of proactive algorithms might be the Estimation

of Distribution Algorithms (EDAs)[55] that were pro-

posed by Mühlenbein et al.[56] and departed from tradi-

tional evolutionary algorithms in that the generation of

new solutions depended on a probabilistic mechanism,

rather than on the use of a set of genetic operators. Re-

lationships and dependencies among the variables that

define a solution to the problem under consideration are

explicitly expressed in EDAs via probability distribu-

tions. Generally speaking, (traditional) EDAs work as

follows: an initial probabilistic model is built, typically

describing a uniform distribution over the search space

(although some heuristic initialization can also be done

if problem-knowledge is available). This model is sub-

sequently sampled to obtain a population of solutions

from which an elite sample will be extracted and used

to rebuild the model. The new model is then resampled

and the whole process is repeated until a certain ter-

mination condition is fulfilled. This continuous process

of updating and adjusting to the new conditions can

be considered as an adaptive model in the sense of a

proactive schema. However, proactivity, as proposed in

these works, is not directly related with human inter-

activity but with approaches that can predict certain

information that surely will be useful in the future and

thus these algorithms can manage this information for

their own convenience (for instance to tune themselves).

In the context of pure IEC we can mention a number

of works following this line of research such as [57–59,

39]; however there are no memetic versions except the

already mentioned work described in [44].

This section is devoted to present a proactive user-

centric memetic search/optimization. This is the case

when the interactive MA model employs computational

learning techniques to predict the adequacy of the so-

lutions still to be evaluated. Figure 5 shows a possible

schema for a user-centric MA in which both the human

user and the user model (i.e., the predictive model) can

interact with the subjacent MA in a number of several

forms. This schema extends the schema suggested in

[44] in a number of ways that can be enumerated as

follows:

– It introduces the role of a predictive model that will

replace the human user to reduce (or even avoid the

appearance of) her tiredness;

– It centers the interaction process in the user;

– It indicates new ways in which the user can influence

the optimization process that were not mentioned

in [44].

Regarding the latter issue, in general the human

user (and the user prediction model) can influence the

optimization process in several ways that basically co-

incide with those that were reported in [44] and that

can be summarized as follows:

– The user might select the policy of the genetic op-

erators (and the genetic operators themselves). She

also might modify all the parameters of the algo-

rithm (e.g., operators application probabilities).

– The user may influence the candidate population

by ranking it according to some (possibly psycho-

logical) criteria (this of course has influence in the

further replacement process), removing individuals,

modifying individual representation (even at gene

level), or even introducing/imposing certain level or

criteria of diversity, just to name a few actions.

– The user can control the application of LS (if we

consider the most classical form of a MA) in several

levels. For instance, the user might decide to estab-

lish a partial Lamarckianism schema as mentioned

in Section 2.

– The user might act as the evaluation mechanism.

In this context the user might add the subjective

evaluation as an additional component to the ob-

jective evaluation (for instance as an addend with

some associated weight) or use the subjective value

and the objective values as two different objectives

to optimize (transforming thus the model in an in-

teractive multiobjective MA). The user might also

reformulate the objective function (or even add new

objectives) and also with respect to the problem

constraints.

It should be noticeable that the user is required to

have certain knowledge about both the problem domain

and the search process in order to obtain an effective in-

teractive MA. In the latter case, the user needs certain

On User-Centric Memetic Algorithms 9

level of expertise to cope with the optimization process

from an algorithmic point of view so that she can man-

age the parameters that influence the search. In the first

case, the user might use this knowledge for instance to

assess candidates (or even mark the best/worst solu-

tions), provide subjective information to the search if

necessary, or control the use of local improvement by

identifying the adequate regions of the search space to

apply it. Indeed, we might even think of having two dif-

ferent users working (perhaps in parallel) in these two

distinct (but complementary) levels of knowledge.

If the prediction model of this adequacy is suffi-

ciently adjusted, then alternating phases between op-

timization via the interactive MA and optimization via

the predictive model can be conducted. This is pre-

cisely the idea that is shown in Algorithm 2. The gen-

eral process basically works as follows: initially the MA

runs autonomously and demands the attention of the

human user when it detects that the search is not pro-

gressing adequately. Then the human user intervenes

in the optimization process if her level of fatigue is

acceptable. During this interactive process the auto-

mated algorithm constructs a prediction model of the

user preferences that will be used in subsequent phases

of the execution of the proactive user-centric algorithm.

If the automated algorithm detects that the human user

might be tired then the user (prediction) model is acti-

vated and substitutes the human user in the optimiza-

tion process; this means that the human user will not

be demanded by the MA what it is translated in a pro-

gressive reduction of her fatigue and, in case of search

stagnation, the MA will impose the preferences pro-

posed by the predictive model. Of course, the human

user can always intervene voluntarily in the process; in

any case, as the optimization continues it is expected

that the tiredness of the human user progressively de-

creases so that the process can go back to the initial

phase of interaction.

In general, an approach of this type has several

problems that are mentioned in the following:

– the difficulty of defining a prediction model that ad-

justs with an acceptable confidence to the behavior

of the human user; in fact this corresponds with the

difficulty of finding a measure of the adequate dis-

tance that captures the subjective preferences of the

human user;

– the inherent noise that often exists in the human

response (due for instance to the fatigue of user, to

the evolution of their subjective perception, or to an

adjustment of its response to the characteristics of

the solutions in the current generation);

– the difficulty to evaluate the level of fatigue (i.e.,

represented as the function fatigue in Algorithm

Algorithm 2: Pseudocode of a basic user-centric

MA
1 initiate execution of MA;
2 initialize user model Mu as empty;
3 while not (stop criteria reached) do

4 if fatigue(user) < threshold then
5 if user intervenes then

6 Add User preference (U1) to MA;
7 Add U1 to user model Mu;
8 increase fatigue value;

9 else

10 decrease fatigue value;
11 end if

12 else
13 if search does not progress then

14 Guess user preference U2 from user
model Mu;

15 Add User preference (U2) to MA;

16 end if

17 decrease fatigue value;

18 end if
19 continue executing MA;

20 end while

21 return best solution from population in MA;

2) associated to the human user as the optimiza-

tion process evolves. This is not an easy task and a

primitive solution consists of imposing a maximum

number of user interventions that has been agreed

previously.

In any case, the flexibility of the proactive approach

makes it helpful in cases in which the user wants to ob-

tain an added value, but makes it also useful in com-

plex optimization problems with perfectly well defined

evaluation functions; in these cases the inherent skills

of perception and information processing of the human

user can help to both lead the search towards subopti-

mal regions of the search space and avoid the stagna-

tion (or even premature convergence) of the algorithm

in specific parts of this space. In the following section we

present a study case in the context of a Gene Ordering

Problem (GOP).

5.1 Study case: Gene Ordering Problem

This section describes the application of a number of

MAs (including interactive and proactive proposals) on

the gene ordering problem [60], an NP-hard problem

with strong implications in biomedicine.

5.1.1 Rationale

Thanks to microarray technology [61] biologists can

monitor the activity of hundreds up to tens of thou-

sands of genes, with usually tens of measurements per

10 A.R. Badillo et al.

gene. As a result, a data deluge takes place very much

demanding reduction techniques (e.g., genes are be-

lieved to be influenced on average by about eight to ten

other genes [62].) To this end genes with related expres-

sion patterns are grouped together since such genes are

likely to regulate each other, or be co-regulated. Clus-

tering techniques [63–66] can be used, but this does not

exhaust the possibilities. The Gene Ordering Problem

(GOP) address this issue aiming to obtaining a high-

quality re-arrangement of gene-expression data, such

that related (from the point of view of their expres-

sion level) genes be placed in nearby locations within a

gene sequence.

The result of a microarray experiment can be ex-

pressed as a matrix G = {gij}, i = 1 · · ·n, j = 1 · · ·m,

where n is the number of genes, and m is the number

of experiments per gene. The GOP amounts to finding

an optimal order of genes such that genes with simi-

lar expression patterns are close in this order. For this

purpose a notion of distance among genes is required.

For simplicity we can consider the Euclidean distance:

D[gi, gj] = [
∑m

k=1 (gik − gjk)
2
]1/2 . Once this distance

matrix is found, fitness is computed by calculating the

total distance between adjacent genes, similarly to what

is done in the Traveling Salesman Problem. Thus, if

π = 〈π1, π2, · · · , πn〉 is the gene ordering, the total dis-

tance between adjacent genes can be described as the∑n−1
i=1 D[πi, πi+1] (other fitness functions are possible,

see [60]).

5.1.2 Experiments

The user interface for the GOP is similar to that shown
for the TSP – see Fig. 6. Basically, a graphical depiction

of the best individual and an average composition of

the population state is provided, along with controls for

modifying along the run every parameter or element of

the algorithm (e.g., check Fig. 7). The local search is

conducted by selecting a portion of the best individual

and checking whether exchanges of adjacent positions

leads to a fitness improvement. In addition, the user

also has the possibility of performing alterations such

as for example inverting a portion of the image, and

freezing/unfreezing a part of the solution (which will

be then left unaltered by evolutionary operators).

In order to mitigate user fatigue the MA proac-

tively suggests actions based on previous interventions

of the user. These are recorded along with some indi-

cations of the state of the run at the point in which

these actions were taken (the user can decide to leave

some actions out of the record if she considers these

actions were not valuable). The state of the run can be

described in many different ways depending on differ-

ent factors and the level of detail desired. In this case

and for the sake of simplicity we have characterized

the search state just in terms of three descriptors: di-

versity (population entropy), stagnation (number of it-

erations without improvement) and convergence speed

(slope of the best-fitness curve in the last iterations),

that range in an interval [0%,100%] (i.e., 0% indicates

the lowest value and 100% the highest one; for stag-

nation we imposed a maximum number of iterations

without improvement). When the user decides to in-

tervene, the current state is compared against recorded

states and the action that best fit is chosen and sug-

gested to the user who has the last word on whether it

should be applied or not (an automatic always-accept

mode can be used as well). More specifically, and as al-

ready mentioned, in the proactive model learning comes

from previous experiences so that each time the algo-

rithm is executed it will take into account its past ex-

ecutions. During each execution, the conflictive states

(i.e., phases of the algorithm that clearly do not hold

desirable properties –e.g., high diversity of the popu-

lation, acceptable ratio of solution improvement, and

non-premature convergence– according to the descrip-

tors mentioned above) are registered beside the actions

that were specifically applied with the aim of changing

the state nature (to non-conflictive), as well as statisti-

cal information about how many times this action was

taken under the same state and the amount of times

that its application was successful (i.e., it allowed to

reverse the situation to a non-conflictive state). More-

over, each state is also associated to a quantitative value

of unrest that represents the amount (i.e., percentage)

of conflict (measured as the average of the values of the

descriptors associated to the state) that the state ex-

hibits. This value is also recorded as part of the past ex-

perience. All this information is used by the algorithm

to propose new actions in the future; basically, once

a new conflictive state is detected the algorithm will

try to apply, with a probability directly related with

its percentage of unrest, the best action that, under

equal circumstances, was shown to be successful in the

past, and register this information in memory for fur-

ther feedback. Those operations that in the past were

discarded by the user in similar circumstances have also

less probability to be elected for application.

Two problem instances have been considered for the

experiments: a dataset comprising selectively expressed

genes in diffuse large B-cell lymphoma (380 genes, 19

experiments per gene) [67], and a dataset describing

Kaposi’s sarcoma-associated herpes virus gene expres-

sion (106 genes, 21 experiments per gene) [68].

The MA has been used in four different settings:

no interaction, interactive (with different number of

On User-Centric Memetic Algorithms 11

user interventions; a single user –different from those

used in the TSP experiments and more specialized in

this problem– has been considered), proactive-reactive

(the MA suggests an action to be done) and automatic

proactive (the MA simulates user interventions in pre-

vious runs). Ten runs of each algorithm are done, using

a steady-state MA, maxevals = 10, 000, popsize = 40,

edge recombination, and mutation by block inversion.

First of all, Fig. 8 shows the results on a 380-gene

instance. Firstly we can observe that the application

of local search is useful as all the memetic algorithms

outperform its corresponding non-memetic versions, in-

dependently of the incorporation of interactivity. Also,

regarding user interactions, as it can be seen, we ob-

serve again that all the interactive versions performs

better than their corresponding non-interactive coun-

terparts; this noticeable result can be a clear indication

of the utility of incorporating human knowledge during

the execution of the algorithms; note also that there is

a general trend of improved results when the number

of user interventions increases. Moreover the proactive

versions are generally better than the purely interac-

tive ones, this indicating that the ability of the MA for

suggesting actions is valuable for the user.

This result is further confirmed by the results on a

106 instance (Fig. 9), in which the MA with no user in-

put is compared to the proactive automatic MA which

uses the experience gathered in the previous instance.

The same trends are observed, indicating that the MA

can successfully apply the lessons learned on the previ-

ous instance to a unseen instance of the same problem

(obviously, this need not be the case on other prob-

lems in which particular features of the instance varied

wildly).

Particularly, as regard the proactive algorithms and

considering the two problem instances, in general we did

not find significant differences (statistically speaking,

and at the standard level of 5% level using a Wilcoxon

ranksum test) between the reactive versions and their

corresponding automatic equivalents. This is an impor-

tant result that encourages the employment of predic-

tive models as real alternative to the human expert that

might be replaced by the user model (i.e., as shown in

Figure 5) without decreasing the performance of the al-

gorithm; moreover, this result suggests that, once the

human user is disconnected from the search process,

the execution might be totally automated. Two consid-

erations though should be done here: (1) even for the

proactive automatic algorithms presented here, the in-

tervention of a human expert is required (either in the

initial stages of the algorithm execution or in previous

executions of this - or similar interactive algorithms,

perhaps without proactivity - over the same problem

instance) to construct a historical record of past expe-

riences so that the predictive model is constructed from

this. (2)The cost of obtaining a predictive model should

be taken into account before implementing a proactive

automatic algorithm as the attainment of a predictive

model (as presented in this paper) demands a number

of previous interventions of the human; in any case it

seems clear that proactivity is a worthwhile mechanism

when the problem demands a high level of expertise and

fatigue is an important factor to decrease.

6 Conclusions

User-centric EC is an thriving research topic. Paving

the way for further extensions, we have conducted in

this work a study on the deployment of interactive ca-

pabilities in a memetic algorithm, with application to

two complex NP-hard problems. The results have been

encouraging, since it has been shown that even some

forms of limited interaction are capable of improving

the results of a baseline autonomous algorithm. While

the computational scenario is not a tough one, these

results indicate that these techniques are capable of

taking advantage from good-quality human feedback,

not merely as a carrier of subjective information but

as a source of problem-aware perturbations that can

drive/focus the algorithm towards specific regions of

the search space. At any rate, much remains to be

done. As mentioned before, IEC is merely the tip of

the iceberg; full-fledged user-centric optimization also

implies proactivity in the search heuristic, anticipating

the needs of the user, or trying to follow her preferences

in order to provide hints in the direction she is headed
to. Our results using some simple models of proactive

behavior have also yielded encouraging results. We are

currently working on some related user-modeling areas

in the context of videogames, from which some general

lessons will be hopefully learned.

Acknowledgements

This work is partially supported by Spanish MICINN

under projects NEMESIS (TIN2008-05941) and ANY-

SELF (TIN2011-28627-C04-01), and by Junta de An-

dalućıa under project P10-TIC-6083 (DNEMESIS).

References

1. Hart, W.E., Belew, R.K.: Optimizing an arbitrary func-
tion is hard for the genetic algorithm. In Belew, R.K.,
Booker, L.B., eds.: 4th International Conference on Ge-
netic Algorithms, San Mateo CA, Morgan Kaufmann
(1991) 190–195

12 A.R. Badillo et al.

2. Wolpert, D.H., Macready, W.G.: No free lunch theorems
for optimization. IEEE Transactions on Evolutionary
Computation 1(1) (1997) 67–82

3. Culberson, J.: On the futility of blind search: An algorith-
mic view of “no free lunch”. Evolutionary Computation
6(2) (1998) 109–128

4. Hart, W.E., Belew, R.K.: Optimizing an arbitrary func-
tion is hard for the genetic algorithm. In Belew, R.K.,
Booker, L.B., eds.: Proceedings of the Fourth Interna-
tional Conference on Genetic Algorithms, San Mateo CA,
Morgan Kaufmann (1991) 190–195

5. Davis, L.: Handbook of Genetic Algorithms. Van Nos-
trand Reinhold, New York NY (1991)

6. Puchinger, J., Raidl, G.R.: Combining metaheuristics
and exact algorithms in combinatorial optimization: A
survey and classification. In Mira, J., Álvarez, J.R., eds.:
Artificial Intelligence and Knowledge Engineering Ap-
plications: A Bioinspired Approach: First International
Work-Conference on the Interplay Between Natural and
Artificial Computation, (IWINAC 2005), Part II. Vol-
ume 3562 of LNCS., Las Palmas, Canary Islands, Spain,
Springer (2005) 41–53

7. Moscato, P., Cotta, C.: A modern introduction to
memetic algorithms. In Gendreau, M., Potvin, J.Y., eds.:
Handbook of Metaheuristics. Volume 146 of International
Series in Operations Research and Management Science.
2nd edn. Springer (2010) 141–183

8. Moscato, P.: Memetic algorithms: A short introduction.
In Corne, D., Dorigo, M., Glover, F., eds.: New Ideas
in Optimization. McGraw-Hill, Maidenhead, Berkshire,
England, UK (1999) 219–234

9. Moscato, P., Cotta, C.: A gentle introduction to memetic
algorithms. In Glover, F., Kochenberger, G., eds.: Hand-
book of Metaheuristics. Kluwer Academic Press, Boston,
Massachusetts, USA (2003) 105–144

10. Moscato, P., Mendes, A., Cotta, C.: Memetic algorithms.
In Onwubolu, G., Babu, B., eds.: New Optimization
Techniques in Engineering. Springer-Verlag, Berlin Hei-
delberg (2004) 53–85

11. Krasnogor, N., Smith, J.: A tutorial for competent
memetic algorithms: model, taxonomy, and design issues.
IEEE Transactions on Evolutionary Computation 9(5)
(2005) 474–488

12. Neri, F., Cotta, C., Moscato, P.: Handbook of Memetic
Algorithms. Volume 379 of Studies in Computational In-
telligence. Springer-Verlag, Berlin Heidelberg (2012)

13. Neri, F., Cotta, C.: Memetic algorithms and memetic
computing optimization: A literature review. Swarm and
Evolutionary Computation 2 (2012) 1–14

14. Hart, W., Krasnogor, N., Smith, J.: Recent Advances in
Memetic Algorithms. Volume 166 of Studies in Fuzziness
and Soft Computing. Springer-Verlag, Berlin Heidelberg
(2005)

15. Dawkins, R.: The BlindWatchmaker, 1986. Longman,
Essex, U.K. (1986)

16. Takagi, H.: Interactive evolutionary computation: Fusion
of the capabilities of EC optimization and human evalu-
ation. Proceedings of the IEEE (9) (2001) 1275–1296

17. Parmee, I., Abraham, J.: User-centric evolutionary de-
sign. In Marjanovic, D., ed.: 8th International Design
Conference DESIGN 2004. (2004) 1441 – 1446 Decision
making workshop.

18. Parmee, I.C., Abraham, J.A.R., Machwe, A.: User-centric
evolutionary computing: Melding human and machine ca-
pability to satisfy multiple criteria. In Knowles, J., Corne,
D., Deb, K., Chair, D.R., eds.: Multiobjective Problem

Solving from Nature. Natural Computing Series. Springer
Berlin Heidelberg (2008) 263–283

19. Parmee, I.C.: Human-centric evolutionary systems in de-
sign and decision-making. In Rennard, J.P., ed.: Hand-
book of Research on Nature-Inspired Computing for Eco-
nomics and Management. IGI Global (2007) 395–411

20. Dias, J., Captivo, M., Cĺımaco, J.a.: A memetic algorithm
for multi-objective dynamic location problems. Journal
of Global Optimization 42 (2008) 221–253

21. Jaszkiewicz, A.: Interactive multiple objective optimiza-
tion with the pareto memetic algorithm. In Gottlieb, J.,
et al., eds.: 4th EU/ME Workshop: Design and Evalu-
ation of Advanced Hybrid Meta-heuristics, Nottingham,
UK (2004)

22. Dawkins, R.: The Selfish Gene. Clarendon Press, Oxford
(1976)

23. Bonissone, P.P., Subbu, R., Eklund, N.H.W., Kiehl, T.R.:
Evolutionary algorithms + domain knowledge = real-
world evolutionary computation. IEEE Trans. Evolution-
ary Computation 10(3) (2006) 256–280

24. Eiben, A.E., Smith, J.E.: Introduction to evolutionary
computation. Springer-Verlag (2003)

25. Houck, C., Joines, J., Kay, M., Wilson, J.: Empirical in-
vestigation of the benefits of partial lamarckianism. Evo-
lutionary Computation 5(1) (1997) 31–60

26. Nguyen, Q.H., Ong, Y.S., Krasnogor, N.: A study on
the design issues of memetic algorithm. In Srinivasan,
D., Wang, L., eds.: 2007 IEEE Congress on Evolution-
ary Computation, Singapore, IEEE Computational In-
telligence Society, IEEE Press (2007) 2390–2397

27. Sudholt, D.: The impact of parametrization in memetic
evolutionary algorithms. Theoretical Computer Science
410(26) (2009) 2511–2528

28. Cotta, C., Troya, J.M.: Embedding branch and bound
within evolutionary algorithms. Applied Intelligence
18(2) (2003) 137–153

29. Gallardo, J., Cotta, C., Fernández, A.: On the hybridiza-
tion of memetic algorithms with branch-and-bound tech-
niques. IEEE Transactions on Systems, Man, and Cy-
bernetics, Part B 37(1) (2007) 77–83

30. Moscato, P., Cotta, C.: Memetic algorithms. In Gonzalez,
T.F., ed.: Handbook of Approximation Algorithms and
Metaheuristics. Chapman & Hall/CRC (2007) Chapter
27.

31. Takagi, H.: Active user intervention in an ec search.
In: 5th Joint Conf. Information Sciences (JCIS2000), At-
lantic City, NJ (2000) 995–998

32. Deb, K., Chaudhuri, S.: I-mode: An interactive multi-
objective optimization and decision-making using evolu-
tionary methods. KanGal report 2007003, Kanpur Ge-
netic Algorithms Laboratory (2007)

33. Deb, K., Kumar, A.: Interactive evolutionary multi-
objective optimization and decision-making using refer-
ence direction method. KanGal report 2007001, Kanpur
Genetic Algorithms Laboratory (2007)

34. Lim, S., Kim, K.M., Hong, J.H., Cho, S.B.: Interac-
tive genetic programming for the sentence generation of
dialogue-based travel planning system. In: 7th Asia-
Pacific Conference on Complex Systems, Cairns, Aus-
tralia (2004) 6–10 Asia-Pacific Workshops on Genetic
Programming.

35. Lim, S., Cho, S.B.: Language generation for conversa-
tional agent by evolution of plan trees with genetic pro-
gramming. In Torra, V., Narukawa, Y., Miyamoto, S.,
eds.: Modeling Decisions for Artificial Intelligence. Vol-
ume 3558 of Lecture Notes in Computer Science. Springer
(2005) 305–315

On User-Centric Memetic Algorithms 13

36. Kosorukoff, A.: Human-based genetic algorithm. In: 2001
IEEE International Conference on Systems, Man, and
Cybernetics. IEEE Press, Tucson, AZ , USA (2001) 3464
– 3469

37. Breukelaar, R., Emmerich, M., Bck, T.: On interac-
tive evolution strategies. In Rothlauf, F., Branke, J.,
Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lut-
ton, E., Machado, P., Moore, J., Romero, J., Smith, G.,
Squillero, G., Takagi, H., eds.: Applications of Evolution-
ary Computing. Volume 3907 of Lecture Notes in Com-
puter Science. Springer (2006) 530–541

38. Kubota, N., Nojima, Y., Sulistijono, I., Kojima, F.: Inter-
active trajectory generation using evolutionary program-
ming for a partner robot. In: 12th IEEE International
Workshop on Robot and Human Interactive Communi-
cation (ROMAN 2003), Millbrae, California, USA (2003)
335–340

39. Babbar, M., Minsker, B.: A collaborative interactive ge-
netic algorithm framework for mixed-initiative interac-
tion with human and simulated experts: A case study in
long-term groundwater monitoring design. In: World En-
vironmental and Water Resources Congress 2006. (2006)

40. Quiroz, J.C., Banerjee, A., Louis, S.J.: Igap: interac-
tive genetic algorithm peer to peer. In: Proceedings of
the 10th annual conference on Genetic and evolutionary
computation. GECCO ’08, New York, NY, USA, ACM
(2008) 1719–1720

41. Quiroz, J., Louis, S., Banerjee, A., Dascalu, S.: Towards
creative design using collaborative interactive genetic al-
gorithms. In: IEEE Congress on Evolutionary Computa-
tion (CEC 2009), Singapore, IEEE (2009) 1849 – 1856

42. Cotta, C., Fernández Leiva, A.J.: Bio-inspired combina-
torial optimization: Notes on reactive and proactive inter-
action. In Cabestany, J., Rojas, I., Caparrós, G.J., eds.:
Advances in Computational Intelligence - 11th Interna-
tional Work-Conference on Artificial Neural Networks,
Part II (IWANN 2011). Volume 6692 of Lecture Notes in
Computer Science., Málaga, Spain, Springer (2011) 348–
355

43. Klau, G., Lesh, N., Marks, J., Mitzenmacher, M.:
Human-guided search. Journal of Heuristics 16 (2010)
289–310

44. Espinar, J., Cotta, C., Fernández-Leiva, A.J.: User-
centric optimization with evolutionary and memetic sys-
tems. In Lirkov, I., Margenov, S., Wasniewski, J., eds.:
8th International Conference on Large-Scale Scientific
Computing (LSSC 2011). Volume 7116 of Lecture Notes
in Computer Science., Sozopol, Bulgaria, Springer (2012)
214–221

45. Abu-Mostafa, Y.: Hints and the VC dimension. Neural
Computation 5 (1993) 278–288

46. Smith, J.E.: Self-adaptation in evolutionary algorithms
for combinatorial optimisation. In Cotta, C., Sevaux,
M., Sörensen, K., eds.: Adaptive and Multilevel Meta-
heuristics. Volume 136 of Studies in Computational In-
telligence. Springer (2008) 31–57

47. Ong, Y.S., Keane, A.: Meta-lamarckian learning in
memetic algorithms. IEEE Transactions on Evolution-
ary Computation 8(2) (2004) 99–110

48. Ong, Y.S., Lim, M.H., Zhu, N., Wong, K.: Classification
of adaptive memetic algorithms: a comparative study.
IEEE Transactions on Systems, Man, and Cybernetics,
Part B 36(1) (2006) 141–152

49. Ohsaki, M., Takagi, H., Ohya, K.: An input method us-
ing discrete fitness values for interactive ga. Journal of
Intelligent and Fuzzy Systems 6(1) (1998) 131–145

50. Sáez, Y., Viñuela, P.I., Segovia, J., Castro, J.C.H.: Refer-
ence chromosome to overcome user fatigue in IEC. New
Generation Comput. 23(2) (2005)

51. Beck, J.C., Wilson, N.: Proactive algorithms for schedul-
ing with probabilistic durations. In: Proceedings of the
19th international joint conference on Artificial intelli-
gence. IJCAI’05, San Francisco, CA, USA, Morgan Kauf-
mann Publishers Inc. (2005) 1201–1206

52. Beck, J.C., Wilson, N.: Proactive algorithms for job shop
scheduling with probabilistic durations. Journal of Arti-
ficial Intelligence Research 28(1) (2007) 183–232

53. Mamoun, M.H.: A new proactive routing algorithm for
manet. International Journal Of Academic Research 2(2)
(2010) 199–204

54. Khanna, R., Liu, H., Chen, H.H.: Proactive power op-
timization of sensor networks. In: IEEE International
Conference on Communications (ICC), Beijing, China,
IEEE (2008) 2119–2123

55. Lozano, J.A., Larrañaga, P., Inza, I., Bengoetxea, E.:
Towards a New Evolutionary Computation: Advances
on Estimation of Distribution Algorithms. Volume 192
of Studies in Fuzziness and Soft Computing. Springer-
Verlag, Berlin Heidelberg (2006)

56. Mühlenbein, H., Paaß, G.: From recombination of genes
to the estimation of distributions I. Binary parameters.
In: PPSN IV: Proceedings of the 4th International Con-
ference on Parallel Problem Solving from Nature, Lon-
don, UK, Springer-Verlag (1996) 178–187

57. Gong, D., Yao, X., Yuan, J.: Interactive genetic algo-
rithms with individual fitness not assigned by human.
Journal of Universal Computer Science 15(13) (2009)
2446–2462

58. Inoue, T., Furuhashi, T., Fujii, M., Maeda, H., Takaba,
M.: Development of nurse scheduling support system us-
ing interactive ea. In: IEEE Int. Conf. Systems, Man,
and Cybernetics. Volume 5. (1999) 533–537

59. Dozier, G.: Evolving robot behavior via interactive evolu-
tionary computation: From real-world to simulation. In:
16th ACM Symp. Applied Computing (SAC2001), Las
Vegas, NV, ACM Press (2001) 340–344

60. Cotta, C., Mendes, A., Garcia, V., França, P., Moscato,
P.: Applying memetic algorithms to the analysis of mi-
croarray data. In Raidl, G., et al., eds.: Applications of
Evolutionary Computing. Volume 2611 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin (2003) 22–
32

61. DeRisi, J., Lyer, V., Brown, P.: Exploring the metabolic
and genetic control of gene expression on a genomic scale.
Science 278 (1997) 680–686

62. Arnone, A., Davidson, B.: The hardwiring of develop-
ment: Organization and function of genomic regulatory
systems. Development 124 (1997) 1851–1864

63. Ben-Dor, A., Yakhini, Z.: Clustering gene expression pat-
terns. In: Proceedings of the ACM RECOMB’99, Lyon,
France, ACM Press (1999) 33–42

64. Eisen, M., Spellman, P., Brown, P., Botstein, D.: Cluster
analysis and display of genome-wide expression patterns.
Proceedings of the National Academy of Sciences of the
USA 95 (1998) 14863–14868

65. Fasulo, D.: An analysis of recent work on clustering algo-
rithms. Technical Report UW-CSEO1-03-02, University
of Washington (1999)

66. Hartuv, E., Schmitt, A., Lange, J., Meier-Ewert, S.,
Lehrach, H., Shamir, R.: An algorithm for clustering
cDNAs for gene expression analysis. In: Proceedings of
the ACM RECOMB’99, Lyon, France, ACM Press (1999)
188–197

14 A.R. Badillo et al.

67. Alizadeh, A., et al.: Distinct types of diffuse large B-cell
lymphoma identified by gene expression profiling. Nature
403 (2001) 503–511

68. Jenner, R., Alba, M., Boshoff, C., Kellam, P.: Kaposi’s
sarcoma-associated herpesvirus latent and lytic gene ex-
pression as revealed by DNA arrays. Journal of Virology
75 (2001) 891–902

On User-Centric Memetic Algorithms 15

Fig. 4 Results obtained by interactive and non-interactive algorithms on the kroA100 instance (top) and on the kroA200 instance
(bottom).

16 A.R. Badillo et al.

Fig. 5 A possible schema of a user-centric memetic algorithm

On User-Centric Memetic Algorithms 17

Fig. 6 Interface for the GOP.

Fig. 7 Example of user intervention for the GOP.

18 A.R. Badillo et al.

Fig. 8 Results on a dataset comprising selectively expressed genes in diffuse large B-cell lymphoma (380 genes, 19 experiments
per gene) [67]. Algorithms in X axis, from left to right: non-interactive without LS, non-interactive with LS, interactive without
LS (1 interaction), interactive without LS (2 interactions), interactive without LS (4 interactions), interactive without LS (8
interactions), interactive with LS (1 interaction), interactive with LS (2 interactions), interactive with LS (4 interactions),
interactive with LS (8 interactions), proactive-reactive without LS (1 interaction), proactive-reactive without LS (2 interac-
tions), proactive-reactive without LS (4 interactions), proactive-reactive without LS (8 interactions), proactive-reactive with
LS (1 interaction), proactive-reactive with LS (2 interactions), proactive-reactive with LS (4 interactions), proactive-reactive
with LS (8 interactions), proactive-automatic without LS (1 interaction), proactive-automatic without LS (2 interactions),
proactive-automatic without LS (4 interactions), proactive-automatic without LS (8 interactions), proactive-automatic with
LS (1 interaction), proactive-automatic with LS (2 interactions), proactive-automatic with LS (4 interactions), and proactive-
automatic with LS (8 interactions).

On User-Centric Memetic Algorithms 19

Fig. 9 Results on a dataset describing Kaposi’s sarcoma-associated herpes virus gene expression (106 genes, 21 experiments per
gene) [68]. Algorithms in X axis, from left to right: non-interactive without LS, non-interactive with LS, proactive automatic
without LS (1 interaction), proactive automatic without LS (2 interactions), proactive automatic without LS (4 interactions),
proactive automatic without LS (8 interactions), proactive automatic with LS (1 interaction), proactive automatic with LS (2
interactions), proactive automatic with LS (4 interactions), and proactive automatic with LS (8 interactions).

