
Chapter 1

ENHANCING THE PERFORMANCE OF MEMETIC
ALGORITHMS BY USING A MATCHING-
BASED RECOMBINATION ALGORITHM

Results on the Number Partitioning Problem

Regina Berretta
School of Electrical Engineering and Computer Science,
Faculty of Engineering and Built Environment
The University of Newcastle, Callaghan, 2308 NSW, Australia
regina@cs.newcastle.edu.au

Carlos Cotta
Departamento de Lenguajes y Ciencias de la Computación, ETSI Informática (3.2.49),
Universidad de Málaga, Campus de Teatinos, 29071 - Málaga, Spain
ccottap@lcc.uma.es

Pablo Moscato
School of Electrical Engineering and Computer Science,
Faculty of Engineering and Built Environment
The University of Newcastle, Callaghan, 2308 NSW, Australia
moscato@cs.newcastle.edu.au

Abstract The Number Partitioning Problem (MNP) remains as one of the
simplest-to-describe yet hardest-to-solve combinatorial optimization prob-
lems. In this work we use the MNP as a surrogate for several related
real-world problems, in order to test new heuristics ideas. To be pre-
cise, we study the use of weight-matching techniques in order to devise
smart memetic operators. Several options are considered and evalu-
ated for that purpose. The positive computational results indicate that
—despite the MNP may be not the best scenario for exploiting these
ideas— the proposed operators can be really promising tools for dealing
with more complex problems of the same family.

2

Keywords: Memetic Algorithms, Tabu Search, Number Partitioning Problem, Weight
Matching

1. Introduction and Motivation
The Min Number Partitioning problem has been one of the hard-

est challenges for metaheuristics for at least a decade. It was originally
the paper by Johnson et al. (1991) that first identified the problem
that Simulated Annealing (Kirkpatrick et al. 1983) (SA henceforth),
a metaheuristic of pristine prestige among physicists, was having to
address this problem. At the beginning of the past decade, this was
thought to be a peculiar characteristic since SA was viewed as a pow-
erful method. Currently, although the prestige of SA has somewhat
declined, the problem has remained to be an open challenge for other
metaheuristics like Genetic Algorithms (GAs) (Jones and Beltramo 1991,
Ruml 1993), SA (Johnson et al. 1991, Sorkin 1992, Ruml et al. 1996),
problem space local search (Storer et al. 1996), GRASP (Arguello et al.
Feb. 1996), or Tabu Search (Glover and Laguna 1997). The decision ver-
sion is widely cited as being a conspicuous member of the NP-complete
class, one of the “six-essential” NP-complete problems. Moreover, the
problem has another source of interest if we also have in mind that is
essentially equivalent to find the ground-state of an infinite range Ising
spin-glass system with antiferromagnetic couplings. As a consequence,
we can think of this problem as being a worst-case scenario (Mertens
2000) among the tasks of finding the ground-state of a disordered sys-
tem (Laguna and Laguna 1995, Ferreira and Fontanari 1998, Mertens
1998). Other interesting problems from which reductions to Number
Partitioning exist are the balancing of rotor blades and cargo load-
ing in aircrafts (Storer 2001), and the assignment of tasks in low-power
application-specific integrated circuits (Kirovski et al. 1999).

We can define the problem as:

Input: A set A of n positive integer numbers {a1, . . . , an}.
Question: Is there a partition of A, i.e., two disjoint sets A1 and A2

with A = A1
⋃

A2, such that

∑

ai∈A1

ai =
∑

aj∈A2

aj ? (1.1)

Enhancing MA Performance by Using Matching-based Recombination 3

We will denote this problem as Number Partitioning (D), the
bracketed D indicating that it is a decision problem, i.e., for every in-
stance the (unique) answer is either ‘Yes’ or ‘No’. Associated to this
problem there is a combinatorial optimization search problem or opti-
mization version (denoted Number Partitioning (O) or Min Num-
ber Partitioning — MNP for short). This related problem can be
viewed as the task of finding a set y = {v1, . . . , vn}, where vi can be
either 1 or −1, such that y minimizes the following objective function (a
cost function in this case):

mP (y,A) =

∣∣∣∣∣
n∑

i=1

aivi

∣∣∣∣∣ (1.2)

Though the problem is easy to state, this optimization version is de-
ceptively hard to solve. Several frustrated attempts to classify what
makes a problem “hard” for GAs have been made and this also applies
to the whole field of Evolutionary Computation. Extending this con-
cern to the field of metaheuristics, from a scientific point of view, it is
frustrating to see that most results report “successful” applications of a
certain technique while many “negative” results and failures very sel-
dom reach a published status. This problem is notably an exception, and
hence constitutes an ideal battle-ground for testing and comparing dif-
ferent metaheuristics. More precisely, we propose the use of ideas taken
from weight-matching to understand some of the associated issues, using
MNP as a surrogate for some of the optimization problems mentioned
above.

2. The Karmarkar-Karp Heuristic
Johnson et al. (1991) compare the bad performance of SA for Min

Number Partitioning with two other problems: Min Graph Col-
oring and Min Graph Partitioning. The authors conclude:

“The results for number partitioning were, as expected, decidedly nega-
tive, with annealing substantially outperformed by the much faster Karmarkar-
Karp algorithm, and even beaten (on a time-equa-lized basis) by multiple-
start local optimization (MSLO).”

The Karmarkar-Karp (Karmarkar and Karp 1982) heuristic (KKH)
is a constructive heuristic for the MNP that works by marking the two
largest numbers to belong to two different subsets, replacing them (in
the set of numbers yet to be marked) by their difference, and repeating
the process until only one number is left. The remaining number is the
value of the resulting partition of the original set. In order to recover the
corresponding partitions as well, this basic scheme must be augmented so

4

as to keep track of the successive groupings performed, finally yielding
a tree. The coloring of this tree (done with just two colors as it is
straightforward to see) results in the precise partitions produced by the
algorithm (see complete pseudocode in Fig. 1.1).

Karmarkar-Karp Algorithm
in: set A
out: partition (A1, A2)

begin
Treelist ← ∅;
foreach i ∈ A do

T1 ← CreateTree ((i,i)); /* tree rooted with (i,i) */
Append (TreeList, T1);

endfor
while Size(TreeList) ≥ 2 do

T1 ← ExtractHighest (TreeList);
T2 ← ExtractHighest (TreeList);
(l1, n1) ← Root(T1);
(l2, n2) ← Root(T2);
AddBranch (T1, T2); /* T2 is inserted as a subtree of T1 */
SetRoot (T1, (l1− l2, n1));
Append (TreeList, T1);

endwhile
T ← ExtractHighest (TreeList);
(A1, A2) ← ColorPartition (T);

end;

Figure 1.1. The Karmarkar-Karp Algorithm. Trees are constructed, being the nodes
pairs (l,n), where l is the label for the node —the value of the partition is represents—
and n is an element of A.

As an example, Fig. 1.2 shows the results for the set of integers
{205, 157, 133, 111, 100, 91, 88, 59, 47, 23}. According to the KKH, the
numbers 205 and 157 must be assigned to different partitions, and so do
133 and 111. The process is repeated until only one number remains:
the value of the partition. If we continue the example, we will have 6 as
the weight of the resulting partition.

2.1 A crash introduction to “phase transitions”
An important optimal algorithm that uses KKH is the Complete Kar-

markar Karp (CKK) method proposed by Korf (1998). CKK is an exact
anytime algorithm which takes advantage of the KKH.

Enhancing MA Performance by Using Matching-based Recombination 5

Figure 1.2. Tree provided by the KKH. Oval nodes go to one partition, and rect-
angular nodes to the other one. The numbers in brackets are the successive labels
assigned to each subtree. The final weight of the tree is 6.

The CKK algorithm is a hard adversary for metaheuristics, particu-
larly due to a phenomenon that in the Artificial Intelligence literature is
generally cited as a “phase transition” (Cheeseman et al. 1991). i.e., the
transition from a “region” in which almost all instances have many solu-
tions to a region in which almost all instances have no solutions, as the
constraints become tighter. This feature is sometimes uncovered by ex-
act algorithms, and can be experimentally —and in some situations even
theoretically— analyzed using samples of randomly-generated problems
(Mitchell et al. 1992, Mammen and Hogg 1997, Smith and Dyer 1996).

Regarding the specific case of the Min Number Partitioning prob-
lem and in relationship with the CKK algorithm, it uncovers the “Easy-
hard-easy” type of transition. We will try to give some intuition on this
type of transitions by considering an analogous problem. Suppose for a
moment that we are given n stones of different weights (with an average
weight W) and that our task is to separate them in two groups of the
same weight. For the “large n” limit (assuming we keep a fixed W),
we can analogously think of the “low W/n” limit, so we can think of
the “stones” as grains of sand. It is clear that the task is significantly
easier in this case, since the probabilities and combinatorics are playing
for us: several optimal solutions may exist, and certainly many subop-
timal solutions with costs that are numerically very close to the perfect
(optimal) partition value. Also, in the “small n” limit, the problem is
also expected to be easy for an exact algorithm, since the search space
is greatly reduced. So clearly, there is a relationship between the two
magnitudes where the search is expected to be harder.

Recurring once again to the intuition of the reader, certainly we do not
expect that the existence of a single optimal solution would characterize
the particular scenario that would be the hardest for the exact algorithm
under consideration. This is clear from the fact that in the “small n”

6

limit we can easily expect to have a single optimal solution, though
the problem would be easy (on average) since it has a small number of
possible configurations (2n−1). Thus we can expect that the problem is
harder on average when the number of elements is as large as possible
yet it still has a single solution.

In this sense, the particular instance of Min Number Partitioning
used in Fig. 1.2 was used with a purpose in mind. We have chosen it
to illustrate the workings of the KK heuristic since this set of n = 10
numbers {205,157,133,111,100,91,88,59,47,23} is discussed in page 234
of (Papadimitriou 1994). In the author’s own words:

“...(notice that their sum, 1014, is indeed less than 2n − 1 = 1023).
Since there are more subsets of these numbers than there are numbers
between 1 and 1014, there must be two different subsets which have the
same sum. In fact, it is easy to see that two disjoint subsets must exist
that must have the same sum.”

It is thus clear that the concept behind these “phase transitions” is
very intuitive. Although it has been probably identified and discussed
well before 1991 (Cheeseman et al. 1991), it has very seldom received the
attention it deserves when selecting which instances to use in the compu-
tational experimentation with heuristic algorithms and metaheuristics.

Curiously, the work of Cheeseman et al. (1991) has been cited a few
hundred times in the computing literature, yet most papers in the meta-
heuristic area do not take into account these facts when selecting the
particular instances under study to test their methods. Here we have
taken particular care regarding the generation of instances and the be-
havior of metaheuristics in the three regions which has helped us to
understand the characteristics of our methods. It would be interesting
to collect evidence on how long the existence of the so-called “phase
transitions” (a term borrowed from Physics), has also been reported in
the account of experimental studies with exact methods like Branch-
and-Bound (Lawler and Wood 1966) or Branch-and-Cut (Caprara and
Fischetti 1997).

2.2 The IMKK Heuristic
To our knowledge there has been no other heuristic that would allows

us to replace the basic KKH scheme with another fast algorithm. We
provide one such an attempt, an iterated constructive heuristic that we
tentatively named IMKK for Iterated Matching and KKH . For simplicity,
we discuss here an implementation of this idea using a greedy matching
algorithm.

Suppose we have as input the following partition: A1 = {205, 133, 111,
59, 47} and A2 = {157, 100, 91, 88, 23}. Note that the cost associated to

Enhancing MA Performance by Using Matching-based Recombination 7

this partition is |555 − 459| = 96, higher than the one obtained by the
KKH for the same instance of Fig. 1.2. Now we proceed constructing a
weighted bipartite complete graph G(V, E), such that V = V1 ∪ V2 and
V1 and V2 are two independent sets. We have a vertex in V1 for each
element of A1 (analogously, we have a vertex in V2 for each element of
A2). The weight of an edge (vi, vj) ∈ E between two vertices vi ∈ V1

and vj ∈ V2, is given by |aj − aj | of the corresponding numbers ai ∈ A1

and aj ∈ A2. For the given partition, we can run a greedy algorithm
that tries to find a matching of minimum weight. Bending a little the
notation, this matching can be written as the following list of paired
numbers M = {(111, 100), (47, 23), (157, 133), (88, 59), (205, 91)}. The
weight of such a matching is 11 + 24 + 24 + 29 + 114 = 202. If we
make the heuristic argument that we can assume that the matching
can be understood as a constraint that obliges the numbers to be in
different partitions, then we can run the KKH on an instance that has
half the original size with the numbers {11, 24, 24, 29, 114}. The whole
pseudocode is shown in Fig. 1.3.

Matching and KKH Algorithm
in: partition (A1, A2)
out: partition (A′1, A′2)

begin
G ← ∅;
foreach i ∈ A1, j ∈ A2 do G ← G ∪ {(i, j)};
M ← FindMatching (G);
A′ ← ∅;
foreach (i, j) ∈ M do A′ ← A′ ∪ {|i− j|};
(A′1, A′2) ← KKH (A′);

end;

Figure 1.3. A single step of the IMKK Algorithm. This process can be iterated so
as to further improve the output partition.

Following the procedure above we obtain the new partition of the
original numbers A

(1)
1 = {205, 133, 100, 59, 23} and A

(1)
2 = {157, 111, 91,

88, 47} with an associated cost of |520 − 494| = 26, which is still above
the one given by the KKH. Iterating the procedure once again, we obtain
the matching M = {(100, 91), (59, 47), (133, 111), (205, 157), (23, 88)},
with weight 9 + 12 + 22 + 48 + 65 = 156. Running the KKH on
the set of numbers {9, 12, 22, 48, 65} we obtain the partition A

(2)
1 =

{205, 133, 100, 47, 23} and A
(2)
2 = {157, 111, 91, 88, 59} which has an as-

8

sociated cost of |508 − 506| = 2, smaller than the one obtained by the
KKH alone.

We leave as an exercise to the reader what happens if we iterate
the procedure another time. However, we can anticipate the result:
we obtain again the same matching, and as a consequence, the same
result for the KKH. In essence, we are trapped in a “local minimum”1

of this procedure. This is certainly interesting and it suggests that a
procedure based on repeated application of the KKH and a minimum
weight matching algorithm on a complete bipartite graph can be used as
an engine for a new type of metaheuristics for this problem. This issue
is tackled in the next section.

3. Recombination Approaches Based on Weight
Matching

As shown in the previous section, the idea of applying KKH on re-
duced (via matching) instances of the problem can be a promising mech-
anism for introducing sensible knowledge about the target problem (Min
Number Partitioning in this case) in the search algorithm at hand.
While it is still unclear whether its use as search engine in pure local-
search metaheuristics can be useful, it is much more evident that this
technique can provide very useful guidelines to model information ex-
changes in population-based-search metaheuristics such as evolutionary
algorithms (EAs). More precisely, the inclusion of problem knowledge
into the EA by means of heuristic procedures such as this will result in
a memetic algorithm (Moscato 1989, Moscato and Norman 1992) (MA
henceforth). A general description of these techniques will be given in
Section 1.4. Previously, this section is devoted to discuss the utilization
of weight-matching ideas within recombination, a key component in MAs
by which a new solution is created by combining information from a set
(usually a pair) of existing solutions. In this sense, two main approaches
are identified: the use of minimum matchings, and the utilization of
balanced matchings.

3.1 Minimum-Weight-Matching Recombination
The approach discussed in this subsection is very similar to the plain

IMKK algorithm presented before. The pseudocode is shown in Fig. 1.4.
The following example may be useful to illustrate the actual func-

tioning of this pseudocode. Suppose we are given the two parental so-
lutions S1 = {205, 133, 47, 23}{157, 111, 100, 91, 88, 59} and S2 = {205,
111, 100}{157, 133, 91, 88, 59, 47, 23} having costs of |408 − 606| = 198
and |416 − 598| = 182; we first start by constructing the graphs as-

Enhancing MA Performance by Using Matching-based Recombination 9

Minimum Weight-Matching Recombination
in: partitions (A1, A2), (A′1, A′2)
out: partition (A′′1, A′′2)

begin
G1 ← ∅; G2 ← ∅;
foreach i ∈ A1, j ∈ A2 do G1 ← G1 ∪ {(i, j)};
foreach i ∈ A′1, j ∈ A′2 do G2 ← G2 ∪ {(i, j)};
M ← G1 ∩G2;
foreach i ∈ A1 ∪A2 do M ← M ∪ {(i, 0)};
M ′ ← OrderedList(M);
(i, j) ← FindFirst (M ′, max(A1 ∪A2));
E ← {i, j}; A ← {|i− j|}
while E 6= A1 ∪A2 do

DeleteAllOccurrences (M ′, i);
DeleteAllOccurrences (M ′, j);
(i, j) ← GetNextEdge (M ′, M);

// (i, j) ∈ M ′ and minimizes
// max{||i− j| − |k − l|| |(k, l) ∈ M, (k, l) /∈ M ′}

E ← E ∪ {i, j}; A ← A ∪ {|i− j|}
endwhile
(A′′1, A′′2) ← KKH (A);

end;

Figure 1.4. The Minimum Weight-Matching Recombination.

sociated with them as mentioned above. We then identify common
edges, i.e., pairs of numbers being in different partitions in both so-
lutions. Sorting this list according to edge weights yields in this ex-
ample: (133, 111) = 22, (133, 100) = 33, (205, 157) = 48, (100, 47) =
53, (111, 47) = 64, (100, 23) = 77, (111, 23) = 88, (205, 91) = 114,
(205, 88) = 117, and (205, 59) = 146. The next step is augmenting
this list with edges connecting each number with a dummy element ‘0’.
The rationale behind this is that it could better to consider a num-
ber in isolation rather than taking a bad matching from the parents.
In this example, we obtain: (133, 111) = 22, (23, 0) = 23, (133, 100) =
33, (47, 0) = 47, (205, 157) = 48, (100, 47) = 53, (59, 0) = 59, (111, 47) =
64, (100, 23) = 77, (111, 23) = 88, (88, 0) = 88, (91, 0) = 91, (100, 0) =
100, (111, 0) = 111, (205, 91) = 114, (205, 88) = 117, (133, 0) = 133,
(205, 59) = 146, (157, 0) = 157, and (205, 0) = 205.

Now, we find the first appearance of the highest number (205), and
mark the corresponding edge (205, 157) whose weight is 48. Next, we

10

proceed iteratively by considering the edge that minimizes the largest
weight difference with respect to an already marked edge, and whose
members (excluding the ‘0’ if it were the case) are not included in any
marked edge. This process is repeated until all numbers are included in
one marked edge. In our example, edges would be marked in the fol-
lowing order: (205, 157), (0, 47), (0, 59), (133, 100), (0, 23), (0, 88), (0, 91),
(0, 111).

The whole process till this point has been devoted to extract some
common information from the parents. We now need to use this infor-
mation to create a new solution. This is done by running the KKH using
the edge weights. In our example we obtain the partition {111, 59, 47, 33}
{91, 88, 48, 23} that translates into the final partition {157, 133, 111, 59,
47}{205, 100, 91, 88, 23} whose cost is 0.

3.2 A recombination algorithm based on finding
a balanced matching

After some initial experimentation with the recombination algorithm
based on minimum weight matching, we recognized that a variant of the
original idea may be more useful for this problem. Again we will resort
to our favorite instance example to explain this method.

Using the example discussed in Subsection 1.3.1, we have two parental
partitions S1 = {205, 133, 47, 23} {157, 111, 100, 91, 88, 59} and S2 =
{205, 111, 100}{157, 133, 91, 88, 59, 47, 23} having costs of |408 − 606| =
198 and |416 − 598| = 182. As we did before, we construct an undi-
rected graph with edge weights given by (133, 111) = 22, (23, 0) =
23, (133, 100) = 33, (47, 0) = 47, (205, 157) = 48, (100, 47) = 53,
(59, 0) = 59, (111, 47) = 64, (100, 23) = 77, (111, 23) = 88, (88, 0) =
88, (91, 0) = 91, (100, 0) = 100, (111, 0) = 111, (205, 91) = 114,
(205, 88) = 117, (133, 0) = 133, (205, 59) = 146, (157, 0) = 157, and
(205, 0) = 205.

Now we can search for the most balanced matching in the graph, that
is, a matching that minimizes the absolute difference between the weights
of the heaviest and lightest edge in the matching. Instead, to avoid
the computational complexity associated to performing this operation,
we resort to a simpler heuristic. Since we have 20 edges, we start by
considering the tenth edge in the increasing order, which is (111, 23) =
88. Selecting this edge means that we have already decided that the
numbers 111 and 23 go in different sides of the partition. They are
both marked. We next consider the two consecutive edges in the order.
Integers 23 and 111 are already marked, so the next edges to consider
are (59, 0) = 59 and (88, 0) = 88. At each step, we will greedily take

Enhancing MA Performance by Using Matching-based Recombination 11

the edge that minimizes the current imbalance of the matching. In this
case (88, 0) = 88. We mark 88 and proceed, now with (59, 0) = 59
and (91, 0) = 91. We select (91, 0) = 91, mark 91, and continue, now
selecting (100, 0) = 100, and so on. We end this procedure when all
the integers are marked and we have a matching. We then run the
KK heuristic, passing as input the set of weights of the edges. The
resulting solution is then used to create the actual partition for the
original numbers.

Thus, the main difference with respect to the previous recombination
algorithm is the fact that GetNextPair (M ′, M) returns a pair (i, j) ∈ M ′
that minimizes max(a, b), where

a = ||i− j| −max{|k − l| | (k, l) ∈ M, (k, l) /∈ M ′}| and (1.3)

b = ||i− j| −min{|k − l| | (k, l) ∈ M, (k, l) /∈ M ′}|, (1.4)

rather than simply minimizing

max{||i− j| − |k − l|| | (k, l) ∈ M, (k, l) /∈ M ′}. (1.5)

4. The Memetic Algorithm
As mentioned before, the recombination operators already described

will be integrated within a problem-adapted evolutionary algorithm, also
known as hybrid evolutionary algorithm (Davis 1991) or memetic algo-
rithm (Moscato 1989). Besides the utilization of these smart recombi-
nation operators, MAs use additional mechanisms in order to include
problem-specific knowledge into the search engine. A general view of
these mechanisms is provided in Subsection 1.4.1. Subsequently, the
particular details for adapting the generic components described in this
first subsection to the target problem will be discussed in the next sub-
sections.

4.1 Pseudocode for memetic algorithms
The particular MA used in this work is the so-called Local-Search-

based MA, a population-based-search algorithm that intensively uses
local search in order to boost solution quality (see the pseudocode in
Fig. 1.5). This use of local search motivates a view of the process
in which each solution is an agent that tries to improve its quality,
cooperating and competing with other agents in the population (Norman
and Moscato 1991, Slootmaekers et al. 1998).

This generic template can have a huge variety of instantiations. For
instance, the FirstPop() function can generate a set of random solutions
for the problem at hand, or use a construction heuristic (or a set of

12

Local-Search-based Memetic Algorithm

begin
Pop ← FirstPop();
foreach agent i ∈ Pop do

i ← Local-Search-Engine(i);
EvaluateSolution(i);

endfor
repeat /* generations loop */

for j ← 1 to #recombinations do
Spar ← SelectToMerge (Pop);
offspring ← Recombine(Spar, x);
offspring ← Local-Search-Engine(offspring);
EvaluateSolution(offspring);
AddInPopulation (offspring, Pop);

endfor;
for j ← 1 to #mutations do

i ← SelectToMutate (Pop);
im ← Mutate(i);
im ← Local-Search-Engine(im);
EvaluateSolution(im);
AddInPopulation (im, Pop);

endfor;
Pop ← SelectPop(Pop);
if Converged(Pop) then Pop ← RestartPop(Pop);

until termination-condition;
end;

Figure 1.5. The Local-Search-Based Memetic Algorithm

them if more than one is known) in order to generate a set of good
initial solutions. As to the Local-Search-Engine() function, it receives
as input a solution and applies an iterative improvement algorithm to
it. This improvement algorithm iterates until it is no longer possible
to improve the current solution or it is judged not probable to achieve
further improvements. Note that in many circumstances, there is no
need to evaluate the guiding function2 (using the EvaluateSolution()
algorithm) until we got the final solution (the Local-Search-Engine()
may be capable of determining whether a certain modification to the
current solution is acceptable by using heuristic knowledge about the
target function).

Enhancing MA Performance by Using Matching-based Recombination 13

After the initial population has been created, at least one recombina-
tion is done. Some MAs ask all the solutions to be involved in recombi-
nations, so #recombinations is fixed and does not need to be specified
as a numerical parameter. The SelectToMerge() function is executed by
selecting a subset of k solutions to be used as input of the k-merger ,
a k-ary recombination procedure. Some MAs use a random function,
while others use some more complex approach. For instance, there are
authors who also advocated for the benefits of using a population struc-
ture for interaction of agents (Gorges-Schleuter 1989, Mühlenbein 1991,
Gorges-Schleuter 1991, Moscato 1993).

A new solution is created by recombining the selected solutions ac-
cording to the Recombine() function. This can start a variety of proce-
dures, ranging from a single application of any available efficient (i.e.,
polynomial-time) k-merger algorithm up to more complex recombina-
tion operators (which means that they need not be efficient) such as the
more systematic searches proposed by Aggarwal et al. (1997) as well as
the one used in the recent GAs proposed by Balas and Niehaus (1996).
Afterwards, it is optimized and added (or not) to the population accord-
ing to some criteria. Analogously, a number of solutions are subjected
to some mutations. Sometimes the Mutate() function is implemented
as a random process, but this is not the general rule and other forms of
mutation are possible. Again, the solution is re-optimized at the end of
the mutation process and added or not to the population.

The SelectPop() function will act on the population, having the effect
of reducing its size. The selection of this subset is not always determined
by the objective or the guiding function. It may be biased by other fea-
tures of the solutions, like the interest of maximizing some measure of
diversity of the selected set. Again, this can be implemented in a va-
riety of ways. The convergence of the population is sometimes decided
by reference to a diversity-crisis, a measure which indicates, below a
certain threshold, that the whole population has very similar configura-
tions. When the population has converged, a RestartPop() function is
used. In general, the best solution found so far (or incumbent solution)
is preserved and a new population is created using some randomized pro-
cedure. All the solutions of the population are optimized and evaluated
afterwards and the whole process is repeated.

The termination-condition can also be implemented in many ways. It
can be a time-expiration or generation-expiration criteria as well as more
adaptive procedures, like some dynamic measure of lack of improvement.

14

Figure 1.6. Population structure (a complete ternary tree) used in all the MAs in
this study on the Min Number Partitioning problem.

4.2 Representation and Search Space
In this paper, we have used the direct representation (Ruml et al.

1996) which is complete since it can generate all possible partitions (the
associated search space has 2n configurations, two for each solution of
the problem). In this representation, a partition (A1, A2) is represented
as a signed bit array {ai | 1 ≤ i ≤ |A1 ∪ A2|}, where ai = 1 if the ith
element of A1∪A2 (under an arbitrary but fixed enumeration) belongs to
A1, and ai = −1 otherwise. We will note that any solution is represented
by two configurations (s, s′ ∈ S). For instance s = {1,−1,−1, 1,−1,−1}
and s′ = {−1, 1, 1,−1, 1, 1} both represent the same partition (i.e., the
same solution) of six integers.

Another representation that can be used for this problem is called
ternary direct since it allows alleles to take one out of three differ-
ent values, ‘0’, ‘1’, or ‘−1’. Obviously, the associated search space is
also complete since it contains the search space of the direct representa-
tion. These two representations were studied using a variety of MAs in
(Berretta and Moscato 1999). We have kept the best MA of that work
(an MA using the direct representation) as benchmark metaheuristic.
The aim here would be to see if those results can be improved by other
new heuristic ideas for the recombination methods.

4.3 Population size and structure
The population has a fixed size of 13 agents, arranged with a neigh-

borhood relationship based on a complete ternary tree of three levels
(See Fig. 1.6). Initially chosen for historical reasons, this structure has
revealed itself as very appropriate with respect to the implementation
of behaviors, a topic discussed in Subsection 1.4.5.1

Enhancing MA Performance by Using Matching-based Recombination 15

Such interaction topology can be interpreted as a variant of island
models (Tanese 1989) of evolutionary algorithms, in which each subpop-
ulation has four agents, one “leader” node and three “supporters”. The
latter are one level below in the hierarchy, so agent 1, the root of the
tree, is the leader of the top subpopulation and has as supporters agents
2, 3, and 4. Agent 2 has as supporters agents 5, 6, and 7, etc. Note that
agents 2, 3, and 4 play both leader and supporter roles.

Each agent of the population is handling two feasible solutions, con-
figurations of the associated search space. One is named “Pocket” and
the other one “Current”. Whenever the Current solution of an agent has
a better guiding function than the Pocket solution, they are switched.
We can understand the Pocket as playing the role of a “memory” of past
good solutions. Another procedure named PocketPropagation changes
two Pocket solutions if the leader has a Pocket solution which is worse
than one of its followers. We only require these two mechanisms to
guarantee the flow of better solutions towards the agent at the top of
the hierarchy.

In our MAs, agents optimize their Current configurations/solutions
with periods of local search which alternate with recombination. For
this particular implementation of an MA, we choose to call as one gen-
eration the process in which agents have evolved their Current solutions
to be local minima and afterwards they engage in recombination (in total
agreement with the pseudo-code that we presented earlier).

4.4 The FirstPop() function
The FirstPop() function creates 13 agents, each with a Pocket and

Current configuration representing a partition (A1, A2). All solutions
are represented using the direct representation, and are chosen with
equal probability.

4.5 The Recombine() procedures
We have used the complete ternary tree neighborhood topology for

interaction between agents. As a consequence, we oblige supporters to
recombine with their leaders only. The population structure and this rule
suggest that the island models of GAs (taken as a metaphor for evolution
with colonization and diffusion) is not the most representative for this
MA. Instead, the approach might resemble a hierarchical organization in
which “communication of ideas” or “exchange of information” can only
occur with the immediate leader member of a subgroup.

At each generation step, the Current solution of each agent is replaced
which a new one generated by the Recombine() procedure acting on the

16

Pocket solution of the supporting agent and its leader. For example,
the Current of the agent 2, in Fig. 1.6, will be replaced by the output
of the Recombine() procedure having as input the Pocket of agent 1
and the Pocket of agent 2; the Current of agent 9, will be replaced by
the Recombine() using the Pocket of agent 3 and the Pocket of agent
9; etc. Then, all agents except agent 1 will replace its Current solution
in one iteration of the generation loop. Regarding the previous pseudo-
code, the number #recombinations performed at each generation step is
12. Moreover, the SelectToMerge() function can be regarded as totally
constrained , since each agent always engage in recombination with the
same agents.

4.5.1 Behaviors. Before a leader recombines its solution with
any of its three supporters, a different type of behavior is assigned to
each one. A behavior can be understood as one extra control parame-
ter in the control set of a given recombination operator (Radcliffe and
Surry 1994b). Each supporter will have different behavior, which will be
decided randomly with equal probability. The three types of behaviors
used will be described below. To simplify the presentation, let us sup-
pose that the direct representation is being used, and parent P1 is the
leader and the parent P2 is one of the supporters.

behavior first copied in the offspring

rebel alleles of P2 which are different from P1

conciliator alleles in common to P1 and P2

obsequent alleles of P1 which are different from P2

Table 1.1. Different behaviors in leader/supporter recombination.

For instance if P1 = {−1,−1, 1,−1, 1} and P2 = {1,−1, 1, 1,−1} are
the parents, the recombination using the same parents as input and
each type of behavior occurs as follows: the ‘x’ stands for a value that
will be decided by algorithms which we will explain at a later stage, then,

rebel {1 x x 1 -1}
conciliator {x -1 1 x x}
obsequent {-1 x x -1 1}

The conciliator behavior is an example of a recombination procedure
that respects the representation (Radcliffe and Surry 1994a, Radcliffe
1994) since “every child it produces contains all the alleles common to
its two parents” (i.e., those in A ∩ B). It shares the property of being
a respectful recombination as it is also the case of uniform crossover .

Enhancing MA Performance by Using Matching-based Recombination 17

In this case, since all alleles not in A ∩ B have either the value ‘−1’ or
‘1’, the recombination with conciliator behavior is said also to transmit
alleles since “each allele in the offspring is present in at least one of its
parents”.

Both the rebel and the obsequent behaviors do not respect (in the
sense postulated by Radcliffe) binary representations since they may
exclude allele values in A ∩ B. Analogously, these behaviors are non-
transmitting, since it is allowed to create allele values not present in any
parents.

In order to decide the positions in the offspring where no allele was
chosen (the ‘x’ marks) we have investigated several different variants.
For the direct representation, three types of algorithms have been used:
generalized transmission (GT), GT with greedy repairing (GTgr), and
GT random seeded - greedy repairing (GTrsgr).

The GT decides at random between either ‘−1’ or ‘1’ with equal
probability. The GTgr uses a greedy algorithm, i.e., a deterministic rule
which sequentially decides between ‘−1’ or ‘1’ in order to minimize the
actual imbalance. The order is based in a non-decreasing order of the
sequence of not yet decided integers. The GTrsgr starts by randomly
selecting a gene for which its allele value has to be decided. After giving
this gene a values minimizing the imbalance, GTrsgr continues in a
deterministic way as the GTgr does. According to the definitions given
in (Moscato 1999), all of them are crossover operators (can be performed
in O(n log n) time), while the GT is the only blind one, since it does not
use information from the instance of the problem.

To further illustrate the functioning of these “patching” algorithms,
consider the instance A = {15,12,10,9,4} and the two parents P1 and P2

mentioned above with conciliator behavior. The offspring first receives
the common allele values, i.e., O = {x,−1,1,x,x}. With GT , each ‘x’
will be decided at random with the same probability (in this case we
have the traditional uniform crossover . With GTgr , we chose O[1]=1,
O[4]=−1 and O[5]=−1, in this order. Note that in this case we decided
for ‘1’ or ‘−1’ accordingly to the actual absolute difference of the partial
partition. With GTrsgr we might start by making O[4]=1, followed by
O[1]=−1 and O[5]=1.

4.6 The Mutate() procedures
We have implemented two types of mutations, Simple and Minimal .

The Simple mutation receives as input a solution and for all allele values
it decides whether to “flip” it (change from ‘−1’ to ‘1’ or from ‘1’ to ‘−1’)
with a fixed probability of 0.1.

18

The Minimal mutation was inspired in the Binomial Minimal Mu-
tation as discussed in (Radcliffe and Surry 1994b). However, we refer
to that paper for inspiration only, as a remarkable difference exists. In
our case we have taken into account the characteristics of the objective
function (to which the label ‘minimal’ actually refers in this case): al-
leles will not have its sign changed with the same a priori probability
used by the Simple mutation (i.e., 0.1). Let us suppose allele i has sign
vi = 1 and has been selected to be mutated. Let us also suppose we have
represented the solutions with the traditional signed bit array, such that
the indexing corresponds with a non-increasing order of the integers of
the instance A3. We then proceed to identify the index of the first allele
in the “left direction” (referring to the array) jl and the first allele in the
“right direction” jr which have different signs (vjr = vjl = −1). Then
vjl is the allele value of the smallest integer which is higher or equal than
integer ai and assigned to a different partition. Analogously, vjr is the
allele of the largest integer which is smaller or equal to integer ai but in
a different partition. Then we select which one of jr and jl minimizes
|ai − aj |. We then swap its allele value with the value of vi.

We can then say, analogously to the recombination procedures, that
the Simple mutation is a blind operator while the Minimal mutation is
not since it uses information of the objective function (Moscato 1999,
Moscato and Cotta 2002).

4.7 The Local-Search-Engine() procedures
We have implemented two different types of local search algorithms.

One was called GreedyImprovement and the other one was called TabuIm-
provement . For both of them, the input is one solution, and the output
is a solution with the same or better objective function value mP (y, x).

Using the GreedyImprovement we start by selecting one allele i at
random. Then, as we did with the minimal mutation, we identify the
position of the first allele in the “right” direction (jr) and the position
of the first allele in the “left” direction (jl) such that vjr = vjl 6= vi

(it may be possible to find only one satisfying the condition). We
decide to swap the values of vi with either vjl or vjr if the objective
function value (mP (y, x)) is reduced. If both can do that, we chose
the one that causes the largest reduction. We repeat this process un-
til (FailuresTries − SuccessTries) > MaxNumberOfTries. Where
SuccessTries is the number of tries that causes better mP (y, x) value
and FailuresTries count the opposite. We have used several values of
the parameter MaxNumberOfTries and we will comment on it later.

Enhancing MA Performance by Using Matching-based Recombination 19

The TabuImprovement uses the same idea of GreedyImprovement .
The difference is that in this case we use a basic Tabu Search meta-
heuristic (Glover and Laguna 1997) inside of the GreedyImprovement .
Each swap done between i and j, a tabu matrix (TABU) of integers
stores, in the position TABU [i][j], the number of trials that the swap
between i and j will be ‘tabu’. In TabuImprovement we can allow swaps
which do not reduce the value of mP (y, x), but the output of this proce-
dure is the configuration with the best mP (y, x) found. We repeat this
process until (FailuresTries−SuccessTries) > MaxNumberOfTries.
In this case, the variable SuccessTries is the number of tries that could
be done, i.e., the number of times a try was not tabu. In addition, we use
a simple aspiration criteria (Glover and Laguna 1997). If a swap causes
a improvement in the objective function that has never been reached
before, we do this swap, even it was declared ‘tabu’.

4.8 RestartPop()
During the evolution of the population, agents recombine only within

its subpopulation. More specifically, an agent only recombines its Pocket
solution with the one that its leader has. A “diversity crisis” can then
happen when three supporters of the same subpopulation all have very
similar configurations. Obviously, it is necessary to provide a precise
definition of similarity in order to formally establish when a diversity
crisis is taking place.

The criterion we used to define a diversity crisis is the following: we
select at random 20% of the allele values of the Current solution of the
three supporters; if the three solutions have the same values in these
alleles, then a diversity crisis happened. When a diversity crisis is de-
tected, the leader will not recombine with its three supporters, but the
three supporters will recombine with supporters which belong to differ-
ent subpopulations. For example, in general, agent 2 recombines with
its three supporters, i.e., agents 5, 6 and 7. Whenever a diversity cri-
sis is detected (i.e., agents 5, 6, and 7 have similar configurations), the
recombination will be done between {5, 6, and 7} and {8, 9, and 10}
or between {5, 6, and 7} and {11, 12, and 13}. Three recombinations
will modify the Current solutions of agents 5, 6, and 7; i.e., if it was
chosen {5, 6, and 7} and {8, 9, and 10} (this second subpopulation was
randomly selected), the recombination pairs can be: 5 with 9, 6 with
10, and 7 with 8. The assignments are chosen at random too. As a
consequence, we may get some extra diversity.

20

4.9 Lack of improvement
We have also investigated a rule for lack of improvement. In the

context of this problem, the results have been very promising. We have
introduced a very simple rule: if after three consecutive generations there
is no improvement of the incumbent solution in the population (i.e., if
the Pocket solution of the agent at the top of the hierarchy has not
been updated), we save the solution (for the off-line assessment of the
algorithm), we eliminate it from pocket 0 and we set it to a randomly
created solution.

5. Tabu Search
The Tabu Search heuristic implemented in (Berretta and Moscato

1999) was used in that work as a kind of “background” operator. It was
introduced rather for being in charge of diversifying the search than for
providing improved solutions. However, it used the “minimum” neigh-
borhood, meaning that it is analogous to the minimum mutation as
explained in that chapter. This is a severe drawback since it means
that, given a solution, we only move to other solutions that have the
same number of elements in each side of the partition. This said, it is
the case that a more powerful neighborhood must be used to improve
the search, allowing to change the cardinalities of the two subsets.

Given the good results of this Tabu Search implementation, but aim-
ing to provide a larger neighborhood that would free it from being “car-
dinality constrained”, we have added another Tabu Search procedure
that interleaves with the former one. We have named it “exhaustive”:
for each allele value, we compute the cost of reversing its sign, i.e., to
move the associated integer to the other side of the partition; we per-
form the change that maximizes the reduction in cost, or the one that
minimizes the increment if no decreasing change is available.

These two search strategies are alternatively executed during a sin-
gle Tabu Search individual optimization step. Since the “exhaustive”
method requires more computer time, we make it run for a shorter pe-
riod than the other one. More precisely, TS runs for k steps using the
minimum neighborhood, and for k/10 steps using the exhaustive neigh-
borhood, where k is one tenth of the total number of allowed TS steps.

Note that both Tabu Search strategies have their own different at-
tribute lists. For the “minimum” TS strategy, an attribute is a pair
(i, j) while for the the “exhaustive” scheme it is just the i that corre-
sponds to the integer than has changed. The time an attribute remains
tabu is the same as in (Berretta and Moscato 1999), i.e., a uniformly
distributed integer random number in [1, n].

Enhancing MA Performance by Using Matching-based Recombination 21

6. Computational results
We have studied three groups of instances. In each group the integers

have 10, 12, and 14 decimal digits respectively. We also note that the
instances with 10 decimal digits where the same as the one used in
(Berretta and Moscato 1999) to help us evaluate the benefits, if any, of
the new ideas tested in this work. Again, we have taken extreme care
with the generation of the instances, and the best approach has been to
generate each decimal digit of each integer of each instance uniformly
at random to avoid any spurious correlations. In each group we have
100 instances, with n = 15, 25, 35, . . . , 105 integers. This means that we
have 10 independently generated instances for each value of n. Table
1.2 shows the results of the KKH on these instances. Results for the
complete KK algorithm are also included for the smallest test instances.

n CKK (D=10) KKH (D=10) KKH (D=12) KKH (D=14)

15 1785469 62529719 11143286419 284759439645
25 3161 2087226 409925198 27573832748
35 3 422345 44169859 7557306861
45 1 329255 20000541 3308094310
55 1 97390 7841909 833784155
65 1 15250 2541069 81996483
75 1 20488 464585 205571875
85 0 3386 1249715 23506635
95 1 3122 290572 45466008
105 0 1656 261532 21748182

mean (≥ 35) 1 111612 9602473 1509684313

Table 1.2. The performance of CKK and KKH on the three sets of instances (CKK
could only be run on instances with 10 digits).

We have first run a Tabu Search algorithm for 109 iterations. It is
important to remark that this Tabu Search algorithm is different to the
one implemented in (Berretta and Moscato 1999). This implementation
obtains better results than the one that uses the “minimum” neighbor-
hood described in (Berretta and Moscato 1999). The results for this
improved Tabu Search algorithm are shown in Table 1.3.

The memetic algorithms have been run for 5,000 generations, which
approximately corresponds to the same time employed by the Tabu
method. The results obtained are shown in Tables 1.4, 1.5 and 1.6.
With MA-behavior, we denote the best memetic algorithm that has been
reported in (Berretta and Moscato 1999), i.e., it uses behavior-based re-
combination but the same restart mechanism that has been described in
this paper. With MA-matching, we denote the same memetic algorithm

22

n Tabu (D=10) Tabu (D=12) Tabu (D=14)

15 1785469 190858470 18097490259
25 3161 243962 24534199
35 11 926 209194
45 11 771 57018
55 6 1027 42114
65 12 825 50144
75 6 478 77951
85 6 602 52960
95 6 301 34633
105 4 328 26581

mean (≥ 35) 8 657 68824

Table 1.3. The performance of Tabu Search on the three sets of instances.

Propagate after mutation Propagate before mutation
n MA-behavior MA-matching MA-behavior MA-matching

15 1785469 1785469 1785469 1785469
25 3161 3161 3161 3161
35 9 16 20 12
45 7 7 7 5
55 5 11 7 2
65 5 4 4 4
75 1 4 3 2
85 5 6 2 4
95 3 5 3 3
105 3 3 3 2

mean (≥ 35) 5 7 6 4

Table 1.4. The performance of the four MA variants tested on instances with 10
decimal digits. The best results are shown in boldface.

that uses restart, but with the difference that the new recombination
algorithm based on finding a balanced matching was used. A variant of
each of these MAs has been considered: if, after a recombination, the re-
sulting solution is better than its pocket solution then it is immediately
substituted. Note that in the original algorithm we might first intro-
duce a mutation, before the actualization of pockets is tested. We have
observed that this small change in the algorithm resulted in a better
performance of the balanced matching recombination method, since in
this case the creation of a better offspring solution —i.e., better than its
parents— seems to happen more frequently than in the behavior-based
approach.

Enhancing MA Performance by Using Matching-based Recombination 23

Propagate after mutation Propagate before mutation
n MA-behavior MA-matching MA-behavior MA-matching

15 190858470 190858470 190858470 190858470
25 243962 243962 284877 243962
35 2355 1667 1026 875
45 545 665 1524 284
55 672 646 563 296
65 837 715 269 360
75 696 433 393 443
85 465 501 361 347
95 540 388 201 219
105 271 604 370 478

mean (≥ 35) 798 702 588 413

Table 1.5. The performance of the four MA variants on instances with 12 decimal
digits. The best results are shown in boldface.

Propagate after mutation Propagate before mutation
n MA-behavior MA-matching MA-behavior MA-matching

15 18097490259 18097490259 18097490259 18097490259
25 22076988 22076988 22076988 22076988
35 64093 181249 58548 86491
45 158327 39284 95513 30868
55 64027 97166 36719 50294
65 53855 67961 66396 45443
75 34295 55204 45654 40678
85 25623 37645 58598 35035
95 40189 26460 39309 21692
105 29501 34264 37409 19731

mean (≥ 35) 58739 67404 54768 41279

Table 1.6. The performance of the four MA variants on instances with 14 decimal
digits. The best results are shown in boldface.

From the inspection of these tables we can conclude that the new
Tabu Search method has certainly improved over the one presented in
(Berretta and Moscato 1999). It is now able to solve instances with 10
decimal digits and n = 15 and n = 25. However, that is not the case for
the 12- and 14-digit instances where it is still defeated by some of the
new memetic counterparts. The general improvement over the previous
methods is clear.

24

7. Discussion and Future Work
The computational results obtained are consistent with our a priori

analysis of weight-matching recombination: on average, the MA with the
matching-based recombination (plus the new pocket-propagation strat-
egy) tends to be the best or the second best approach in almost all groups
of instances tested. Nevertheless, we believe that a point of caution has
to be introduced.

We have developed, at a great effort, a new recombination algorithm
based on finding an almost perfectly balanced matching. This has re-
sulted in a new memetic algorithm, which can be generalized to introduce
the concept of behaviors, and that has already improved over the best
methods we have previously developed for this problem. However, a
simple rule that we have introduced in the previous scheme had a signif-
icant impact on the final performance. Moreover, we believe that —for
this particular problem and this particular type of instances— the per-
formance gain obtained when using a population-based approach does
not compensate the cost of coding such a complex method as an MA
if we have some other alternatives, like the CKK method or a simple
Tabu Search scheme. In our opinion, this is an important conclusion
that raises once again the “killing flies with a gun” issue. Knowing that
no technique is better than any other one in an absolute sense (a crucial
fact that the “No Free Lunch” Theorem (Wolpert and Macready 1997)
popularized, but that antedates this result), interdisciplinarity and cross-
breeding reveal themselves as the necessary strategies for selecting the
appropriate technique for a given problem.

In any case, the really positive results of this type of “balanced match-
ing recombination” indicate that it is a useful and promising idea, that
deserves to be further explored in the future. As mentioned in the intro-
duction, there are several real world problems that can be assimilated to
the MNP. The enhanced capabilities of Tabu-based MAs endowed with
this recombination scheme can be crucial for tackling these problems.

Bibliography
C.C. Aggarwal, J.B. Orlin, and R.P. Tai. Optimized crossover for the

independent set problem. Operations Research, 45(2):226–234, 1997.

M.F. Arguello, T.A. Feo, and O. Goldschmidt. Randomized methods for
the number partitioning problem. Computers & Operations Research,
23(2):103–111, Feb. 1996.

E. Balas and W. Niehaus. Finding large cliques in arbitrary graphs by
bipartite matching. In D.S. Johnson and M.A. Trick, editors, Cliques,

BIBLIOGRAPHY 25

Coloring, and Satisfiability: Second DIMACS Implementation Chal-
lenge, volume DIMACS 26, pages 29–51. American Mathematical So-
ciety, 1996.

R. Berretta and P. Moscato. The number partitioning problem: An open
challenge for evolutionary computation ? In D. Corne, M. Dorigo,
and F. Glover, editors, New Ideas in Optimization, pages 261–278.
McGraw-Hill, 1999.

A. Caprara and M. Fischetti. Branch-and-cut algorithms. In
M. Dell’Amico, F. Maffioli, and S. Martello, editors, Annotated bib-
liographies in combinatorial optimization, pages 45 – 63. John Wiley
and Sons, Chichester, 1997.

P. Cheeseman, B. Kanefsky, and W.M. Taylor. Where the Really Hard
Problems Are. In Proceedings of the Twelfth International Joint Con-
ference on Artificial Intelligence, IJCAI-91, Sydney, Australia, pages
331–337, 1991.

L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold,
New York NY, 1991.

F.F. Ferreira and J.F. Fontanari. Probabilistic analysis of the number
partitioning problem. Journal of Physics A: Math. Gen, pages 3417–
3428, 1998.

F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers,
Norwell, Massachusetts, USA, 1997.

M. Gorges-Schleuter. ASPARAGOS: An asynchronous parallel genetic
optimization strategy. In J. David Schaffer, editor, Proceedings of the
Third International Conference on Genetic Algorithms, pages 422–
427, San Mateo, CA, 1989. Morgan Kaufmann Publishers.

M. Gorges-Schleuter. Explicit Parallelism of Genetic Algorithms through
Population Structures. In H.-P. Schwefel and R. Männer, editors,
Parallel Problem Solving from Nature I, volume 496 of Lecture Notes in
Computer Science, pages 150–159. Springer-Verlag, Berlin, Germany,
1991. ISBN 3-540-54148-9.

D.S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Opti-
mization by simulated annealing: An experimental evaluation; Part
II: Graph coloring and number partitioning. Operations Research, 39
(3):378–406, 1991.

D.R. Jones and M.A. Beltramo. Solving partitioning problems with ge-
netic algorithms. In R.K Belew and L.B. Booker, editors, Proceedings

26

of the Fourth International Conference on Genetic Algorithms, pages
442–449, San Mateo, CA, 1991. Morgan Kaufmann.

N. Karmarkar and R.M. Karp. The differencing method of set parti-
tioning. Report UCB/CSD 82/113, University of California, Berkeley,
CA, 1982.

S. Kirkpatrick, C.D. Gelatt Jr., and M.P. Vecchi. Optimization by sim-
mulated annealing. Science, 220(4598):671–680, 1983.

D. Kirovski, M. Ercegovac, and M. Potkonjak. Low-power behavioral
synthesis optimization using multiple-precision arithmetic. In ACM-
IEEE Design Automation Conference, pages 568–573. ACM Press,
1999.

R. Korf. A complete anytime algorithm for number partitioning. Arti-
ficial Intelligence, 106:181–203, 1998.

M. Laguna and P. Laguna. Applying Tabu Search to the 2-dimensional
Ising spin glass. International Journal of Modern Physics C - Physics
and Computers, 6(1):11–23, 1995.

E.L. Lawler and D.E. Wood. Branch and bounds methods: A survey.
Operations Research, 4(4):669–719, 1966.

D.L. Mammen and T. Hogg. A new look at the easy-hard-easy pattern
of combinatorial search difficulty. Journal of Artificial Intelligence
Research, 7:47–66, 1997.

S. Mertens. Phase transition in the number partitioning problem. Phys-
ical Review Letters, 81(20):4281–4284, 1998.

S. Mertens. Random costs in combinatorial optimization. Physical Re-
view Letters, 84(6):1347–1350, 2000.

D.G. Mitchell, B. Selman, and H.J. Levesque. Hard and easy distri-
butions for SAT problems. In P. Rosenbloom and P. Szolovits, edi-
tors, Proceedings of the Tenth National Conference on Artificial Intel-
ligence, pages 459–465, Menlo Park, California, 1992. AAAI Press.

P. Moscato. On Evolution, Search, Optimization, Genetic Algorithms
and Martial Arts: Towards Memetic Algorithms. Technical Report
Caltech Concurrent Computation Program, Report. 826, California
Institute of Technology, Pasadena, California, USA, 1989.

P. Moscato. An Introduction to Population Approaches for Optimiza-
tion and Hierarchical Objective Functions: The Role of Tabu Search.
Annals of Operations Research, 41(1-4):85–121, 1993.

BIBLIOGRAPHY 27

P. Moscato. Memetic algorithms: A short introduction. In D. Corne,
M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages
219–234. McGraw-Hill, 1999.

P. Moscato and C. Cotta. A gentle introduction to memetic algorithms.
In F. Glover and G. Kochenberger, editors, Handbook of Metaheuris-
tics. Kluwer Academic Publishers, Boston MA, 2002.

P. Moscato and M. G. Norman. A Memetic Approach for the Trav-
eling Salesman Problem Implementation of a Computational Ecol-
ogy for Combinatorial Optimization on Message-Passing Systems. In
M. Valero, E. Onate, M. Jane, J. L. Larriba, and B. Suarez, editors,
Parallel Computing and Transputer Applications, pages 177–186, Am-
sterdam, 1992. IOS Press.

H. Mühlenbein. Evolution in Time and Space – The Parallel Genetic
Algorithm. In Gregory J.E. Rawlins, editor, Foundations of Genetic
Algorithms, pages 316–337, San Mateo, CA, 1991. Morgan Kaufmann
Publishers.

M.G. Norman and P. Moscato. A competitive and cooperative approach
to complex combinatorial search. In Proceedings of the 20th Informat-
ics and Operations Research Meeting, pages 3.15–3.29, Buenos Aires,
1991.

C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

N.J. Radcliffe. The algebra of genetic algorithms. Annals of Mathematics
and Artificial Intelligence, 10:339–384, 1994.

N.J. Radcliffe and P.D. Surry. Fitness Variance of Formae and Perfor-
mance Prediction. In L.D. Whitley and M.D. Vose, editors, Proceed-
ings of the Third Workshop on Foundations of Genetic Algorithms,
pages 51–72, San Francisco, 1994a. Morgan Kaufmann.

N.J. Radcliffe and P.D. Surry. Formal Memetic Algorithms. In T. Fog-
arty, editor, Evolutionary Computing: AISB Workshop, volume 865
of Lecture Notes in Computer Science, pages 1–16. Springer-Verlag,
Berlin, 1994b.

W. Ruml. Stochastic approximation algorithms for number partition-
ing. Technical Report TR-17-93, Harvard University, Cambridge, MA,
USA, 1993. available via ftp://das-ftp.harvard.edu/techreports/tr-17-
93.ps.gz.

28

W. Ruml, J.T. Ngo, J. Marks, and S.M. Shieber. Easily searched en-
codings for number partitioning. Journal of Optimization Theory and
Applications, 89(2):251–291, 1996.

R. Slootmaekers, H. Van Wulpen, and W. Joosen. Modelling genetic
search agents with a concurrent object-oriented language. In P. Sloot,
M. Bubak, and B. Hertzberger, editors, High-Performance Computing
and Networking, volume 1401 of Lecture Notes in Computer Science,
pages 843–853. Springer, Berlin, 1998.

B.M. Smith and M.E. Dyer. Locating the phase transition in binary
constraint satisfaction. Artificial Intelligence, 81(1–2):155–181, 1996.

G. Sorkin. Theory and Practice of Simulated Annealing on Special En-
ergy Landscapes. Ph.d. thesis, University of California at Berkeley,
Berkeley, CA, 1992.

R.H. Storer. Number partitioning and rotor balancing. In Talk at the IN-
FORMS Conference, Optimization Techniques Track, TD15.2, 2001.

R.H. Storer, S.W. Flanders, and S.D. Wu. Problem space local search
for number partitioning. Annals of Operations Research, 63:465–487,
1996.

R. Tanese. Distributed genetic algorithms. In J.D. Schaffer, editor, Pro-
ceedings of the Third International Conference on Genetic Algorithms,
pages 434–439, San Mateo, CA, 1989. Morgan Kaufmann.

D.H. Wolpert and W.G. Macready. No free lunch theorems for optimiza-
tion. IEEE Transactions on Evolutionary Computation, 1(1):67–82,
1997.

