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One of the basic ingredients of an optimization technique is a mechanism for
exploring the search space, that is, the space of valid solutions to the con-
sidered optimization problem. Algorithms belonging to the important class of
constructive optimization techniques tackle an optimization problem by ex-
ploring the search space in form of a tree, a so-called search tree. The search
tree is generally defined by an underlying solution construction mechanism.
Each path from the root node of the search tree to one of the leaves corre-
sponds to the process of constructing a candidate solution. Inner nodes of the
tree can be seen as partial solutions. The process of moving from an inner
node to one of its child nodes is called a solution construction step, or exten-
sion of a partial solution.

The class of constructive optimization techniques comprises approximate
methods as well as complete methods. Recall that complete algorithms are
guaranteed to find for every finite size instance of a combinatorial optimiza-
tion problem an optimal solution in bounded time. This is in contrast to
incomplete methods such as heuristics and metaheuristics where we sacrifice
the guarantee of finding optimal solutions for the sake of getting good so-
lutions in a significantly reduced amount of time. A prominent example of
a deterministic constructive heuristic is a greedy heuristic. Greedy heuristics
make use of a weighting function that gives weights to the child nodes of each
inner node of the search tree. At each construction step the child node with
the highest weight is chosen.
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Apart from greedy heuristics, the class of constructive optimization tech-
niques also includes metaheuristics such as ant colony optimization (ACO) [13]
and greedy randomized adaptive search procedures (GRASP) [14].4 They are
iterative algorithms that employ repeated probabilistic (randomized) solution
constructions at each iteration. For each child node of an inner node of the
tree they compute the probability of performing the corresponding construc-
tion step. These probabilities may depend on weighting functions and/or the
search history of the algorithm. They are sometimes called transition proba-
bilities and define a probability distribution over the search space. In GRASP,
this probability distribution does not change during run-time, while in ACO
the probability distribution is changed during run-time with the aim of bi-
asing the probabilistic construction of solutions towards areas of the search
space containing high quality solutions.

In addition to the methods mentioned above, the class of constructive
optimization techniques also includes complete algorithms such as backtrack-
ing [3] and branch & bound (B&B) [25]. A common backtracking scheme is
implemented in the depth-first search (DFS) algorithm. The un-informed ver-
sion of DFS starts from the root node of the search tree and progresses by
always moving to the best unexplored child of the current node, going deeper
and deeper until a leaf node is reached. Then the search backtracks, returning
to the most recently visited node of which remain unexplored children, and
so on. This systematic search method explicitly visits all possible solutions
exactly once.

Branch & bound algorithms belong to the class of implicit enumeration
techniques. The branch & bound view on the search tree is slightly different
to that exhibited by the algorithms mentioned before. More specifically, the
subtree rooted at an inner node of the search tree is seen as a subspace of the
search space. Accordingly, the subspaces represented by the subtrees rooted
at the children of an inner node consitute a partition of the subspace that is
represented by the inner node itself. The partitioning of the search space is
called branching. A branch & bound algorithm produces for each inner node of
the search tree an upper bound as well as a lower bound of the objective func-
tion values of the solutions contained by the corresponding subspace. These
bounds are used to decide if the whole subspace can be discarded, or if it has
to be further partitioned. As in backtracking, there are different schemes such
as depth-first search or breadth-first search for traversing over the search tree.

An interesting heuristic version of a breadth-first branch & bound is beam
search [33]. Instead of considering all nodes of a certain level of the search
tree, beam search restricts the search to a certain number of nodes based on
the bounding information (lower bounds for minimization, and upper bounds

4 See Chapter 1 of this book for a comprehensive introduction to metaheuristics.
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for maximization).

Each of the algorithms mentioned above has advantages as well as dis-
advantages. Greedy heuristics, for example, are usually easy to implement
and fast in execution. However, the obtained solution quality is often not
sufficient. Metaheuristics, on the other side, can find good solutions in a rea-
sonable amount of time, without providing performance guarantees. However,
metaheuristics can generally not avoid visiting the same solution more than
once, which might lead to a waste of computation time. Finally, complete
techniques guarantee to find an optimal solution. However, a user might not
be prepared to accept overly large running times. In recent years it has been
shown that a hybridization of concepts originating from different types of al-
gorithms can often result in more efficient techniques. For example, the use
of backtracking in metaheuristics is relatively wide-spread. Examples of their
use in construction-based metaheuristics are [2, 4, 10]. Backtracking is also
used in evolutionary algorithms (see, for example, [11, 24]), and even in tabu
search settings [32]. The hybridization of metaheuristics with branch & bound
(respectively, beam search) concepts is rather recent. We distinguish between
two different lines of hybridization. On one side, it is possible to use branch &
bound concepts within construction-based metaheuristics in order to increase
the efficiency of the metaheuristics search process. On the other side, meta-
heuristics can be used within branch & bound in order to reduce the space
and time consumption of branch & bound. This chapter is dedicated to out-
line representative examples of both types of hybrid algorithms. The reader
interested in a broader discussion on the combination of metaheuristics and
exact techniques is referred to [34].

1 Using branch & bound concepts within
construction-based metaheuristics

Recent hybrid metaheuristics include some important features that are in-
spired by deterministic branch & bound derivatives such as beam search:

1. Bounding information is used for evaluating partial solutions; sometimes
also for choosing among different partial solutions, or discarding partial
solutions.

2. The extension of partial solutions is allowed in more than one way. The
number of nodes which can be selected at each search tree level is hereby
limited from above by a parametric constraint, resulting in parallel and
non-independent solution constructions.

This type of hybrid algorithm includes probabilistic beam search (PBS) [7],
Beam-ACO algorithms [5, 6], and approximate and non-deterministic tree
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search (ANTS) procedures [27, 28, 29].5 These works give empiricial evidence
of the usefulness of including the two features mentioned above in the con-
struction process of construction-based metaheuristics.

In the following we first give a motivation of why the above mentioned
branch & bound features should be incorporated in construction-based meta-
heuristics. Afterwards, we present some representative approaches.

1.1 A tree search model

The following tree search model captures the essential elements common to all
constructive procedures. In general, we are given an optimization problem P
and an instance x of P. Typically, the search space Sx is exponentially large in
the size of the input x. Without loss of generality we intend to maximize the
objective function f : Sx 7→ R+. The optimization goal is to find a solution
y ∈ Sx to x with f(y) as great as possible. Assume that each element y ∈ Sx

can be viewed as a composition of ly,x ∈ N elements from a set Σ. From this
point of view, Sx can be seen as a set of strings over an alphabet Σ. Any
element y ∈ Sx can be constructed by concatenating ly,x elements of Σ.

The following method for constructing elements of Sx is instructive: A
solution construction starts with the empty string ϵ. The construction pro-
cess consists of a sequence of construction steps. At each construction step,
we select an element of Σ and append it to the current string t. The solu-
tion construction may end for two reasons. First, it may end in case t has no
feasible extensions. This happens in case t is already a complete solution, or
when no solution of Sx has prefix t. Second, a solution construction ends in
case of available upper bound information that indicates that each solution
with prefix t is worse than any solution that is already known. Henceforth we
denote the upper bound value of a partial solution t by UB(t).

The application of such an algorithm can be equivalently described as a
walk from the root v0 of the corresponding search tree to a node at level ly,x.
The search tree has nodes for all y ∈ Sx and for all prefixes of elements of Sx.
The root of the tree is the empty string, that is, v0 corresponds to ϵ. There is
a directed arc from node v to node w if w can be obtained by appending an
element of Σ to v. Note that henceforth we identify a node v of the search tree
with its corresponding string t. We will use both notations interchangeably.
The set of nodes that can be reached from a node v via directed arcs are called
the children of v, denoted by C(v). Note, that the nodes at level i correspond
to strings of length i. If w is a node corresponding to a string of length l > 0
then the length l−1 prefix v of w is also a node, called the father of w denoted

5 Note that the algorithms presented in [27, 28] only use the first one of the features
mentioned above.
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Algorithm 1 Solution construction: SC(f̂)

1: input: the best known objective function value f̂ (might be 0)
2: initialization: v := v0
3: while |C(v)| > 0 and v ̸= null do
4: w := ChooseFrom(C(v))
5: if UB(w) > f̂ then
6: v := null
7: else
8: v := w
9: end if
10: end while
11: output: v (which is either a complete solution, or null)

by F(w). Thus, every y ∈ Sx corresponds to exactly one path of length ly,x
from the root node of the search tree to a specific leaf. The above described
solution construction process is pseudo-coded in Algorithm 1. In the following
we assume function ChooseFrom(C(v)) of this algorithm to be implemented
as a probabilistic choice function.

1.2 Primal and dual problem knowledge

The analysis provided in the following assumes that there is a unique optimal
solution, represented by leaf node vd of the search tree, also referred to as the
target node. Let us assume that — without loss of generality — the target
node vd is at the maximum level d ≥ 1 of the search tree. A probabilistic
constructive optimization algorithm is said to be successful, if it can find the
target node vd with high probability.

In the following let us examine the success probability of repeated applica-
tions of Algorithm 1 in which function ChooseFrom(C(v)) is implemented as
a probabilisitc choice function. Such solution constructions are employed, for
example, within the ACOmetaheuristic. The value of the input f̂ is not impor-
tant for the following analysis. Given any node vi at level i of the search tree,
let p(vi) be the probability that a solution construction process includes node
vi. Note that there is a single path from v0, the root node, to vi. We denote
the corresponding sequence of nodes by (v0, v1, v2, ..., vi). Clearly, p(v0) = 1

and p(vi) =
∏i−1

j=0 p(vj+1|vj). Let Success(ρ) denote the event of finding the
target node vd within ρ applications of Algorithm 1. Note that the probability
of Success(ρ) is equal to 1 − (1− p(vd))

ρ
, and it is easy to check that the

following inequalities hold:

1− e−ρp(vd) ≤ 1− (1− p(vd))
ρ ≤ ρp(vd) (1)

By (1), it immediately follows that the chance of finding node vd is large if
and only if ρp(vd) is large, namely as soon as
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ρ = O (1/p(vd)) (2)

In the following, we will not assume anything about the exact form of the given
probability distribution. However, let us assume that the transition proba-
bilities are heuristically related to the attractiveness of child nodes. In other
words, we assume that in a case in which a node v has two children, say w and
q, and w is known (or believed) to be more promising, then p(w|v) > p(q|v).
This can be achieved, for example, by defining the transition probabilities
proportional to the weights assigned by greedy functions.

Clearly, the probability distribution reflects the available knowledge on
the problem, and it is composed of two types of knowledge. If the probability
p(vd) of reaching the target node vd is “high”, then we have a “good” prob-
lem knowledge. Let us call the knowledge that is responsible for the value of
p(vd) the primal problem knowledge (or just primal knowledge). From
the dual point of view, we still have a “good” knowledge of the problem if
for “most” of the wrong nodes (i.e. those that are not on the path from v0 to
vd) the probability that they are reached is “low”. We call this knowledge the
dual problem knowledge (or just dual knowledge). Note that the quality

of the dual knowledge grows with the value f̂ that is provided as input to
Algorithm 1. This means, the better the solution that we already know, the
higher is the quality of the dual knowledge. Observe that the two types of
problem knowledge outlined above are complementary, but not the same. Let
us make an example to clarify these two concepts. Consider the search tree of
Figure 1, where the target node is v5. Let us analyze two different probability
distributions:

Case (a) For each v and w ∈ C(v) let p(w|v) = 0.5. Moreover, let us as-
sume that no upper bound information is available. This means that each
solution construction is performed until a leaf node is reached. When
probabilistically constructing a solution the probability of each child is
therefore the same at each construction step.

Case (b) In general, the transition probabilities are defined as in case (a),
with one exception. Let us assume that the available upper bound indi-
cates that the subspaces represented by the black nodes do not contain
any better solutions than the ones we already know, that is, UB(v) ≤ f̂ ,
where v is a black node. Accordingly, the white children of the black nodes
have probability 0 to be reached.

Note that in both cases the primal knowledge is “scarce”, since the proba-
bility that the target node vd is reached by a probabilistic solution construction
decreases exponentially with d, that is, p(vd) = 2−d. However, in case (b)
the dual knowledge is “excellent”, since for most of the wrong nodes (i.e. the
white nodes), the probability that any of them is reached is zero. Viceversa, in
case (a) the dual knowledge is “scarce”, because there is a relatively “high”
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Fig. 1. Example of a search tree. v5 is the unique optimal solution.

probability that a white node is reached.

By using the intuition given by the provided example, let us try to better
quantify the quality of the available problem knowledge. Let Vi be the set of
nodes at level i, and let

ℓ(i) =
∑
v∈Vi

p(v), i = 1, . . . , d . (3)

Note that ℓ(i) is equal to the probability that the solution construction pro-
cess reaches level i of the search tree. Observe that the use of the upper
bound information makes the probabilities ℓ(i) smaller than one. Case (b)
was obtained from case (a) by decreasing ℓ(i) (for i = 1, . . . , d) down to 2i−1

(and without changing the probability p(vi) of reaching the ancestor vi of
the target node at level i), whereas in case (a) it holds that ℓ(i) = 1 (for
i = 1, . . . , d). In general, good dual knowledge is supposed to decrease ℓ(i)
without decreasing the probability of reaching the ancestor vi of the target
node vd. This discussion may suggest that a characterization of the available
problem knowledge can be given by the following knowledge ratio:

Kvd = min
1≤i≤d

p(vi)

ℓ(i)
(4)

The larger this ratio the better the knowledge we have on the target node
vd. In case (a) it is Kvd = 1/2d, whereas the knowledge ratio of case (b) is
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Kvd = 1/2, which is exponentially larger.

Finally, it is important to observe that the way of (repeatedly) constructing
solutions in a probabilistic way does not exploit the dual problem knowledge.
For example in case (b), although the available knowledge is “excellent”, the
target node vd is found after an expected number of runs that is proportional
to 1/p(vd) = 2d (see Equation (2)), which is the same as in case (a). In
other words, the number of necessary probabilistic solution constructions only
depends on the primal knowledge.

1.3 How to exploit the dual knowledge?

The problem of Algorithm 1 is clearly the following one: When encountering a
partial solution whose upper bound is less or equal to the value of the best so-
lution found so far, the construction process is aborted, and the computation
time invested in this construction is lost. Generally, this situation may occur
very often. In fact, the probability for the abbortion of a solution construction
is 1−p(vd) in the example outlined in the previous section, which is quite high.

In the following let us examine a first simple extension of Algorithm 1. The
corresponding algorithm — henceforth denoted by PSC(α,f̂) — is pseudo-
coded in Algorithm 2. Hereby, α denotes the maximum number of allowed
extensions of partial solutions at each construction step; in other words, α
is the maximum number of solutions to be constructed in parallel. We use
the following additional notation: For any given set S of search tree nodes let
C(S) be the set of children of the nodes in S. Morever, Bi denotes the set of
reached nodes of tree level i. Recall that the root node v0 is the only node at
level 0.

The algorithm works as follows. Given the selected nodes Bi of level i
(with |Bi| ≤ α)), the algorithm probabilistically chooses at most α solutions
from C := C(Bi), the children of the nodes in Bi. The probabilistic choice of a
child is performed in function ChooseFrom(C) proportionally to the following
probabilities:

p(w|C) =
p(w|F(w))∑

v∈C

p(v|F(v))
,∀ w ∈ C (5)

Remember that F(w) denotes the father of node w. After choosing a node
w it is first checked if w is a complete solution, or not. In case it is not a
complete solution, it is checked if the available bounding information allows
the further extension of this partial solution, in which case w is added to Bi+1.
However, if w is already a complete solution, it is checked if its value is better
than the value of the best solution found so far. The algorithm returns the
best solution found, in case it is better than the f̂ value that was provided as
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Algorithm 2 Parallel solution construction: PSC(α,f̂)

1: input: α ∈ Z+, the best known objective function value f̂
2: initialization: i := 0, Bi := {v0}, z := null
3: while Bi ̸= ∅ do
4: Bi+1 := ∅
5: C := C(Bi)
6: for k = 1, . . . ,min{α, |C(Bi)|} do
7: w := ChooseFrom(C)
8: if |C(w)| > 0 then
9: if UB(w) > f̂ then Bi+1 := Bi+1 ∪ {w} end if
10: else
11: if f(w) > f̂ then z := w, f̂ := f(z) end if
12: end if
13: C := C \ {w}
14: end for
15: i := i+ 1
16: end while
17: output: z (which might be null)

input. Otherwise the algorithm returns null.

Observe that when α = 1, PSC(α,f̂) is equivalent to SC(f̂). In con-
trast, when α > 1 the algorithm constructs (maximally) α solutions non-
independently in parallel. Concerning the example outlined in the previous
section with the probability distribution as defined in case(b), we can ob-

serve that algorithm PSC(α,f̂) with α > 1 solves this problem even within
one application. At each step i, Bi will only contain the brother of the cor-
responding black node, because the upper bound information does not allow
the inclusion of the black nodes in Bi. This shows that algorithm PSC(α,f̂),

in contrast to algorithm SC(f̂), benefically uses the dual problem knowledge.

1.4 Probabilistic beam search

For practical optimization, algorithm PSC(α,f̂) has some drawbacks. First, in
most cases algorithms for optimization are applied with the goal of finding a
solution as good as possible, without having a clue beforehand about the value
of good solutions. Second, the available upper bound function might not be
very tight. For both reasons, solution constructions that lead to unsatisfying
solutions are discarded only at very low levels of the search tree, that is, close
to the leaves. Referring to the example of Section 1.2, this means that black
nodes will only appear close to the leaves. In those cases, algorithm PSC(α,f̂)

will have practically no advantage over algorithm SC(f̂). It might even have
a disadvantage due to the amount of computation time invested in choosing
children from bigger sets.
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Algorithm 3 Probabilistic beam search: PBS(α,µf̂)

1: input: α, µ ∈ Z+, the best known objective function value f̂
2: initialization: i := 0, Bi := {v0}, z := null
3: while Bi ̸= ∅ do
4: Bi+1 := ∅
5: C := C(Bi)
6: for k = 1, . . . ,min{µ · α, |C(Bi)|} do
7: w := ChooseFrom(C)
8: if |C(w)| > 0 then
9: if UB(w) > f̂ then Bi+1 := Bi+1 ∪ {w} end if
10: else
11: if f(w) > f̂ then z := w, f̂ := f(z) end if
12: end if
13: C := C \ {w}
14: end for
15: Restrict Bi+1 to the (maximally) α best nodes w.r.t. their upper bound
16: i := i+ 1
17: end while
18: output: z (which might be null)

The following simple extension can help in overcoming the drawbacks of
algorithm PSC(α,f̂). At each algorithm iteration we allow the choice of µ · α
nodes from Bi, instead of α nodes. µ ≥ 1 is a parameter of the algorithm.
Moreover, after the choice of the child nodes we restrict set Bi+1 to the (max-
imally) α best solutions with respect to the upper bound information. This
results in a so-called (probabilistic) beam search algorithm — henceforth de-

noted by PBS(α,µ,f̂) — pseudo-coded in Algorithm 3. Note that algorithm

PBS(α,µ,f̂) is a generalization of algorithm PSC(α,f̂), that is, when µ = 1

both algorithms are equivalent. Algorithm PBS(α,µ,f̂) is also a generalization

of algorithm SC(f̂), which is obtained by α = µ = 1.

1.5 Adding a learning component: Beam-ACO

In general, algorithm PBS(α,µ,f̂) can be expected to produce good solutions
if (at least) two conditions are fullfilled: Neither the greedy function nor the
upper bound function are misleading. If at least one of these two functions
is misleading, the algorithm might not be able to find solutions above a cer-
tain threshold. One possibility of avoiding this drawback is to add a learning
component to algorithm PBS(α,µ,f̂), that is, adding a mechanism that is sup-
posed to adapt the primal knowledge, the dual knowledge, or both, over time,
based on accumulated search experience.

Ant colony optimization (ACO) [13] is the most prominent construction-
based metaheuristics that attempts to learn the primal problem knowledge
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during run-time. ACO is inspired by the foraging behavior of ant colonies. At
the core of this behavior is the indirect communication between the ants by
means of chemical pheromone trails, which enables them to find short paths
between their nest and food sources. This characteristic of real ant colonies
is exploited in ACO algorithms in order to solve, for example, combinatorial
optimization problems. In general, the ACO approach attempts to solve an
optimization problem by iterating the following two steps:

• At each iteration, a certain number of α candidate solutions is probabilis-
tically constructed. The respective probability distribution is derived from
an available greedy function and from the values of so-called pheromone
trail parameters, the pheromone values. The set of pheromone trail pa-
rameters is denoted by T .

• The constructed candidate solutions are used to modify the pheromone
values in a way that is deemed to bias future solution constructions towards
areas of the search space containing high quality solutions. Hereby, the
greedy function can be seen as the a priori available primal knowledge,
whereas the pheromone values are used to modify (ideally, to improve)
this a priori given primal knowledge over time.

While standard ACO algorithms use α applications of algorithm SC(f̂) at
each iteration for the probabilistic construction of solutions, the idea of Beam-
ACO [5, 6] is to use one application of probabilistic beam search PBS(α,µ,f̂)
instead.

A related ACO approach is labelled ANTS (see [27, 28, 29]). The charac-
terizing feature of ANTS is the use of upper bound information for defining
the primal knowledge. The latest version of ANTS [29] uses at each iteration

algorithm PSC(α,f̂) to construct candidate solutions.

1.6 Example: Longest common subsequence (LCS) problem

The longest common subsequence (LCS) problem is one of the classical string
problems. Given a problem instance (S, Σ), where S = {s1, s2, . . . , sn} is a set
of n strings over a finite alphabet Σ, the problem consists in finding a longest
string t∗ that is a subsequence of all the strings in S. Such a string t∗ is called
a longest common subsequence of the strings in S. Note that a string t is called
a subsequence of a string s, if t can be produced from s by deleting charac-
ters. For example, dga is a subsequence of adagtta. If n = 2 the problem is
polynomially solvable, for example, by dynamic programming [18]. However,
when n > 2 the problem is in general NP-hard [26]. Traditional applications of
this problem are in data compression, syntactic pattern recognition, and file
comparison [1], whereas more recent applications also include computational
biology [37].
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sA1︷ ︸︸ ︷
a c b c a d

sB1︷ ︸︸ ︷
b b d

p1 1b 1d

(a) String s1

sA2︷ ︸︸ ︷
c a b d a c d

sB2︷︸︸︷
c d

p2 2c2d

(b) String s2

sA3︷ ︸︸ ︷
b a b c d

sB3︷ ︸︸ ︷
d a a b

p3 3d3a 3b

(c) String s3

Fig. 2. Given is the problem instance (S = {s1, s2, s3}, Σ = {a, b, c, d}) where
s1 = acbcadbbd, s2 = cabdacdcd, and s3 = babcddaab. Let us assume that t = abcd.
(a), (b), and (c) show the corresponding division of si into sAi and sBi , as well as the
setting of the pointers pi and the next positions of the 4 letters in sBi . Note that in
case a letter does not appear in sBi (for example, letter a does not appear in sB1 ),
the corresponding pointer is set to ∞. For example, as letter a does not appear in
sB1 , we set 1a :=∞.

In order to apply algorithm PBS(α,µ,f̂) to the LCS problem, we have to
define the solution construction mechanism, the greedy function that defines
the primal knowledge, and the upper bound function that defines the dual
knowledge. We use the construction mechanism of the so-called Best-Next
heuristic [16, 22] for our algorithm. Given a problem instance (S, Σ), this
heuristic produces a common subsequence t sequentially by appending at each
construction step a letter to t such that t maintains the property of being a
common subsequence of all strings in S. Given a common subsequence t of
the strings in S, we explain in the following how to derive the children of t.
For that purpose we introduce the following notations:

1. Let si = sAi · sBi be the partition of si into substrings sAi and sBi such
that t is a subsequence of sAi and sBi has maximal length. Given this
partition, which is well-defined, we introduce position pointers pi := |sAi |
for i = 1, . . . , n (see Figure 2 for an example).

2. The position of the first appearance of a letter a ∈ Σ in a string si ∈ S
after the position pointer pi is well-defined and denoted by ia. In case a
letter a ∈ Σ does not appear in sBi , ia is set to ∞ (see Figure 2).

3. A letter a ∈ Σ is called dominated, if exists at least one letter b ∈ Σ such
that ib < ia for i = 1, . . . , n;

4. Σnd
t ⊆ Σ henceforth denotes the set of non-dominated letters of the al-

phabet Σ with respect to a given t. Moreover, for all a ∈ Σnd
t it is required

that ia < ∞, i = 1, . . . , n. Hence, we require that in each string si a letter
a ∈ Σnd

t appears at least once after position pointer pi.

The children C(t) of a node t are then determined as follows: C(t) := {v =
ta | a ∈ Σnd

t }. The primal problem knowledge is derived from the greedy
function η(·) that assigns to each child v = ta ∈ C(t) the following greedy
weight:

η(v) = min{|si| − ia | i = 1, . . . , n} (6)

The child with the highest greedy weight is considered the most promising
one. Instead of the greedy weights themselves, we will use the corresponding
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ranks. More in detail, the child v = ta with the highest greedy weight will be
assigned rank 1, denoted by r(v) = 1, the child w = tb with the second-highest
greedy weight will be assigned rank 2 (that is, r(w) = 2), and so on.

In the following we explain the implementation of function ChooseFrom(C)

of algorithm PBS(α,µ,f̂). Remember that C denotes the set of children ob-
tained from the nodes that are contained in the beam Bi (that is, C := C(Bi)).
For evaluating a child v ∈ C we use the sum of the ranks of the greedy weights
that correspond to the construction steps performed to construct string v. Let
us assume that v is on the i-th level of the search tree, and let us denote the
sequence of characters that forms string v by v1 . . . vi, that is, v = v1 . . . vi.
Then,

ν(v) :=

i∑
j=1

r(v1 . . . vj), (7)

where v1 . . . vj denotes the substring of v from position 1 to position j. With
this definition, Equation 5 can be defined for the LCS problem as follows:

p(v|C) =
ν(v)−1∑

w∈C ν(w)−1
, ∀ v ∈ C (8)

Finally, we outline the upper bound function UB(·) that the PBS(α,µ,f̂) algo-
rithm requires. Remember that a given subsequence t splits each string si ∈ S
into a first part sAi and into a second part sBi , that is, si = sAi ·sBi . Henceforth,
|sBi |a denotes the number of occurrences of letter a in sBi for all a ∈ Σ. Then,

UB(t) := |t|+
∑
a∈Σ

min{|sBi |a | i = 1, . . . , n} (9)

i.e., for each letter a ∈ Σ we take the minimum of the occurrences of a in sBi ,
i = 1, . . . , n. Summing up these minima and adding the result to the length
of t results in the upper bound. This completes the description of the imple-
mentation of the PBS(α,µ,f̂) algorithm for the LCS problem.

In the following, we use algorithm PBS(α,µ,f̂) in two different ways: First,

we use PBS(α,µ,f̂) in a multi-start fashion as shown in Algorithm 4, denoted

by MS-PBS(α,µ). Second, we use PBS(α,µ,f̂) within a Beam-ACO algorithm
as explained in the following.

The first step of defining a Beam-ACO approach — and, in general, any
ACO algorithm — consists in the specification of the set of pheromone values
T . In the case of the LCS problem T contains for each position j of a string
si ∈ S a pheromone value 0 ≤ τij ≤ 1, that is, T = {τij | i = 1, . . . , n, j =
1, . . . , |si|}. A value τij ∈ T indicates the desirability of adding the letter at
position j of string i to a solution: the greater τij , the greater is the desir-
ability of adding the corresponding letter. In addition to the definition of the
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Algorithm 4 Multi-start probabilistic beam search: MS-PBS(α,µ)

1: input: α, µ ∈ Z+

2: z := null
3: f̂ := 0
4: while CPU time limit not reached do
5: v := PBS(α,µ,f̂) {see Algorithm 3}
6: if v ̸= null then z := v, f̂ := |z|
7: end while
8: output: z

pheromone values, we also introduce a solution representation that is more
suitable for ACO. Any common subsequence t of the strings in S can be trans-
lated into an ACO-solution T = {Tij ∈ {0, 1} | i = 1, . . . , n, j = 1, . . . , |si|}
where Tij = 0 if the letter at position j of string i was not added to t during
the solution construction, and Tij = 1 otherwise. Note that the translation
of t into T is well-defined due to the construction mechanism. For example,
given solution t = abcdd for the problem instance of Figure 2, the correspond-
ing ACO-solution is T1 = 101101001, T2 = 011001101, and T3 = 011111000,
where Ti refers to the sequence Ti1 . . . Ti|si|. In the following, for each given
solution, the lower case notation refers to its string representation, and the
upper case notation refers to its binary representation.

The particular ACO framework that we used for our algorithm is the so-
called MAX −MIN Ant system (MMAS) algorithm implemented in the
hyper-cube framework (HCF); This algorithm consists of an ACO variant that
performs very well and whose particularity is that applies a lower and an up-
per bound to the pheromone values with the aim of preventing convergence
to a solution, see [8]. A high level description of the algorithm is given in
Algorithm 5. The data structures used, in addition to counters and to the
pheromone values, are: (1) the best-so-far solution T bs, i.e., the best solution
generated since the start of the algorithm; (2) the restart-best solution T rb,
that is, the best solution generated since the last restart of the algorithm;
(3) the convergence factor cf, 0 ≤ cf ≤ 1, which is a measure of how far the
algorithm is from convergence; and (4) the Boolean variable bs update, which
becomes true when the algorithm reaches convergence.

Roughly, the algorithm works as follows. First, all the variables are initial-
ized. In particular, the pheromone values are set to their initial value 0.5. Each
algorithm iteration consists of the following steps. First, algorithm PBS(α,µ,f̂)

is applied with f̂ = 0 to generate a solution T pbs. The setting of f̂ = 0 is
chosen, because in ACO algorithms it is generally useful to learn also from
solutions that are worse than the best solution found so far. The only change
in algorithm PBS(α,µ,f̂) occurs in the definition of the choice probabilities.
Instead of using Equation 8, these probabilities are now defined as follows:
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Algorithm 5 Beam-ACO for the LCS problem

1: input: α, µ ∈ Z+

2: T bs := null, T rb := null, cf := 0, bs update := false
3: τij := 0.5, i = 1, . . . , n, j = 1, . . . , |si|
4: while CPU time limit not reached do
5: T pbs := PBS(α,µ,0) {see Algorithm 3}
6: if |T pbs| > |trb| then T rb := T pbs

7: if |T pbs| > |tbs| then T bs := T pbs

8: ApplyPheromoneUpdate(cf ,bs update,T ,T pbs,T rb,T bs)
9: cf := ComputeConvergenceFactor(T )
10: if cf > 0.99 then
11: if bs update = true then
12: τij := 0.5, i = 1, . . . , n, j = 1, . . . , |si|
13: T rb := null
14: bs update := false
15: else
16: bs update := true
17: end if
18: end if
19: end while
20: output: tbs (that is, the string version of ACO-solution T bs)

p(v = ta|C) =

(
min

i=1,...,n
{τiia} · ν(v)−1

)
∑

w=tb∈C

(
min

i=1,...,n
{τiib} · ν(w)−1

) , ∀ v = ta ∈ C (10)

Remember in this context, that ia was defined as the next position of letter a
after position pointer pi in string si. The intuition of choosing the minimum
of the pheromone values corresponding to the next positions of a letter in the
n given strings is as follows: If at least one of these pheromone values is low,
the corresponding letter should not yet be appended to the string, because
there is another letter that should be appended first.

The second action at each iteration concerns the pheromone update con-
ducted in the ApplyPheromoneUpdate(cf , bs update, T , T pbs, T rb, T bs) proce-
dure. Third, a new value for the convergence factor cf is computed. Depending
on this value, as well as on the value of the Boolean variable bs update, a de-
cision on whether to restart the algorithm or not is made. If the algorithm
is restarted, all the pheromone values are reset to their initial value (that
is, 0.5). The algorithm is iterated until the CPU time limit is reached. Once
terminated, the algorithm returns the string version tbs of the best-so-far
ACO-solution T bs. In the following we describe the two remaining procedures
of Algorithm 5 in more detail.
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Table 1. Setting of κpbs, κrb, κbs, and ρ depending on the convergence factor cf
and the Boolean control variable bs update

bs update = false bs update

cf < 0.4 cf ∈ [0.4, 0.6) cf ∈ [0.6, 0.8) cf ≥ 0.8 = true

κib 1 2/3 1/3 0 0

κrb 0 1/3 2/3 1 0

κbs 0 0 0 0 1

ρ 0.2 0.2 0.2 0.15 0.15

ApplyPheromoneUpdate(cf ,bs update,T ,T pbs,T rb,T bs): In general, three so-
lutions are used for updating the pheromone values. These are the solution
T pbs generated by the PBS algorithm, the restart-best solution T rb, and the
best-so-far solution T bs. The influence of each solution on the pheromone up-
date depends on the state of convergence of the algorithm as measured by the
convergence factor cf. Each pheromone value τij ∈ T is updated as follows:

τij := τij + ρ · (ξij − τij) , (11)

where
ξij := κpbs · T pbs

ij + κrb · T rb
ij + κbs · T bs

ij , (12)

where κpbs is the weight (that is, the influence) of solution T pbs, κrb is the
weight of solution T rb, κbs is the weight of solution T bs, and κpbs+κrb+κbs =
1. After the pheromone update rule (Equation 11) is applied, pheromone val-
ues that exceed τmax = 0.99 are set back to τmax (similarly for τmin = 0.001).
This is done in order to avoid a complete convergence of the algorithm, which
is a situation that should be avoided. Equation 12 allows to choose how to
schedule the relative influence of the three solutions used for updating the
pheromone values. For our application we used a standard update schedule as
shown in Table 1.

ComputeConvergenceFactor(T ): The convergence factor cf , which is a func-
tion of the current pheromone values, is computed as follows:

cf := 2




∑
τij∈T

max{τmax − τij , τij − τmin}

|T | · (τmax − τmin)

− 0.5


In this way, cf = 0 when the algorithm is initialized (or reset), that is, when

all pheromone values are set to 0.5. On the other side, when the algorithm
has converged, then cf = 1. In all other cases, cf has a value in (0, 1). This
completes the description of our Beam-ACO approach for the LCS problem.
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Experimental results

We implemented algorithms MS-PBS(α,µ) and Beam-ACO in ANSI C++
using GCC 3.2.2 for compiling the software. The experimental results that
we outline in the following were obtained on a PC with an AMD64X2 4400
processor and 4 Gb of memory. We applied algorithm MS-PBS(α,µ) with
three different settings:

1. α = µ = 1: The resulting algorithm corresponds to a multi-start version
of algorithm SC(f̂); see Algorithm 1. In the following we refer to this
algorithm by MS-SC.

2. α = 10, µ = 1: This setting corresponds to a multi-start version of algo-
rithm PSC(α,f̂); see Algorithm 2. We refer henceforth to this algorithm
by MS-PSC.

3. α = 10, µ > 1: These settings generate a multi-start version of algorithm
PBS(α,µ,f̂); see Algorithm 3. This algorithm version is referred to simply
by MS-PBS. Note that we made the setting of µ depended on the alpha-
bet size, that is, the number of expected children of a partial solution.

In addition we applied Beam-ACO with α = 10 and with the same settings
for µ as chosen for MS-PBS.

For the experimentation we used a set of benchmark instances that
was generated as follows. Given h ∈ {100, 200, . . . , 1000} and Σ (where
|Σ| ∈ {2, 4, 8, 24}), an instance is produced as follows. First, a string s of
length h is produced randomly from the alphabet Σ. String s is in the follow-
ing called base string. Each instance contains 10 strings. Each of these strings
is produced from the base string s by traversing s and by deciding for each
letter with a probabilitiy of 0.1 whether to remove it, or not. Note that the
10 strings of such an instance are not necessarily of the same length. As we
produced 10 instances for each combination of h and |Σ|, 400 instances were
generated in total. Note that the values of optimal solutions of these instances
are unknown. However, a lower bound is obtained as follows. While producing
the 10 strings of an instance, we record for each position of the base string s,
whether the letter at that position was removed for the generation of at least
one of the 10 strings. The number of positions in s that were never removed
constitutes the lower bound value henceforth denoted by LBI with respect to
an instance I.

We applied each of the 4 algorithms exactly once for h/10 seconds to each
problem instance. We present the results averaged over the 10 instances for
each combination of h (the length of the base string that was used to produce
an instance), and the alphabet size |Σ|. Two measures are presented:

1. The (average) length of the solutions expressed in deviation (percentage)
from the respective lower bounds, which is computed as follows:
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f

LBI
− 1

)
· 100 , (13)

where f is the length of the solution achieved by the respective algorithm.
2. The computation time of the algorithms, which refers to the time the best

solution was found within given CPU time (averaged over the 10 instances
of each type).

The results are shown graphically in Figure 3. The graphics on the left hand
side show the algorithm performance (in percentage of deviation from the
lower bound), and the graphics on the right hand side show the computation
times. The following observations are of interest. First, while having a com-
parable computation time, algorithm MS-PBS is always clearly better than
algorithms MS-PSC and MS-SC. Second, algorithm Beam-ACO is consistently
the best algorithm of the comparison. This shows that it can pay off adding
a learning component to algorithm (MS-)PBS. The advantage of Beam-ACO
over MS-PBS grows with growing alphabet size, that is, with growing prob-
lem complexity. This advantage of Beam-ACO comes with a slight increase in
computational cost. However, this is natural: due to the learning component,
Beam-ACO has a higher probability than MS-PBS of improving on the best
solution found even at late stages of a run. Finally, a last interesting remark
concerns the comparison of MS-PSC with MS-SC. Despite of the construction
of solutions in parallel, MS-PSC is always slightly beaten by MS-SC. This is
due to fact that the used upper bound function is not tight at all, which re-
sults in the fact that constructing solutions in parallel in the way of algorithm
(MS-)PSC is rather a waste of computation time.

2 Using metaheuristics concepts within branch & bound

In this section, we present a collaborative technique that integrates a pop-
ulation based metaheuristics, a memetic algorithm (MA) [31, 20, 23], with
the beam search variant of the branch & bound procedure. MAs are based on
the systematic exploitation of knowledge about the problem being solved, and
the synergistic combination of ideas taken from both population-based tech-
niques and trajectory-based metaheuristics. A very common way to achieve
this combination is using the template of an evolutionary algorithm, endowing
it with local search add-ons. A general sketch of this kind of MA is shown in
Algorithm 6. Several things must be noted: firstly, initialization is very often
done by means of problem-dependant constructive heuristics, thus ensuring
that a good starting point is used for the evolutionary search. Local search
can be also used in this initialization stage (to supplement the lack of an
adequate constructive heuristic, or to complement the latter). The remaining
components of the algorithm are typically chosen so that they incorporate
problem-knowledge (if possible) as well.
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Algorithm 6 Pseudocode of a memetic algorithm.

1: for i := 1 to popsize do
2: pop[i] := Heuristic Solution(ProblemData)
3: pop[i] := Local Search(pop[i])
4: Evaluate(pop[i])
5: end for
6: while allowed runtime not exceeded do
7: for i := 1 to offsize do
8: if recombination is performed then
9: parent1 := Select(pop)
10: parent2 := Select(pop)
11: offspring [i] := Recombine(parent1,parent2)
12: else
13: offspring [i] := Select(pop)
14: end if
15: if mutation is performed then
16: offspring [i] := Mutate(offspring [i])
17: end if
18: offspring [i] := Local Search(offspring [i])
19: Evaluate(offspring [i])
20: end for
21: pop := Replace(pop, offspring)
22: end while

According to the previous description, it is clear that MAs are specifi-
cally concerned with exploiting as much problem-knowledge as available. This
makes MAs specifically suited for taking part in hybrid approaches, either in-
tegrative or collaborative [34]. In this case, we have considered an approach in
which the control flows of BS and MA are intertwined: phases of BS and MA
alternate, and both processes share the best known solution. The technique
provides the following benefits:

• The best known solution can be used by the beam search part to purge
its problem queue, by not expanding partial nodes whose upper bound is
worse than the one obtained by the MA.

• The beam search can guide the search of the MA by injecting information
about more promising regions of the search space into the MA population.

The resulting algorithm for a minimization problem is pseudo-coded in
Algorithm 7. The procedure performs a standard beam search procedure (Bi

is used to maintain the beam at level i of the search tree and α is the beam
width, i.e., the maximum number of partial solutions to be expanded at each
level). After spreading out each level, if a level dependent problem specific
condition is fulfilled (represented in the pseudocode by the runMA variable),
the MA is run with a population that is initialized using the best nodes (w.r.t
some criteria) in the current beam. Note that nodes in the beam are partial
solutions, whereas the MA population consists of complete solutions, so a
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Algorithm 7 Beam Search and MA Hybrid: Hybrid(α,f̂)

1: input: α ∈ Z+, the best known objective function value f̂
2: initialization: i := 0, Bi := {ϵ}, z := null
3: while Bi ̸= ∅ do
4: Bi+1 := ∅
5: for w ∈ C(Bi) do
6: if |C(w)| > 0 then
7: if LB(w) < f̂ then Bi+1 := Bi+1 ∪ {w} end if
8: else
9: if f(w) < f̂ then z := w, f̂ := f(z) end if
10: end if
11: end for
12: Restrict Bi+1 to the (maximally) α best nodes
13: if runMA then
14: pop := select popsize best nodes from Bi+1

15: for j = 1, . . . , popsize do
16: complete partial solution popj
17: end for
18: sol := run MApop

19: if f(sol) < f̂ then z := sol, f̂ := f(z) end if
20: end if
21: i := i+ 1
22: end while
23: output: z (which might be null)

problem specific procedure must be used to complete them. After the MA
stabilizes, if the solution it provides improves the incumbent one, this one is
updated.

Example: Shortest common supersequence (SCS) problem

The Shortest Common Supersequence Problem (SCSP) is a well-known prob-
lem in the area of string analysis. Essentially, given a certain alphabet Σ and
a set L of strings from Σ, the aim is to find a minimal-length sequence s, such
that all strings in the given set L can be embedded in s. The SCSP can be
shown to be NP−hard, even if strong constraints are posed on L, or on Σ. For
example, it is NP−hard in general when all si have length two [38], or when
the alphabet size |Σ| is two [30]. This combinatorial problem is interesting as
it constitutes a formalization of different real-world problems. For example, it
has many implications in bioinformatics [19]: it is a problem with a close re-
lationship to multiple sequence alignment [36], and to probe synthesis during
microarray production [35]. Besides this, it also has applications in planning
[15] and data compression [38], among other fields.

Formally, the notion of embedding can be described as follows. Let s and r
be two strings of symbols taken from Σ. String s can be said to embed string
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r (denoted as s ≻ r) using the following recursive definition:

s ≻ ϵ = True
ϵ ≻ r = False, if r ̸= ϵ

αs ≻ αr = s ≻ r
αs ≻ βr = s ≻ βr, if α ̸= β

(14)

Plainly, s ≻ r means that all symbols in r are present in s in the very same
order (although not necessarily consecutive).

Formally, an instance I = (Σ,L) for the SCSP is given by a finite alphabet
Σ and a set L of m strings {s1, · · · , sm}, si ∈ Σ∗. The problem consists of
finding a string s of minimal length that embeds each string in L (s ≻ si,∀si ∈
L and |s| is minimal).

A branch & bound algorithm to solve an instance I = (Σ,L) of the SCSP
can start from a single node containing as tentative solution ϵ. In order to
implement function C(w), |Σ| subproblems are generated, each of them ob-
tained by appending a symbol from Σ to partial solution w. Nodes with
unproductive characters (i.e., not contributing to embedding any string in L)
are pruned from the search tree. To obtain a lower bound for a node st, the
set of remaining strings in L not embedded by st must first be calculated as
follows:

R = {ri | (sei , ri) = st ≫ si, si ∈ L} (15)

where s ≫ r = (re, rr) if re is the longest initial segment of string r embedded
by s and rr is the remaining part of r not embedded by s. Let M(α,R) be
the maximum number of occurrences of symbol α in any string in R:6

M(α,R) = max{|ri|α | ri ∈ R} (16)

Clearly, every common supersequence for the remaining strings must contain
at least M(α,R) copies of the symbol α. Thus a lower bound can be obtained
by summing the length of the tentative solution and the maximum number of
occurrences in any string in R of each symbol of the alphabet:

LB(st) = |st|+
∑
α∈Σ

M(α,R) (17)

In order to rank nodes in the branch & bound queue, the following quality
function was used for each node:

quality (st, L) =
∑
si∈L

{ |sei | | (sei , ri) = st ≫ si} (18)

so that tentative solutions embedding more symbols in L are selected. As all
tentative solutions in the same level of the search tree have the same length,
the algorithm selects nodes that provide good initial segments for constructing

6 As in Section 1.6, |ri|α denotes the number of occurrences of symbol α in ri.
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Algorithm 8 Majority Merge algorithm.

1: input: L = {s1, · · · , sm}
2: s := ϵ
3: repeat
4: for α ∈ Σ do
5: ν(α) :=

∑
si∈L,si=αs′i

1

6: end for
7: β ← max−1{ν(α) | α ∈ Σ}
8: for si ∈ L, si = βs′i do
9: si := s′i
10: end for
11: s := sβ
12: until

∑
si∈L |si| = 0

13: output: s

a short supersequence. Before being injected into the MA population, solutions
were randomly completed and repaired using the following function:

ρ (s, L) = s, if ∀i : si = ϵ
ρ (αs′, L) = ρ(s′, L), if ∄i : si = αs′i
ρ (αs′, L) = αρ(s′, L|α), if ∃i : si = αs′i
ρ (ϵ, L) = MM(L), if ∃i : si ̸= ϵ

(19)

where MM is the Majority Merge algorithm (see Algorithm 8) described in
[9]. This is a greedy algorithm that constructs a supersequence incrementally
by adding the symbol most frequently found at the front of the strings in L,
and removing these symbols from the corresponding strings.

Note that, apart from completing a string in order to have a valid su-
persequence, this function also removes unproductive steps from the repaired
string, acting thus as a local searcher.

Preliminary tests show that partial good solutions were only obtained after
descending a substantial number of levels in the beam search tree. This led
us to the following strategy for interleaving the MA and the branch & bound
in the hybrid algorithm: start by running in isolation the branch & bound
part of the algorithm for a initial number of levels, and then periodically
interleave both algorithms afterwards. To be precise, an estimation for the
SCSP solution s0 was calculated using the Weighted Majority Merge (WMM)
algorithm [9] and its length was used to set l0 = 0.7 · |s0|. The condition
for running the MA was (i > l0) and (i mod l = 0), where variable i (see
Algorithm 7) is the current level explored by the beam search part of the
algorithm, and parameter l controls the balance between the MA and beam
search, i.e., a execution of the MA is performed every l iterations of the beam
search. A sensitivity analysis of the parameters was done in a similar way to
that described in [17] and, based on it, the following values were used for the
different parameters of the algorithm: α = 10000 and l = 10.
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Algorithm 9 Local search for MA(s, L)

1: input: s ∈ Σ∗, L = {s1, · · · , sm}
2: initialization: k := 1
3: while k < |s| do
4: r := Delk(s, L)
5: if fit(r, L) < fit(s, L) then
6: s := r
7: k := 1
8: else
9: k := k + 1
10: end if
11: end while
12: output: s

As to the MA used, it evolves sequences in |Σ|λ, where λ =
∑

si∈L |si|.
Before being evaluated, sequences in the population are repaired using the ρ
function. After this repairing, raw fitness (to be minimized) is simply com-
puted as:

fit (s, L) = 0, if ∀i : si = ϵ
fit (αs′, L) = 1 + fit(s′, L|α), if ∃i : si ̸= ϵ

(20)

An additional local-improvement level is considered. To do so, we have con-
sidered the neighborhood defined by the Delk : Σ∗ × (Σ∗)

m → Σ∗ operation
[35]. The functioning of this procedure is as follows:

Delk (αs, L) = ρ(s, L), if k = 1
Delk (αs, L) = αDelk−1(s, L|α), if k > 1

(21)

This operation thus removes the k-th symbol from a string, and then submits
it to the repair function so that all strings in L can be embedded. Notice that
the repairing function can actually find that the sequence is feasible, hence
resulting in a reduction of length by one symbol. A full local-search scheme
is defined by iterating this operation until no single deletion results in length
reduction (see Algorithm 9). The improvement in solution quality attainable
via the application of this LS operator comes obviously at the expenses of
an increased computational cost. This additional cost might be too high if
LS were massively applied. On the other hand, the extreme option of simply
removing LS handicaps the search capabilities of the algorithm. A pragmatic
solution can be found in the use of partial lamarckism [21], namely using
LS but with some intermediate probability. Preliminary experiments were
conducted with probabilities to apply local search in {0, 0.01, 0.1, 0.5, 1} (see
[12]), and setting this parameter to 0.01 provided a better tradeoff between
the attainable improvement, and the additional computational cost implied.
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Experimental results

In this section, we do a experimental comparison of the beam search and MA
hybrid algorithm with respect to the probabilistic beam search (PBS) algo-
rithm for the SCSP described in [7]. For this purpose, two sets of benchmark
instances have been used:

The first one — henceforth referred to as RandomSet — consists of
random strings with different alphabet lengths. To be precise, each instance
is composed of eight strings, four of them of length 40, and the other four of
length 80. Each of these strings is randomly generated, using an alphabet Σ.
The benchmark set consists of 5 classes of each 5 instances characterized by
different alphabet sizes, namely |Σ| = 2, 4, 8, 16, and 24. Thus, the benchmark
set consists of 25 different problem instances.

A second set of instances — henceforth referred to as RealSet — is
composed of strings obtained from molecular sequences, comprising both DNA
sequences (|Σ| = 4) and protein sequences (|Σ| = 20). In the first case, we have
taken two DNA sequences of the SARS coronavirus from a genomic database7;
these sequences are 158 and 1269 nucleotides long. As to the protein sequences,
we have considered four of them, extracted from Swiss-Prot8:

• Oxytocin: quite important in pregnant women, this protein causes contrac-
tion of the smooth muscle of the uterus and of the mammary gland. The
sequence is 125-aminoacid long.

• p53 : this protein is involved in the cell cycle, and acts as tumor suppressor
in many tumor types; the sequence is 393-aminoacid long.

• Estrogen: involved in the regulation of eukaryotic gene expression, this
protein affects cellular proliferation and differentiation; the sequence is
595-aminoacid long.

• Myelin: this sequence correspond to a transcription factor of myelin, and is
associated with neuronal differentiation. The sequence is 1186-aminoacid
long.

Problem instances in RealSet are obtained from the target sequence
by removing symbols from the latter with a certain probability p%
(p ∈{10%,15%,20%} in our experiments).

Figure 4 shows results for RandomSet. Results are averaged over 5 inde-
pendent runs for each problem instance and further averaged over 5 different
problem instances with the same alphabet length. For the beam search and
MA hybrid, executions were performed on a Pentium IV PC (2400MHz and
512MB of main memory), and a time limit of 600 seconds per execution was
imposed. As to the PBS, tests were performed on a AMD64X2 4400 processor
and 4 Gb of memory. The time limit was set to 350 seconds, that roughly cor-
responds to the time given to other algorithm on a different machine. Results
show that PBS performs better for this instance set, as it finds better solutions

7 http://gel.ym.edu.tw/sars/genomes.html
8 http://www.expasy.org/sprot/
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except for |Σ| = 2. Note that PBS performs several iterations of the beam
search part of the algorithm, and thus exhausts the allowed time, whereas the
beam search and MA hybrid only performs a beam search execution, and does
not necessarily use all the permitted time. We also studied the performance
of a variation of the beam search and MA hybrid (labelled MA-BS 2 in Fig-
ure 4) that exhausts the allowed time by performing several iterations of the
beam search. In order to introduce more randomness in the algorithm, each
time the MA was executed, its population was initialized by selecting nodes
from the beam using binary tournament selection. Results show that MA-BS
2 outperforms PBS for |Σ| ∈ {2, 24}, and is slightly worse for |Σ| = 4.

Figure 5 shows results for RealSet. In this case, the beam search and
MA hybrid performs better, as it always finds the presumed optimal solution
in all runs (except for the MYELIN instance with p%=20%). Note that in
this latter instance, PBS finds a non-optimal better result. We also make note
that the second version of the MA-BS hybrid does not improve these results
because the allowed time is exhausted in the first iteration of the beam search;
for this reason the results obtained by MA-BS 2 are not shown in Figure 5.

3 Conclusions

In this paper we have dealt with hybridizations of branch & bound deriva-
tives (i.e., beam search) and metaheuristics techniques and have shown that
the resulting hybrid algorithms provide better results than their counterparts
working alone. Particularly, we have highlighted two different proposals: in the
first one, a construction-based metaheuristics is enriched with branch & bound
features. Here, we start from a (parallel) solution construction method with
a probabilistic component in the election of the next step to execute (i.e., the
set of nodes that can be reached from the current state). Then we improve it
by incorporating first a beam search component in the election, resulting in a
probabilistic beam search algorithm, and second adding a learning component
to adjust the knowledge acquired from the accumulated experience.

Our second proposal consists of a branch & bound technique that collab-
orates in an interleaved way with a metaheuristics, namely a memetic algo-
rithm. Here, the branch & bound technique is used to identify the promising
regions of the search space in which the optimal solution can be found. The
metaheuristics is then used to exploit this knowledge in order to improve the
bounds employed by the branch & bound technique to force further branch
pruning.

Our hybrid algorithms have been first described in detail and then applied
on practical problems to show their effectiveness. This paper clearly shows
that both exact techniques such as branch & bound (including non-complete
derivatives such as beam search) and metaheuristics can clearly benefit one
from each other.
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Álvarez, editors, Artificial Intelligence and Knowledge Engineering Applications:
a Bioinspired Approach, number 3562 in Lecture Notes in Computer Science,
pages 41–53, Berlin Heidelberg, 2005. Springer-Verlag.

35. S. Rahmann. The shortest common supersequence problem in a microarray
production setting. Bioinformatics, 19(Suppl. 2):ii156–ii161, 2003.

36. J.S. Sim and K. Park. The consensus string problem for a metric is NP-complete.
Journal of Discrete Algorithms, 1(1):111–117, 2003.

37. T. Smith and M. Waterman. Identification of common molecular subsequences.
Journal of Molecular Biology, 147(1):195–197, 1981.

38. V.G. Timkovsky. Complexity of common subsequence and supersequence prob-
lems and related problems. Cybernetics, 25:565–580, 1990.



Hybridization with branch & bound derivatives 29

-80

-60

-40

-20

 0

 20

 40

 60

 80

 100

 100  200  300  400  500  600  700  800  900 1000

D
ev

ia
tio

n 
fr

om
 lo

w
er

 b
ou

nd
 (

in
 %

)

Base string length (h)

 
 MS-SC

 MS-PSC
 MS-PBS

 Beam-ACO

(a) |Σ| = 2, results

 0

 10

 20

 30

 40

 50

 60

 70

 80

 100  200  300  400  500  600  700  800  900 1000

C
om

pu
ta

tio
n 

tim
e 

(in
 s

ec
)

Base string length (h)

 
 MS-SC

 MS-PSC
 MS-PBS

 Beam-ACO

(b) |Σ| = 2, computation times

-80

-60

-40

-20

 0

 20

 40

 60

 80

 100

 100  200  300  400  500  600  700  800  900 1000

D
ev

ia
tio

n 
fr

om
 lo

w
er

 b
ou

nd
 (

in
 %

)

Base string length (h)

 
 MS-SC

 MS-PSC
 MS-PBS

 Beam-ACO

(c) |Σ| = 4, results

 0

 10

 20

 30

 40

 50

 60

 70

 80

 100  200  300  400  500  600  700  800  900 1000

C
om

pu
ta

tio
n 

tim
e 

(in
 s

ec
)

Base string length (h)

 
 MS-SC

 MS-PSC
 MS-PBS

 Beam-ACO

(d) |Σ| = 4, computation times

-80

-60

-40

-20

 0

 20

 40

 60

 80

 100

 100  200  300  400  500  600  700  800  900 1000

D
ev

ia
tio

n 
fr

om
 lo

w
er

 b
ou

nd
 (

in
 %

)

Base string length (h)

 
 MS-SC

 MS-PSC
 MS-PBS

 Beam-ACO

(e) |Σ| = 8, results

 0

 10

 20

 30

 40

 50

 60

 70

 80

 100  200  300  400  500  600  700  800  900 1000

C
om

pu
ta

tio
n 

tim
e 

(in
 s

ec
)

Base string length (h)

 
 MS-SC

 MS-PSC
 MS-PBS

 Beam-ACO

(f) |Σ| = 8, computation times

-80

-60

-40

-20

 0

 20

 40

 60

 80

 100

 100  200  300  400  500  600  700  800  900 1000

D
ev

ia
tio

n 
fr

om
 lo

w
er

 b
ou

nd
 (

in
 %

)

Base string length (h)

 
 MS-SC

 MS-PSC
 MS-PBS

 Beam-ACO

(g) |Σ| = 24, results

 0

 10

 20

 30

 40

 50

 60

 70

 80

 100  200  300  400  500  600  700  800  900 1000

C
om

pu
ta

tio
n 

tim
e 

(in
 s

ec
)

Base string length (h)

 
 MS-SC

 MS-PSC
 MS-PBS

 Beam-ACO

(h) |Σ| = 24, computation times

Fig. 3. Results and computation times of algorithms MS-SC, MS-PSC, MS-PBS,
and Beam-ACO
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Fig. 4. Comparison of two versions of MA-BS Hybrid Algorithm and PBS on ran-
dom instances for different alphabet sizes. Figures show relative improvements with
respect to solutions provided by MM. A × sign indicates the mean solution, whereas
a ⋆ marks the best solution. Standard deviations of distribution are also depicted.
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Fig. 5. Comparison of MA-BS Hybrid Algorithm and PBS on different real instances
and gap ∈ {10%, 15%, 20%} (from left to right for each algorithm). Figures show
relative distances to optimal solutions. A × sign indicates the mean solution, whereas
a ⋆ marks the best solution. Standard deviations of distribution are also depicted.


