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2 Departamento de Lenguajes y Ciencias de la Computación, ETSI Informática,
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Abstract. Bayesian Networks (BN) are often sought as useful descriptive and
predictive models for the available data. Learning algorithms trying to ascertain
automatically the best BN model (graph structure) for some input data are of the
greatest interest for practical reasons. In this paper we examine a number of evo-
lutionary programming algorithms for this network induction problem. Our algo-
rithms build on recent advances in the field and are based on selection and various
kinds of mutation operators (working at both the directed acyclic and essential
graph level). A review of related evolutionary work is also provided. We analyze
and discuss the merit and computational toll of these EP algorithms in a couple
of benchmark tasks. Some general conclusions about the most efficient algorithms,
and the most appropriate search landscapes are presented.

1 Introduction

A Bayesian Network (BN) is a graphical model postulating a joint distri-
bution for a target set of discrete random variables. Critical qualitative as-
pects relate to stochastic dependencies and are determined by the underly-
ing graphical structure, a Directed Acyclic Graph (DAG). To deal with the
problem of learning sensible BN models from data (a problem known to be
NP-hard), a number of algorithms have been considered to search various
target spaces, including most notably the space of DAG structures (b-space)
and the space of equivalence classes of DAG structures (e-space), see e.g.
[1,2]. The field is very active and further representation schemes keep emerg-
ing in the literature, see e.g. Studený’s algebraic approach [3]. For the most
familiar search spaces, some key insights and guiding principles of interest
have emerged over time [4–7]. We adhere here to these principles as we try
to evaluate their components in a rich evolutionary framework.

Evolutionary algorithms have been successful by now in many applica-
tions; in particular, they have been considered in this context as well [8].
This family of algorithms can be seen as an interesting class of population-
based score-and-search methods, where the fitness measure is equated to
some standard scoring metric like the marginal likelihood [4], and we can
enjoy the benefits of our experience and theoretical results in the evolution-
ary computation field. We focus here on the evolutionary programming (EP)
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paradigm, see [9,10] for general reference. The EP paradigm is based on the
pressure exerted by selection and mutation alone, i.e., no recombination is
used. Recombination is of course an important, often useful heuristic for mix-
ing genetic material and indeed it has been often explored in b-space [8,11,12].
To the best of our knowledge, however, no previously proposed evolutionary
algorithm (be it EP or otherwise) follows the aforementioned theoretical prin-
ciples as our EP algorithms do.

The specific approaches we consider differ in either search space or type of
neighborhood. The latter turns out to be a key concept for search algorithms:
the neighborhood of a graph (in b- or e-space) equals the set of DAGs that
can be reached from that DAG in a single mutation. This clearly depends on
the battery of operators available. In this work, we consider on one hand the
approach based on essential graphs (equivalence classes or e-space) suggested
by the results of [5]. On the other hand, we consider two families of algorithms
working directly in b-space inspired by the results of [6]. We denote these
three algorithms as EPQ, EPNR and EPAR respectively. We are specifically
interested in analyzing the relative performance of these approaches, and the
computational tradeoffs involved in their application to the induction of BN
structures.

2 Learning Bayesian Networks

A Bayesian Network (G, θ) encompasses the Directed Acyclic Graph (DAG)
G and a set of probability distributions attached to G, say θ = θ(G). The
DAG is the set of links or arcs among variables or nodes. If we denote the
whole set of discrete variables as X = {X1, X2, ..., Xn}, each Xi has a set of
parents denoted by Πi = {Xj ∈ X | (Xj → Xi) ∈ G}. Then, the DAG G
represents the joint distribution

P (X) =
n∏

i=1

P (Xi | Πi)

with the parameterization P (Xi = k | Πi = j) = θijk, j = 1, ..., qi; k =
1, ..., ri; ri is the number of distinct values that Xi can assume, and qi is the
number of different configurations that Πi can present.

Two DAGs are (Markov) equivalent if they encode the same set of inde-
pendence and conditional independence statements. Each equivalence class,
say [G], can be represented by the essential graph [2,5], a unique partially
directed acyclic graph or PDAG, say Ḡ. If an arc X → Y shows up in all
H ∈ [G], then that arc is compelled in [G]. If an arc is not compelled, then it
is reversible, i.e., there exist H,K ∈ [G] such that H contains X → Y and K
contains Y → X. The unique PDAG Ḡ representing [G] contains a directed
arc for each compelled arc in [G] and an undirected arc for each reversible
arc in [G]. Our e-space refers precisely to the space of those PDAGs which
represent some [G], see below.
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There exist two different approaches to learning graphical structure from
data, namely, those based on prior conditional independence testing and those
usually referred to as score-and-search approaches. The first approach seeks
to establish well-founded constraints on the graphical structure, thus simpli-
fying the search space considerably, see [13–15]. Score-and-search methods
omit this step and proceed directly to evaluate all tentative graph structures
provided by some method via a suitable scoring metric [4,16–18]. While there
are also proposals that try to combine the best from each class of methods,
here we shall be concerned with the latter class of methods almost exclu-
sively. Besides the scoring metric itself, which is known not to make a big
difference in practice for large sample size N , we need to specify the set of
traversal operators that will be used to search for better solutions locally.

Given a BN (G, θ) and a data matrix D with n columns and N (exchange-
able) rows, there are several ways to measure the quality of fit to the data
[16]. We focus here on the marginal likelihood :

P (D|G) =
∫

P (D|G, θ)π(θ|G)dθ .

A closed-form expression is available for P (D|G) in the case of suitable
Dirichlet-based priors π(θ|G) under certain assumptions [4]. Specifically, we
take

π(θ|G) ∝
∏

i,j

∏

k

θ
αijk−1
ijk

where α = {αijk} is the virtual count hyperparameter (αijk > 0). These αijk

must be supplied by the user (just like the complete data set D), but we de-
note our fitness or basic DAG scoring metric as Ψ = Ψ(G;D) = log P (D|G)
for simplicity.

A given measure Ψ is called score-equivalent if it is constant over each
equivalence class [G]. The present Ψ is score-equivalent if αi =

∑
j,k αijk ≡ α

for some α > 0, the so-called BDe metric [4]. We consider below the BDeu(α)
metric αijk = α/riqi, see e.g. [19]. Another typical option is αijk = 1, the
well-known (but not score-equivalent) K2 metric [20]. Note that the score of
a given PDAG Ḡ is taken as the constant value assumed by members of the
associated [G]; genuine equivalence class metrics can be defined too [21].

2.1 Learning Equivalence Classes

Let Ḡ denote the unique PDAG structure representing some equivalence
class [G]. Among other things, we know that Ḡ and any G ∈ [G] share the
same skeleton or connectivity pattern (ignoring directionality) and the same
v-structures. A v-structure is a substructure X → Z ← Y where X is not
linked to Y directly. Note that not all PDAGs represent equivalence classes,
only completed PDAGs (CPDAGs) do. A related class of PDAG models is
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Fig. 1. Operators for traversing e-space.

discussed in [22]; however, this class does not exhibit the nice one-to-one
correspondence that we have between equivalence classes and CPDAGs.

Chickering [5] presents six operators for introducing local variation in
existing CPDAGs, namely, InsertU, DeleteU, InsertD, DeleteD, ReverseD
and MakeV. The first five operators are rather self-explanatory. As to the
sixth, it transforms a substructure X − Z − Y (where X is not linked to Y
directly) into the v-structure X → Z ← Y . Note that each of these operators
changes either the skeleton or the number of v-structures and thus guarantees
that a new equivalence class is visited. An example of the application of each
of these operators is provided in Figure 1.

The modified CPDAGs need not be evaluated from scratch: efficient score-
updating formulae are provided for each operator [5]. The key idea behind
this local scoring is that a decomposable, score-equivalent metric Ψ is typically
used (for example, both K2 and BDeu(α) are decomposable). A metric Ψ
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is said decomposable if, for some function σ (and implicit data), Ψ(G) =∑n
i=1 σ(Xi,Πi), where calculation is restricted in each summand to a single

node Xi and its parents Πi. Thus, only those nodes whose Πi is changed by
the operator need to be updated. To illustrate, the change in score attributed
to a particular (valid) move deleting X → Y in Ḡ (and leading to some H̄)
can be expressed as Ψ(H̄)− Ψ(Ḡ) = σ(Y, Λ1)− σ(Y, Λ2), where Λ1 ⊂ X is
the set of nodes connected to Y (with either a directed or undirected arc),
and Λ2 = Λ1 ∪ {X}. Similar or slightly more complex expressions hold for
the remaining operators.

While the six operators are all local in principle, there may be “cascad-
ing” implications in some moves. For example, as seen in Figure 1, DeleteD
and ReverseD may make other directed arcs undirected. Or, after applying
MakeV, many arcs may switch from undirected to directed. Hence, it is diffi-
cult to predict the behavior of the tentative graphs produced along the way,
and indeed surprises may arise in some cases, see [23] and below. In practice,
we find the outcome H̄ = ω(Ḡ) by applying two key algorithms in turn [5].
We first use the PDAG-to-DAG routine to extract a member DAG H from
the raw result of the mutation, say H̄r. If no such H can be found, the in-
tended mutation is not valid (the PDAG can not be completed; a compact
validity test is provided for each operator to prevent unnecessary computa-
tions). Otherwise we call the DAG-to-CPDAG routine (with input this H) to
determine the resulting (validated) H̄. As discussed below, these two routines
can be used in reverse order to move within the same equivalence class in a
random way (we have included a stochastic component in the PDAG-to-DAG
routine, namely, the order in which the nodes will be traversed so as to assign
directionality to undirected arcs).

2.2 Inclusion-Driven Learning

Castelo and Kočka [6] and others argue that traversal operators which respect
the inclusion boundary (IB) condition or principle have appealing theoret-
ical properties. Briefly, if the true distribution generating the data can be
expressed as a BN model, and if certain reasonable assumptions concerning
the score function are made, then, in the long run (for large sample size N)
we are guaranteed to reach the target model when we use traversal operators
that verify this principle. A traversal operator respects the IB condition if
the neighborhood associated to a given G always contains its IB, say IB(G).
The IB(G) collection of models contains all those “immediately next” to G
in a precise distributional sense. The bottom line is that traversal operators
should be designed so that they possibly visit any “sufficiently close neigh-
bor” in this sense. On this matter, the standard NR and AR (No and All
Reversals respectively) neighborhoods are a primary reference. In the case of
NR, only the usual InsertD (Insert directed arc at a random valid location,
that is, wherever the insertion does not form a cycle) and the similarly de-
fined DeleteD operators are allowed, whereas AR incorporates also ReverseD.
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Natural questions are: How well do the basic NR and AR neighborhoods do
with regard to the IB condition? Can we find a traversal operator whose
neighborhood coincides exactly with IB(G)? If so, how much should IB(G)
be augmented (if at all)?

The answer to the second question is given by the particular neighbor-
hood ENR (Equivalence class-based NR jump), see e.g. [6]. For a given G,
this consists of the union of all DAGs that belong to the standard NR neigh-
borhood of G together with all DAGs that belong to the same neighborhood
of all other H ∈ [G]. The idea in the implicit intra-class navigation is that
certain areas of [G] may be closer to some intermediate equivalence classes
of interest than others. A tentative improvement over ENR is provided by
the ENCR neighborhood [6]. This is defined just like ENR, except now the
ReverseD operator is allowed and restricted to non-covered arcs. A given arc
Y → X is said to be covered in the DAG G if ΠX = {Y }∪ΠY holds. In other
words, if there exists another arc Z → X then Z → Y must also exist (and
vice versa). Hence, a covered Y → X can not be part of any v-structure. It
follows that the reversal of a covered arc does not change neither the skele-
ton nor the number of v-structures. Therefore, non-covered arc reversals are
guaranteed to leave the current equivalence class.

Of course ENR encompasses a huge number of graphs and hence needs to
be simulated by a random walk or otherwise. Given a DAG G, we can move
within [G] by iterated (random) covered arc reversal. Let r the number of
calls to be made for each move. It is argued in [6] that r need not be very large
because equivalence classes contain an average of less than four DAGs [24]. In
practice, the algorithms will need to handle (DAGs from) equivalence classes
close to the target. Hence, if the target equivalence class is believed to be
large, then r may need to be larger. In any case, once the r stipulated random
reversals have taken place, the resulting structure is modified according to
the standard NR (implementing ENR) or whatever neighborhood is implied
by the traversal operators (implementing also ENCR).

Note that there exist other learning algorithms which also respect the IB
condition. These include the GES algorithm proposed by Chickering [17] (a
fully greedy algorithm which begins with an empty graph) and the KES gen-
eralization considered by Nielsen et al. [7]. Furthermore, complying Markov
Chain Monte Carlo (MCMC) algorithms can also be devised [6]. We believe
that our current EP approach is likely to cooperate effectively along these
alternative lines too, see the concluding section.

3 Evolutionary Approaches to Network Induction

Several evolutionary algorithms have been proposed for the present graphical
model induction task. The seminal paper by Larrañaga et al. [8] presents the
first genetic algorithm (GA) in b-space, see also [25]. The parallel paper by
Larrañaga and coworkers [26] examines the role of the GA when restricted to
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explore the space of topological orderings (essentially permutations) of the
variables. A popular heuristic algorithm like K2 [20] takes one such topolog-
ical order as input and returns a fitted BN that respects that order.

More recent work in the area by this research team involves the so-called
Estimation of Distribution Algorithms, see e.g. [18]. Evolutionary algorithms
of this sort replace crossover with sampling from a model fitted to the best
individuals in the current population [27,28]. Model distributions here refer in
principle to the space of DAGs; hence, they must remain relatively simple to
be tractable. For example, it is not uncommon to model univariate (marginal)
arc behavior or simple arc-to-arc dependencies. It follows that graphs sampled
from these models may include cycles and thus need repairing [18].

Wong et al. [29] use an EP approach that aims to enjoy the advantages of
both the prior testing and the score-and-search approaches mentioned earlier.
They preprocess the data and use the standard Mutual Independence measure
to compute a matrix that evaluates the strength of every possible arc in the
emerging DAG. Mutation operators include the classical operators considered
here as well as other, less frequent operators. These operators are sensitive to
the MI information, in the sense that, for instance, the weakest arc is more
likely to be deleted when the deletion operator is called and so on. This bias
acts in the same way throughout the run. Note that the MI measure can only
capture the value of a given arc taken in isolation. In actual learning runs,
however, we should find that the value of a given arc Y → X depends more
naturally on whether and which other arc(s) Z → X are concurrent. In fact,
it has been pointed out that the offspring produced by this so-called MDLEP
method are often worse than their parents [30]. We shall explicitly consider
this improvement rate in our experiments below.

Harwood and Scheines [14] propose an annealed GA to search over the
space of equivalence classes of DAGs or e-space. These authors provide a
good discussion of the pros and cons of the various strategies available for
inducing networks from data. They handle the slightly different problem in
which variables are continuous and linear local regressions are computed at
each node so as to provide arcs with a certain coefficient. These coefficients
come along with the graph and play the role of the conditional distributions θ
in the discrete setting. Harwood and Scheines suggest to improve the standard
evolutionary process by adding an annealing scheme that slowly increases the
penalty for complex models in the fitness function (so that the system works
initially with relatively dense networks). They further prune the search space
along the run by permanently banning adjacencies from future consideration
if these adjacencies become extinct in the current population. Harwood and
Scheines also tackle the issue of dealing with relatively few data (compared
to the number of available variables, N ¿ n).

Cotta and Muruzábal [11] propose various crossover operators in b-space.
Their approach is based on preventing the formation of cycles (to avoid the
costly repairing, see [31]). It also involves a (surrogate of) the conditional
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mutual independence measure, which assesses the value of arcs in the con-
text of their relevant parent sets Π in the parent DAGs. This measure is used
to rank the goodness of the various arcs possibly transmitted from parents to
offspring. The proposed crossover operators exploit this information in vari-
ous ways making important arcs more likely to be transmitted from parent to
offspring DAGs. Cotta and Muruzábal also suggest that respectful strategies
(transmitting routinely all arcs shared by both parent DAGs) might prove
advantageous to crossover operators in this setting.

Wong and Leung [30] present the hybrid evolutionary algorithm HEA.
Their HEA is based on the so-called merge operator, a parent-set-based ver-
sion of crossover. Given two parent DAG structures, merge chooses the parent
set Πi of variable i in the offspring from the corresponding Πi in the par-
ent DAGs, with the goal that offspring exhibit better overall scores than
their progenitors. HEA is also based on cycle-prevention. The merge opera-
tor is given priority over the mutation operators used in [29] since it exhibits
several desirable properties, most notably, that score information related to
conserved Πi can be reused economically.

Van Dijk and Thierens [12] recognize the potential gain provided by the
PDAG-based non-redundant encoding and discuss a GA that allows searching
in e-space. They point out that the standard DAG representation may jeo-
pordize the fusion of useful building blocks and thus lead to a poor crossover
operator in general. However, in their implementation PDAGs are instan-
tiated as DAGs prior to crossover; then the DAG offspring are cleaned up
(cycles are broken) and reinserted as PDAGs. Van Dijk and Thierens [12]
dismiss the framework of Chickering [5] (adopted here) arguing that this “re-
quires a more complicated implementation and is only of practical interest”.
While they also acknowledge the computational cost of the numerous DAG-
to-PDAG and CPDAG-to-DAG calls in their proposal, the type of neigh-
borhood implemented by the set of traversal (and/or crossover) operators is
crucial for our score-and-search algorithms to be able to escape local optima.

Another type of parent-set-based evolutionary algorithm has been pro-
posed by Wong et al. [32], namely the cooperative co-evolutionary GA or
CCGA. This builds upon the two-phase approach discussed earlier [29], so
that the search space is constrained by the “verified assertions” made in the
prior testing phase. The idea is then to search (separately) over the space of
parent configurations Πi in each case. The maximum size of Π is kept lim-
ited throughout. The optimal parent sets for the different variables (species)
are assembled together to form the final complete DAGs (again, some post-
processing may be needed for cycle removal). The fitness measure for the
individual search processes does include a component that evaluates the de-
gree of cooperation of tentative Πi. This component is based on the scores of
the “collaborative structures” assembled from good representatives of each
species along the way. Similar ideas have been known for a while in the wider
evolutionary context, see e.g. [33].
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To summarize, evolutionary approaches have flourished in recent years
for the graph induction problem. These algorithms can be tailored to deal
with this problem in various ways, and a host of ideas frequently found useful
are brought to play to our advantage. However, no conclusive assessment has
been reached yet, so more detailed comparative work and benchmarking are
in order.

4 Evolutionary Search Landscapes for Optimal
Network Induction

In this section we review the details of our evolutionary algorithms. We first
review EPQ in e-space, then continue with EPNR and EPAR in b-space. It
is useful to begin by describing the common skeleton in these EP algorithms.

4.1 Standard EP Setting

The common steps in our algorithms are the following: (i) we begin with
a population of P randomly initialized graphs and we evaluate them using
the fitness or scoring metric Ψ . (ii) At each generation, P members of the
current population are selected by means of binary tournament (two graphs
are randomly drawn and the highest score wins). (iii) Each selected graph may
be preprocessed. (iv) Either the original or the preprocessed graph is mutated
once by selecting an operator ω from the available battery Ξ according to
some distribution Ω, and applying it at a random (valid) entry point in the
target graph. (v) All P mutated graphs are (locally) evaluated and stored.
(vi) Finally, the best P out of the 2P available structures at this point are
selected for the next generation, the remaining P are discarded and a new
iteration takes place.

The probability distribution Ω over the battery Ξ may be fixed in evo-
lutionary time, or it may be dynamic (in various ways). At the moment, we
use a stationary, uniform Ω throughout the process and for all individuals.

Initialization of DAG structures can be pursued either in a purely random
way or heuristically. In the first case, we have devised a simple randomization
routine in which parameter δ ∈ [0, 1] controls the arc density of the resulting
graph. More sophisticated approaches to uniformly distributed DAG gener-
ation exist, see e.g. [34]. In the second case, the K2 heuristic is used, taking
a random permutation of the variables as seed. The process is further con-
trolled by πmax, the maximum number of parents allowed per variable. Note
that this limit is set only on the initial structures, it is not enforced along
the run. Initial (valid) PDAGs are easily generated from random DAGs by
using the DAG-to-CPDAG routine mentioned in Section 2.1.
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4.2 Neighborhoods in E-Space and B-Space

No preprocessing is carried out in the case of EPQ. The particular neighbor-
hood used here does not quite contain the target ENR (although it typically
contains many other DAGs), so EPQ does not really enjoy the convergence
property discussed in Section 2.2. Recall that the operators analyzed in [5] are
InsertU, DeleteU, InsertD, DeleteD, ReverseD and MakeV. It was shown in
[35] that all operators are needed for best performance, so we allow all in Ξ
here. Recall also that all of them change the current equivalence class and all
can be scored efficiently.

Note that some operators may not find a suitable entry point in the
selected CPDAG and hence may become non-applicable (in which case a
different operator should be selected etc.). If, on the other hand, one or more
appropriate entry points can be found for the selected ω, then the operator
is tentatively applied at a randomly selected point. If the mutated CPDAG
H̄ =ω(Ḡ) passes the corresponding validity test, it is incorporated to the
offspring population. We track the success ratio of each operator ε = ε(ω)
during the replacement stage, i.e., the number of CPDAGs that ω produced
and made it to the next population.

We now continue with our EP algorithms in b-space, EPNR and EPAR.
Note that preprocessing of a selected DAG G refers to the navigation within
the class [G] containing G. As explained in Section 2.2, this navigation is
achieved via a series of covered arc reversals.

Castelo and Kočka [6] discuss implementations of the ENR, ENCR and
other neighborhoods. They refer to the version covering ENR as RCARNRr
(for r Repeated Covered Arc Reversals followed by a NR jump); it goes hand
by hand with our EPNR(r) algorithm. As noted above, ENCR is simulated
similarly and the corresponding algorithm is denoted as RCARRr. We adopt
below a simpler implementation of ENCR allowing all arc reversals, which we
call EPAR(r). The case r = 0 (no navigation at all) transforms radically the
associated neighborhoods, with the result that the theoretical support is lost
[6]. However, we still consider EPNR(0) (equal, of course, to the standard
NR) and EPAR(0) for the sake of reference. We also consider the case in
which all navigation steps are collapsed into two as follows: firstly DAG-to-
CPDAG is applied to G to obtain Ḡ; then, PDAG-to-DAG is used on Ḡ to
extract another DAG H ∈ [G]. This scheme is denoted as r = ∞. It had not
been proposed previously, although we feel it is a natural competitor for the
r > 0 alternatives [35].

5 Experiments and Results

The algorithms described above have been deployed on two conspicuous net-
works: ALARM –a 37-variable network for monitoring patients in intensive
care [36]– and INSURANCE –a 27-variable network for evaluating car insur-
ance risks [37]. The equivalence class [ALARM] is represented by a CPDAG
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Fig. 2. Results by the proposed EP algorithms (each boxplot summarizes ten runs).
(Top) Random initialization (bottom) Heuristic initialization. For each value of r,
the left boxplot corresponds to EPNR, and the right one to EPAR. Notice the use
of different scales in each plot.

with 4 undirected and 42 directed arcs. As to [INSURANCE], it is a larger
and denser equivalence class, represented by a CPDAG with 18 undirected
arcs and 34 directed arcs. In both cases, a training set of N = 10, 000 exam-
ples was created once by random probabilistic sampling as customary. The
BDeu(α = 1) metric Ψ(G|D, α) = log P (D|G) is the fitness function (to be
maximized). Previous work [35] indicates that this setting α = 1 provides
the best results (fake dependencies abound for larger values of α, whereas for
lower values some true dependencies are lost).

All experiments have been performed using a population size of P = 100
individuals. The termination criterion is reaching a number of 500 genera-
tions, i.e., 50,000 networks generated. Such a termination criterion follows the
common practice in evolutionary computation, where fitness computation is
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the basic cost unit. Nevertheless, this particular application has a distinctive
feature: the goodness of a generated structure is not calculated from scratch,
but by means of local evaluations (recall the decomposability of our fitness
function). Since the number of such local evaluations depends on the operator
and on the value of r, we have monitored the accumulated number of local
evaluations across the run, to obtain another –possibly more representative–
figure of cost. Two different initialization settings have been considered: ran-
dom initialization using density value δ = 0.05, and K2 initialization with
maximum number of parents per variable πmax = 2.

The results are shown in Figure 2. Notice firstly the results of EPNR(0).
These are remarkably inferior to those of any EPNR(r > 0) for both net-
works. This confirms the limitations of the basic NR neighborhood. As soon
as r > 0, there is a sharp performance improvement. This improvement
clearly supports the usefulness (for this particular neighborhood) of intra-
class navigation, for it increases the connectivity of the search space (and
hence decreases the number of local optima). This is also true for EPAR, al-
though the difference among the several values of r is not so large in this case.
The effect of using the denser AR neighborhood is here dominant. Indeed,
by taking r > 0 new paths in b-space are possible, although the enhanced
inter-class navigation capability offered by ReverseD remains the prime fea-
ture (as it can be noted by comparing the behavior of EPAR(0) with that of
EPNR(r)). Actually, the performance of EPAR(r) is always superior to that
of its EPNR(r) counterpart. EPQ is also better than EPNR(0) and tends to
perform similarly to EPAR. Since the connectivity in e-space is very rich, it
is worth investigating which operators are most useful.

As can be seen in Figure 3, there exists naturally a general decreasing
trend in success rates (improvements are less frequent in the latter stages
of the run). Also for this reason, lower success levels are obtained when us-
ing heuristic initialization (the algorithm performs its run at a higher fitness
level). The different decreasing rates shed some light on the relative contri-
bution of operators. In particular, note that the undirected-arc-based, “brick
and mortar” operators InsertU and MakeV tend to maintain the highest suc-
cess ratios by the end of the run. The injection of v-structures appears thus
crucial for balancing the adequate proportion of directed and undirected arcs.
Indeed, if MakeV were removed from the set of available operators, directed
arcs would begin to vanish very quickly [35]. On the other hand, DeleteD,
ReverseD and DeleteU are the ultimately least useful.

This overall success picture may suggest the following EPQ dynamics.
It appears that the typical behavior of this algorithm is to first trim mas-
sively all irrelevant arcs, ending up with a relatively small structure with
mostly undirected arcs. As the structure grows from this basis, some useful
set of both compelled and reversible arcs is secured. Tentative directional-
ity is assigned by MakeV and a higher number of sensible directed arcs and
v-structures emerge over time.
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Fig. 3. Mean success ratio (averaged for ten runs) of e-space operators when using
random initialization (two upper rows) and heuristic initialization (two lower rows).
Results correspond to the ALARM network.
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Fig. 4. Mean success ratio (averaged for ten runs) of b-space operators when using
random initialization (upper row) and heuristic initialization (lower row). Results
correspond to the ALARM network.

It must also be noted that ReverseD plays an important role in helping
the networks size down appropriately, as indicated by the denser networks
obtained when this operator is removed [35]. This important role is also clear
in the case of traversing b-space –see Figure 4– where its removal results in
handicapped search capabilities as indicated by the poor results of EPNR
with respect to EPAR.

Table 1. Structure of the networks generated by EPNR and EPAR using heuristic
initialization (averaged for ten runs). From left to right in each case: number of
recovered undirected arcs, number of recovered directed arcs, and total number of
arcs.

EPNR EPAR
ALARM INSURANCE ALARM INSURANCE

r SU SD narcs SU SD narcs SU SD narcs SU SD narcs

0 2.4 17.8 66.0 4.9 15.4 53.3 3.8 32.8 50.2 6.4 24.5 47.5
2 3.4 34.1 50.9 7.3 23.6 48.5 3.7 38.5 48.5 7.4 25.9 46.7
4 3.4 35.3 51.9 6.0 25.6 47.4 3.9 38.0 48.0 9.9 27.2 46.6
7 3.2 34.2 52.7 5.9 23.8 48.0 4.0 39.4 46.7 9.4 27.9 46.2
10 3.0 34.6 54.0 8.3 24.5 47.3 4.0 40.5 46.3 10.0 28.2 46.2
∞ 3.0 32.4 53.6 6.9 23.7 48.1 3.8 35.0 48.7 7.9 25.9 46.7
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Table 2. Structure of the networks generated by EPQ using heuristic initialization
(averaged for ten runs). Interpretation is as before.

ALARM INSURANCE
SU SD narcs SU SD narcs

4.0 36.4 48.0 10.6 27.0 46.4

Tables 1 and 2 show the structural properties of the networks evolved us-
ing heuristic initialization. Two facts must be highlighted: firstly, the number
of recovered arcs (in the true equivalence class) is always bigger for EPAR;
also, networks tend there to be smaller (like in the case of EPQ). The best
run for ALARM recovers all but one of the arcs. For INSURANCE, the best
network has a Hamming distance of 11 with respect to the original one. From
an absolute point of view, the quality of these results is high, and comparable
to the state-of-the-art.

A final comment must be done regarding the somewhat hidden cost of
performing intra-class navigation, namely the fact that local score-updates
are required whenever a covered arc is reversed. Recall that, while the sum
of local scores

∑
σ(Xi,Πi) would remain unchanged, the inner terms would

change. That is, when reversing the covered arc Xi → Xj we would have

σ(Xi,Πi) + σ(Xj ,Πj) = σ(Xi,Πi ∪ {Xj}) + σ(Xj ,Πj \ {Xi}) , (1)

but each summand would be different in general (and hence they need being
computed in order to keep the consistency of the overall score, see [38] for
a related argument). Figure 5 shows the evolution of fitness for the first
70,000 such local evaluations. It turns out that EPAR(0) provides the best
tradeoff between computational cost and quality achieved. The difference is
remarkable for ALARM; in the case of INSURANCE, EPAR(∞) manages to
catch up with EPAR(0) at around 60,000 local evaluations. The remaining
settings of r result in slower convergence. Slightly better networks may be
attained at the end of the run, but each new network generated required a
larger computational effort.

6 Conclusions, Discussion, and Future Work

We have considered a variety of EP algorithms for learning Bayesian Net-
work graph structures from data. Our primary aim has been to investigate
the role of intra-class navigation in the enhanced AR and NR neighborhoods,
and the adequacy of the corresponding fitness landscapes for evolutionary
exploration. We have reproduced and confirmed in this new context previ-
ously reported phenomena such as the poor performance of EPNR(0) and
the usefulness of intra-class navigation in this case. Our assessment of the
behavior of EPAR indicates that the inter-class navigation capability fea-
tured by ReverseD dominates the situation though. Furthermore, the extra
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Fig. 5. Evolution of fitness in EPAR as a function of the number of local evalua-
tions. (Right) ALARM (left) INSURANCE.

cost due to intra-class navigation needs to be taken into account. As a result,
it might be profitable to disable this latter feature when using the enhanced
AR neighborhood, at least during the initial stages of evolution. After all,
it is only in the latter stages of the run when the algorithm is more likely
to be in a local optimum (or in the basin of attraction thereof), and the
increased connectivity provided by covered arc reversals may be more useful.
In earlier stages, the benefit would be probably overcome by its associated
computational cost. A related computational concern refers to r, the number
of covered arc reversals made at each step. Precisely because there appears to
be some uncertainty about the best values for this parameter, we believe that
the use of an adaptive (or even self-adaptive [39]) scheme for varying r across
the run may be highly interesting. This is a line for future developments.

There is also a huge potential for exploiting phenotypic information in
this context. Our current operators are essentially genotypic (all decisions
are fully randomized), and hence blind to quality. The usage of such informa-
tion can have a positive effect in the convergence properties of the learning
algorithms [11]. Confirming the results obtained in this work for these pheno-
typic operators, and indeed inquiring about their limits with respect to the
IB condition, is another appealing line of work.

Another interesting approach mimics the chain irreducibility requirement
in MCMC algorithms [1,40]. MCMC algorithms constitute a major refer-
ence for EP and other evolutionary algorithms in the graphical model induc-
tion arena [41,42]. The reason is perhaps best seen by noticing that, in the
multiple-chain case, valid jump proposal distributions can be advantageously
based on information from several individuals (chains), see e.g. [43]. The idea
is then close to the recombination aim of GA-based algorithms. It may be
suspected that insights provided in either area can transfer profitably to the
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other. Specifically, to encompass the basic ENR neighborhood in our simu-
lation, we can use algorithms that behave like EPNR with probability p < 1
only, jumping to e-space and following (selected operators in) EPQ with prob-
ability 1 − p. Perhaps the most useful operators InsertU and MakeV should
be given priority here, at least for the various initialization methods that we
have implemented. Again, parameter p can vary along the evolutionary run.

Switching to more practical matters, it is often acknowledged that, for
the purpose of data mining, not one but several good candidate graphs will
have to be produced. The idea is to first train a diverse set of BN models,
then isolate recurring features in these models. The significance of these fea-
tures (not only single edges but also more complex constructs like Markov
blankets, see below) can be assessed reliably, see e.g. [44]. This problem seems
also particularly prone to benefit from an evolutionary approach, since many
techniques have been proposed to maintain diversity in the population [10].
In [45], for example, speciation based on the so-called fitness-sharing tech-
nique is enforced in b-space. The basic similarity measure between DAGs is
based on the number of recovered, reversed and missing arcs. Several repre-
sentative models are extracted from the final population, and these models
are combined leading to more robust predictions.

Finally, it has been argued sometimes that, when the main goal is feature
extraction and classification, Markov blanket learning may be more appro-
priate (perhaps the only hope for scalability in some cases) than full BN
learning. Given a DAG G, the Markov blanket (or boundary, MB) of a given
variable X (with respect to G), say MB(X), is defined as the union of all
X’s parents, all X’s children, and all parents of X’s children. It is always the
case that X is conditionally independent of all other variables given MB(X).
Thus, if explaining and predicting the behavior of X is the primary concern,
then the graphical substructure depicting the dependencies between X and
variables in its MB is all we care about. This observation simplifies the prob-
lem considerably. For examples of techniques capable of searching for MB
directly and critical reviews of the literature on this subject, see the recent
contributions [15] and [46]. The authors of the latter paper also argue that,
conversely, full BN learning can be greatly facilitated by learning first each
MB separately. In a similar vein, Riggelsen [38] has recently suggested that a
MB-based MCMC approach improves upon the more usual, single-arc-based
variants. These ideas appear indeed likely to continue to play an important
role in future developments in the area.
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