
Asymptotic Analysis of Computational
Multi-Agent Systems

Aleksander Byrski1, Robert Schaefer1,4, Maciej Smo lka2, Carlos Cotta3,5

1AGH University of Science and Technology, Kraków, Poland
2Jagiellonian University, Kraków, Poland

3University of Málaga, Málaga, Spain
{olekb,schaefer}@agh.edu.pl, smolka@ii.uj.edu.pl, ccottap@lcc.uma.es

Abstract. A stationary Markov chain model of the agent-based com-
putation system EMAS is presented. The primary goal of the model is
better understanding the behavior of this class of systems as well as their
constraints. The ergodicity of this chain can be verified for the particular
case of EMAS, thus implying an asymptotic guarantee of success (the
ability of finding all solutions of the global optimization problem). The
presented model may be further adapted to numerous evolutionary and
memetic systems.

1 Motivation

Evolutionary algorithms (EAs) and multi-agent systems (MAS) are closely re-
lated paradigms. Among other similarities, they share conceptual elements such
as the usage of a pool of entities (individuals in the case of EAs, agents in the
case of MAS) which interact among themselves directly (via n-ary operators in
EAs, and using autonomous, proactive or reactive behaviors in MAS) or indi-
rectly (via modifications of the environment in MAS, and by e.g. coevolution,
archive-based strategies, etc. in EAs). Not surprisingly, cross-fertilization of both
paradigms has been attempted in the so-called agent-based computational sys-
tems (e.g. EMAS [3], AMAS [23], GCE [7]). In particular, EMAS (Evolutionary
Multi-Agent System introduced by Cetnarowicz et al. in [6]) have been shown to
be effective in solving difficult optimization tasks, e.g., optimization of neural-
network architectures, multi-modal optimization, multi-criteria optimization.

The connection of MAS and EAs is particularly clear in the case of memetic
algorithms (MA). It is customary – and in some sense based on good practical
reasons – to consider that a MA is an EA hybridized with some form of local
search (LS). This definition of MA was actually popularized by early works
such as [18], and paved the way for the vigorous development of optimization
algorithms based on this idea (exhibiting a remarkable record of success, check
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e.g. [8]). It is also true that seminal works on this topic had a wider perspective, in
which EAs endowed with LS was rather an appropriate incarnation of a MA than
a restrictive definition [14]. Under this wider interpretation of the MA paradigm,
a stronger relationship with multi-agent systems emerges. Indeed, a MA has been
sometimes defined (as early as in [17] – see also [15]) as a cooperative-competitive
strategy of optimizing agents. The use of the term agent here tries to emphasize
the fact that individuals are more than mere solution placeholders that passively
suffer the application of different variation and selection operations on them [16].
On the contrary they can be regarded as active actors in the search process,
intertwining periods of individual search/learning with periods of cooperation
and competition. While this interpretation remains compatible with classical MA
approaches, it also opens up the door to more complex strategies, e.g. individual
roles [1], different recombination behaviors [2], etc.

The relationship between multi-agent systems and memetic algorithms is
not limited to a simple source of algorithmic inspiration. On the contrary, it
can provide a useful means for improving the theoretical understanding of these
techniques. In this sense, and opposed to classical evolutionary strategies for
which qualitative formal models were introduced and intensively studied (see
e.g. [24], [21], [20]), it must be noted that there is still lack of them for most
complex, biologically-inspired heuristics.

Based on the results presented in [4, 22] we introduce a discrete, finite state-
space Markov chain as a model for EMAS. We also present a theorem of ergod-
icity of such a system. This feature in not so obvious in this case as in case of
simple genetic mechanisms, where the passage between two arbitrary states is
possible in a single step, if the mutation rate is strictly positive [24].

Such an analysis may ensure that the system is able to reach a population
containing an arbitrary minimizer in a finite number of steps. Moreover the
effective upper bound of step number may be evaluated. In addition, asymptotic
guarantee of success is satisfied [9, 19]. In the course of modelling a number of
constraints were indicated, leading to better understanding of the functioning of
these systems (e.g. synchronization schemes, probability distributions used and
topology of connections).

2 EMAS architecture and behavior

We will focus on a EMAS systems solving global optimization problems consist-
ing of finding all global minimizers arg min{FITN(x)}, x ∈ U where FITN :
U → R+, and U is a finite genetic universum #U = r < +∞.

Computational EMAS agents belong to the predefined finite set Ag one-to-
one mapped on set U × P , where P = {1, . . . , p} and p is assumed to be the
maximum number of agents contain the same genotype, so each agent aggen,n ∈
Ag is uniquely represented by its signature (gen, n) ∈ U × P .

Agents are assigned to locations Loc = {1, . . . , s}. The locations are linked
by channels along which agents may migrate from one location to another. The
topology of channels is determined by the symmetric relation Top ⊂ Loc2. We



assume that the connection graph ⟨Loc, Top⟩ is coherent and does not change
during the system evolution. Each agent possesses a variable parameter called
energy, its value is quantized and belongs to {0,∆e, 2 ·∆e, 3 ·∆e, . . . ,m ·∆e}.
The current value of the energy exhibits the maturity of agent in solving the
optimization problem, affecting its abilities (reproduction, cloning, migration)
(see [10]).

Let us introduce the set of three-dimensional, incidence and energy matrices
x ∈ X with s layers (corresponding to all locations) x(i) = {x(i, gen, n), gen ∈
U, n ∈ P}, i ∈ Loc. The layer x(i) will contain energies of agents in i-th location.
In other words, x(i, gen, k) > 0 means that the k-th clone of the agent containing
the gene gen ∈ U is active, its energy equals x(i, gen, k) and it is located in i-th
location.

We introduce the following coherency conditions:

– each layer x(i) contains at most qi values greater than zero, which denotes
the maximum capacity of the i-th location, moreover, the quantum of energy
∆e is lower or equal than total energy divided by the maximal number of
individuals that may be present in the system ∆e ≤ 1∑s

i=1 qi
what allows to

achieve maximal population of agents in the system,
– reasonable values of p should be greater or equal to 1 and less or equal to∑s

i=1 qi. We assume that p =
∑s

i=1 qi which assures that each configuration
of agents in locations is available, respecting the constrained total number
of active agents

∑s
i=1 qi. Increasing p over this value does not enhance the

descriptive power of the presented model,
– (·, j, k)-th column contains at most one value greater than zero, which ex-

presses that the agent with k-th copy of j-th genotype may be present in
only one location at a time, whereas other agents containing copies of j-th
genotype may be present in other locations,

– entries in the incidence and energy matrices are non-negative x(i, j, k) ≥
0, ∀ i = 1, . . . , s, j = 1, . . . , r, k = 1, . . . , p and

∑s
i=1

∑r
j=1

∑p
k=1 x(i, j, k) =

1, which means that the total energy contained in the whole system is con-
stant, equal to 1.

Gathering all these conditions, the set of three-dimensional incidence and
energy matrices may be described in the following way:

X =
{
x ∈ {0,∆e, 2 ·∆e, 3 ·∆e, . . . ,m ·∆e}s·r·p, ∆e ·m = 1,

s∑
i=1

r∑
j=1

p∑
k=1

x(i, j, k) = 1 and ∀ i = 1, . . . , s
r∑

j=1

p∑
k=1

[x(i, j, k) > 0] ≤ qi

and ∀j = 1, . . . , r, k = 1, . . . , p

s∑
i=1

[x(i, j, k) > 0] ≤ 1
}

(1)

where [·] denotes the value of the logical expression contained in the parentheses.
Note that the formula (1) implies that there must exist at least one agent in

the system i.e. at least one location is non-empty at a time.



EMAS may be modeled as the following tuple:

< U,Loc, Top,Ag, {agseli}i∈Loc, locsel, {LAi}i∈Loc,MA, ω,Act > (2)

where:

MA (master agent) is used to synchronize the work of the locations; it allows to
perform actions in particular locations. This agent is also used to introduce
necessary synchronization into the system.

locsel : X → M(Loc) is the function used by MA to determine which location
should be allowed to perform the next action.

LAi (local agent) is assigned to each location; it is used to synchronize the work
of computational agents present in its location, LAi chooses the computa-
tional agent and lets it evaluate a decision and perform the action, at the
same time asking MA whether this action may be performed.

agseli : X → M(U × P ) is a family of functions used by local agents to select
the agent that may perform the action, so every location i ∈ Loc has its own
function agseli. The probability agseli(x)(gen, n) vanishes when the agent
aggen,n is inactive in the state x ∈ X or it is present in other than i-th
location,

ω : X × U → M(Act) is the function used by agents for selecting actions from
the set Act; both these symbols will be described later.

Act is a predefined, finite set of actions.

Here and later M(·) stands for the space of probabilistic measures.
The population of agents is initialized by using introductory sampling. It

may be explained as a one-time sampling from X according to the predefined
probability distribution (possibly uniform) from M(X). Every agent starts its
work in EMAS immediately after being activated. At every observable moment
a certain agent on each location gains the possibility of changing the state of the
system by executing its action.

The function agseli is used by the Local Agent LAi to determine which agent
present on i-th location will be the next one to interact with the system. After
being chosen, the agent aggen,n chooses one of the possible actions according to
the probability distribution ω(x, gen). Notice the relationship of this probability
distribution with the concept of fine-grain schedulers introduced in the syntactic
model for memetic algorithms in [12].

Next, the agent applies to LAi for the permission to perform this action.
When the permission is granted, aggen,n checks whether the associated condition
is true, and if so, the agent performs the action. The agent suspends its work in
the system after performing the action which brings its energy to zero.

Master agent MA manages the activities of LAi allowing them to grant
permissions for their agents (thus relating to coarse-grain schedulers in [12]).
Each action α ∈ Act is the pair of families of random functions {δgen,nα }gen∈U,n∈P

and {ϑgen,n
α }gen∈U,n∈P where

δgen,nα : X → M({0, 1}) (3)



will denote the decision. The action α is performed with probability δgen,nα (1)
by agent aggen,n in state x ∈ X i.e. when the decision is undertaken. Moreover

ϑgen,n
α : X → M(X) (4)

defines the non-deterministic state transition caused by the execution of action
α by agent aggen,n. The trivial state transition

ϑnull : X → M(X) (5)

such that for all x ∈ X

ϑnull(x)(x′) =

{
1 if x = x′

0 otherwise
(6)

is performed with probability δgen,nα (x)(0), i.e. when decision δα is not under-
taken (δgen,nα (x) is evaluated as zero).

The value of the probability transition function for action α for the agent
containing the n-th copy of genotype gen being in the location l

ϱgen,nα : X → M(X) (7)

for the arbitrary current state x ∈ X and the next one x′ ∈ X is given by:

ϱgen,nα (x)(x′) = δgen,nα (x)(0) · ϑnull(x)(x′) + δgen,nα (x)(1) · ϑgen,n
α (x)(x′) (8)

Notice finally that it is formally possible to consider a very large (yet finite)
set Act, comprising all actions up to a certain description length (using a Gödel
numbering or any appropriate encoding). This implies that this set may be
implicitly defined by such an encoding, allowing much flexibility in the set of
actions available (a connection can be drawn with multimeme algorithms [11]).

The agents’ actions may belong to one of two distinct types:

– global – they change the state of the system in two or more locations, so
only one global action may be performed at a time,

– local – they change the state of the system inside one location respecting
only the state of local agents, only one local action for one location may be
performed at a time.

In the system governed by software agents there will be either a possibility of
performing many local or one global action at a time.

3 EMAS dynamics

At the observable moment at which EMAS takes state x ∈ X all agents in all
locations notify their local agents their intent to perform an action, all local
agents choose an agent using the distribution given by the agseli(x), i ∈ Loc
function and then notify the master agent of their intent to let perform an



action by one of their agents. The master agent chooses the location using the
probability distribution given by locsel(x).

The probability that in the chosen location i ∈ Loc the agent wants to
perform a local action is as follows:

ξi(x) =
∑

gen∈U

p∑
n=1

agseli(x)(gen, n) · ω(x, gen)(Actloc) (9)

The probability that the master agent will choose the location with the agent
intending to perform a local action is:

ζloc(x) =
∑
i∈Loc

locsel(x)(i) · ξi(x) (10)

Of course the probability of choosing a global action by the master agent is:

ζgl(x) = 1 − ζloc(x) (11)

If a global action has been chosen, the state transition is as follows:

τgl(x)(x′) =
∑
i∈Loc

locsel(x)(i) ∑
gen∈U

p∑
n=1

agseli(x)(gen, n)·

 ∑
α∈Actgl

ω(x, gen)(α) · ϱgen,nα (x)(x′)

 (12)

Let us state the set of action sequences containing at least one local action:

Act+1loc =

{
(α1, . . . , αs) ∈ Acts;

s∑
i=1

[αi ∈ Actloc] > 0

}
(13)

Let us define now the family of coefficients {µαi,geni,ni(x)}, i ∈ Loc, geni ∈
U, ni ∈ P, x ∈ X. If the location i is nonempty at the state x, then µαi,geni,ni(x)
is equal to the probability that in the i-th location agent aggeni,ni chooses action
αi:

µαi,geni,ni
(x) = agseli(x)(geni, ni) · ω(x, geni)(αi). (14)

Of course µαi,geni,ni(x) = 0 if agent aggeni,ni does not exist in location i at state
x, because agseli(x)(geni, ni) = 0 in this case. Moreover, we set µαi,geni,ni

(x) =
1 if location i is empty at state x. Next we introduce the multi-index:

ind =
(
α1, . . . , αs; (gen1, n1), . . . , (gens, ns)

)
∈ IND = Acts+1loc × (U × P )s.

(15)

The probability that at state x, in consecutive locations agents aggeni,ni

choose actions αi is given by:

µind(x) =
s∏

i=1

µαi,geni,ni(x) (16)



the transition function for the case of parallel executing of local actions is then:

τ loc(x)(x′) =
∑

ind∈IND

µind(x)(πind
1 ◦ , . . . , ◦πind

s )(x)(x′) (17)

where

πind
i (x) =

{
ϱgeni,ni
αi

(x), αi ∈ Actloc and the location i is nonempty
ϑnull, αi ∈ Actgl or the location i is empty.

(18)

It is possible to prove that the value of (πind
1 ◦, . . . , ◦πind

s )(x)(x′) does not de-
pend on the composition order because transition functions associated with local
actions commutate pairwise. The proof of this property in the discrete model is
similar to the proof in [22] for a continuous system state space, and is omitted
here due to space constraints.

The commutativity of local action validates the following observation:

Observation 1 The probability transition function for the parallel EMAS model
is given by formula

τ(x)(x′) = ζgl(x) · τgl(x)(x′) + ζloc(x) · τ loc(x)(x′) (19)

and formulas (9)–(18).

It is also easy to see that

Observation 2 The stochastic state transition of EMAS given by formula (19)
satisfies the Markov condition. Moreover, the Markov chain defined by these
functions is stationary.

4 Sample actions and asymptotic behavior

Let us consider a sample EMAS with the following set of actions:

Act = {get, repr, clo,migr} (20)

Due to space limitations we describe the actions informally, underlining only
the necessary conditions for the subsequent analysis of the systems’s ergodicity.
Complete formal descriptions of these actions leading to the probability transi-
tion functions (3) and (4) may be found in [4]. In the following (gen, n) stands for
the signature of a generic agent that attempts to execute the following actions:

get Decision δgen,nget for energy transfer is positive when there is at least one agent
more on the same location. Agent chooses randomly one of its neighbors
and during the meeting, the energy is exchanged between agents, what may
be considered somewhat as a tournament (see tournament selection [13]).
The direction of the energy flow is determined by a probability distribution
CMP : U × U → M({0, 1}) dependent on agents’ fitnesses and the current
state of the system. In the next state one of the agents receives a predefined
part of energy ∆e from its neighbor, which is assumed to satisfy ∆e ≤
(
∑s

i=1 qi)
−1.



repr Decision δgen,nrepr for reproduction is positive when the energy of the agent
performing the action is greater than a reproduction threshold erepr and
there is at least one agent more in the same location satisfying the same
energy condition. We assume that erepr ≤ 2∆e. These agents create an
offspring agent based on their solutions using a predefined mixing operator.
Part of the parents’ energy (e0 = n0·∆e, n0 is even) is passed to the offspring.

clo Decision δgen,nclo for cloning is based on checking the amount of agent’s en-
ergy only. An agent with enough energy strictly greater than ∆e, creates an
offspring agent based on its solution (applying a predefined mutation oper-
ator MUT : U → M(U)). Part of the parent’s energy ∆e is passed to the
offspring.

migr Decision δgen,nmigr is positive when an agent has enough energy greater than
emigr and there exists a location that is able to accept it (the number of
agents there is lower than its capacity). When these conditions are met the
agent is moved from its location to another. We assume, that emigr < s−1.

Theorem 1. Given the following assumptions:

1. The capacity of every location is greater than one, qi > 1, i = 1, . . . , s.
2. The graph of locations is connected.
3. Each active agent can be selected by its local agent with strictly positive

probability, so
∃ ιagsel > 0; ∀ i ∈ Loc,∀ gen ∈ U,∀ n ∈ P, ∀ x ∈ {y ∈ X; y(i, gen, n) > 0},
agseli(x)(gen, n) ≥ ιagsel.

4. The families of probability distributions being the parameters of EMAS have
the uniform, strictly positive lower bounds:
∃ ιω > 0; ∀ x ∈ X, gen ∈ U, α ∈ Act, ω(gen, x)(α) ≥ ιω,
∃ ιCMP > 0; ∀ gen, gen′ ∈ U, CMP (gen, gen′) ≥ ιCMP ,
∃ ιmut > 0;∀gen, gen′ ∈ U, MUT (gen)(gen′) ≥ ιmut,
∃ 0 < ιlocsel < 1;∀ x ∈ X,∀ j ∈ Loc, locsel(x)(j) ≥ ιlocsel.

We can construct a finite sequence of transitions between two arbitrarily chosen
system states which may be passed with strictly positive probability. Moreover
we can deliver the upper bound of the number of such transitions, which can be
effectively computed based on the system’s parameters.

The proof of the Theorem 1 is omitted in this paper because of its length and
strictly technical substance. It has already been completed and will be published
in an extended version.

Assumptions 1 and 2 allow to migrate agents to all locations that are not over-
populated (with a positive probability). The positive probability of performing
crucial actions (get, clo) changing energy and genotype is ensured by assump-
tions 3 and 4. The above stated properties make possible to define a generic path
between two arbitrary states of the system.

Notice that verifying the ergodicity is different than usually done for classical
genetic algorithms (see e.g. [24]), where all possible states of the system are
reachable within a single step, because of the characteristics of the mutation
operator.



Remark 1. Theorem 1 makes all states containing the extrema reachable in a
finite number of states, thus EMAS satisfies an asymptotic guarantee of success
[9], [19]. Moreover the Markov chain modelling EMAS (see equation (19)) is
ergodic.

5 Conclusions

We presented a discrete version of EMAS model (following the continuous ver-
sions of the model published in [4, 22]). The space of states of the system – Eq.
(1) – and the probability transition function – Eq. (19) – constitute a stationary
Markov chain.

Under assumptions of Theorem 1 an EMAS is able to reach the population
containing an arbitrary minimizer in a finite number of steps. The effective upper
bound for the number of steps required may also be evaluated. In addition,
asymptotic guarantee of success is satisfied [9, 19]. The properties mentioned
above make the Markov chain modelling EMAS ergodic. The ergodicity in the
case of EMAS is not as straightforward as in classical genetic algorithms (cf. the
works of Vose [24]) where any possible state of the system may be reached in
one step thanks to positive mutation rates.

In the course of modelling several constraints were indicated leading to better
understanding of the functioning of agent-based memetic systems (e.g. synchro-
nization schemes, probability distributions used and topology of connections).
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Z. Michalewicz, editors, Handbook of Evolutionary Computations. Oxford Univer-
sity Press, 1997.

21. G. Rudolph. Stochastic processes. In T. Bäck, D.B. Fogel, and Z. Michalewicz,
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