
ESTIMATION OF DISTRIBUTION ALGO-
RITHMS





ESTIMATION OF DISTRIBUTION ALGO-
RITHMS
A New Tool for Evolutionary Computation

Edited by

P. LARRAÑAGA
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Chapter 1

Adjusting Weights in Artificial Neural Networks
using Evolutionary Algorithms

Carlos Cotta, Enrique Alba
Department of Computer Science
University of Málaga
{ccottap, eat}@lcc.uma.es

R. Sagarna, P. Larrañaga
Department of Computer Science and Artificial Intelligence
University of the Basque Country
{ccbsaalr, ccplamup}@si.ehu.es

Abstract Training artificial neural networks is a complex task of great practical
importance. Besides classical ad-hoc algorithms such as backpropaga-
tion, this task can be approached by using evolutionary computation,
a highly configurable and effective optimization paradigm. This chap-
ter provides a brief overview of these techniques, and shows how they
can be readily applied to the resolution of this problem. Three popu-
lar variants of evolutionary algorithms –Genetic Algorithms, Evolution
Strategies and Estimation of Distribution Algorithms– are described
and compared. This comparison is done on the basis of a benchmark
comprising several standard classification problems of interest for neural
networks. The experimental results confirm the general appropriateness
of evolutionary computation for this problem. Furthermore, Evolution
Strategies seem particularly proficient techniques in this optimization
domain, being Estimation of Distribution Algorithms a competitive ap-
proach as well.

Keywords: Evolutionary Algorithms, Artificial Neural Networks, Supervised Train-
ing, Hybridization
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2 ESTIMATION OF DISTRIBUTION ALGORITHMS

1. Introduction
Artificial Neural Networks (ANNs) are computational models based on par-

allel processing (McClelland and Rumelhart, 1986). Essentially, an ANN can
be defined as a pool of simple processing units which communicate among
themselves by means of sending analog signals. These signals travel through
weighted connections between units. Each of these processing units accumu-
lates the inputs it receives, producing an output according to an internal ac-
tivation function. This output can serve as an input for other units, or can
be a part of the network output. The interest of ANNs resides in the very
appealing properties they exhibit, such as adaptivity, learning capability, and
ability to generalize. Nowadays, ANNs have a wide spectrum of applications
ranging from classification to robot control or vision (Alander, 1994).

The rough description of ANNs given in the previous paragraph provides
some clues on the design tasks involved in the application of ANNs to a par-
ticular problem. As a first step, the architecture of the network has to be
decided. Basicly, two major option can be considered: feed-forward networks
and recurrent networks. The former model comprises networks in which the
connections are strictly feed-forward, i.e., no unit receives input from a unit
to which the former sends its output. The latter model comprises networks in
which feedback connections are allowed, thus making the dynamical properties
of the network turning to be important. In this work we will concentrate on
the first and simpler model, feed-forward networks. To be precise, we will con-
sider the so-called multilayer perceptron (Rosenblatt, 1959), in which units are
structured into ordered layers, being connections allowed only between adjacent
layers.

Once the architecture of the ANN is restricted to that of a multilayer percep-
tron, some parameters such as the number of layers, and the number of units
per layer must be defined. After having done this, the last step is adjusting
the weights of the network, so as to make it produce the desired output when
confronted with a particular input. This process is known as training the ANN
or learning the network weights1. We will focus on the learning situation known
as supervised training, in which a set of current-input/desired-output patterns
is available. Thus, the ANN has to be trained to produce the desired output
according to these examples.

The most classical approach to supervised training is a domain-dependent
technique known as Backpropagation (BP) (Rumelhart et al., 1986). This al-
gorithm is based on measuring the total error in the input/output behaviour of
the network, calculating the gradient of this error, and adjusting the weights in
the descending gradient direction. Hence, BP is a gradient-descent local search
procedure. This implies that BP is subject to some well-known problems such
as the existence of local-minima in the error surface, or the non-differentiability
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of the weight space. Different solutions have been proposed to this problem,
resulting in several algorithmic variants, e.g., see (Silva and Almeida, 1990).
A completely different alternative is the use of evolutionary algorithms for this
training task.

Evolutionary algorithms (EAs) are heuristic search techniques loosely based
on the principles of natural evolution, namely adaptation and survival of the
fittest. These techniques have been shown to be very effective in solving hard
optimization tasks with similar properties to the training of ANNs, i.e., prob-
lems in which gradient-descent techniques get trapped into local minima, or are
fooled by the complexity and/or non-differentiability of the search space. This
work will provide a gentle introduction to the use of these techniques for the
supervised training of ANNs. To be precise, this task will be tackled by means
of three different EA models, namely Genetic Algorithms (GAs), Evolution
Strategies (ESs), and Estimation of Distribution Algorithms (EDAs).

The remainder of the chapter is organized as follows. Section 2. addresses
the application of these techniques to the training of an ANN. This section gives
a brief overview on the classical BP algorithm, in order to clarify the difference
and distinctiveness of the EA approach, subsequently described. Some basic
differences and similarities in the application of the several variants of EAs
mentioned to the problem at hand are illustrated in this section too. Next, an
experimental comparison of these techniques is provided in Section 3. Finally,
some conclusions and directions for further developments are outlined in Section
4.

2. An Evolutionary Approach to ANN Training
As mentioned in Section 1, this section is intended to provide an overview

of an evolutionary approach to weight adjusting in ANNs. This is done in
Subsections 2.2 and 2.3. Previously, a classical technique for this task, the
BP algorithm, is described in Subsection 2.1. This description is important
for the purposes of a further combination of both –evolutionary and classical–
approaches.

2.1 The BP algorithm

It has been already mentioned that the BP algorithm is based on determining
the descending gradient direction of the error function of the network, adjusting
the weights accordingly. It is thus necessary to define the error function in the
first place. This function is the summed squared error E defined as follows:

E =
1
2

∑

1≤p≤m

Ep =
1
2

∑

1≤p≤m

∑

1≤o≤no

(dp
o − yp

o)2, (1.1)
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where m is the number of patterns, no the number of outputs of the network,
dp

o is the desired value of the o-th output in the p-th pattern, and yp
o is the actual

value of this output. This actual value is computed as a function of the total
input sp

o received by the unit, i.e.,

yp
o = F (sp

o) = F (
∑

ur→uo

wroy
p
r ), (1.2)

where F is the activation function on the corresponding unit, and r ranges
across the units from which unit o receives input.

The gradient of this error function E with respect to individual weights is

∂E

∂wij
=

∑

1≤p≤m

∂Ep

∂wij
=

∑

1≤p≤m

∂Ep

∂sp
j

∂sp
j

∂wij
=

∑

1≤p≤m

∂Ep

∂sp
j

yp
i . (1.3)

By defining δp
j = −∂Ep

∂sp
j
, the weight change is

∆wij =
∑

1≤p≤m

∆pwij =
∑

1≤p≤m

γδp
j yp

i , (1.4)

where γ is a parameter called learning rate.
In order to calculate the δp

j terms, two situations must be considered: the
j-th unit being an output unit or an internal unit. In the former case,

δp
j = (dp

j − yp
j )F ′(sp

j ) (1.5)

In the latter case, the error is backpropagated as follows:

δp
j = −∂Ep

∂sp
j

= −∂Ep

∂yp
j

∂yp
j

∂sp
j

= −∂Ep

∂yp
j

F ′(sp
j ). (1.6)

The term ∂Ep

∂yp
j

can be developed as

∂Ep

∂yp
j

=
∑

uj→ur

∂Ep

∂sp
r

∂sp
r

∂yp
j

=
∑

uj→ur

∂Ep

∂sp
r

wjr = −
∑

uj→ur

δp
rwjr, (1.7)

where r ranges across the units receiving input from unit j. Thus,

δp
j = F ′(sp

j )
∑

uj→ur

δp
rwjr. (1.8)

One of the problems of following this update rule is the fact that some
oscillation can take place were γ large. For this reason, a momentum term α is
added, so

∆wij(t + 1) =
∑

1≤p≤m

γδp
j yp

i + α∆wij(t). (1.9)
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This modification notwithstanding, the BP algorithm is still sensitive to the
ruggedness of the error surface, being often trapped into local optima. Hence,
the necessity of alternative search techniques.

2.2 The Basic Evolutionary Approach

EAs can be used for adjusting the weights of an ANN. This approach is
relatively popular, dating back to late 80s – e.g., see (Caudell and Dolan,
1989; Montana and Davis, 1989; Whitley and Hanson, 1989; Fogel et al., 1990;
Whitley et al., 1990)– and constituting nowadays a state-of-the-art tool for
supervised learning. The underlying idea is making individuals represent the
weights of the ANN, using the network error function as a cost function to be
minimized (alternatively, an accuracy function such as the number of correctly
classified patterns could be used as a fitness function to be maximized; this
approach is rarely used though). Some general considerations must be taken
into account when using an evolutionary approach to ANN training. These are
commented below.

The first topic that has to be addressed is the representation of solutions.
In this case, it is clear that the phenotype space F is Rk, where R ⊂ R
is a closed interval [min,max], and k is the number of weights of the ANN
being trained, i.e., solutions are k-dimensional vectors of real numbers in the
range [min,max]. This phenotype space must be appropriately translated to
a genotype space G which will depend on the particulars of the EA used. In
this work we will consider the linear encoding of these weights. Thus, G ≡
Gk

w, i.e, each weight is conveniently encoded in an algorithm-dependent way;
subsequently, the genotype is constructed by concatenating the encoding of
each weight into a linear string.

This linear encoding of weights raises a second consideration, the distribution
of weights within the string. This distribution is important in connection with
the particular recombination operator used. If this operator breaks the strings
into large blocks using them as units for exchange (e.g., one-point crossover),
this distribution might be relevant. On the contrary, using a recombination
operator that breaks the string into very small blocks (e.g., uniform crossover)
makes the distribution be irrelevant. A good piece of advice is grouping together
the input weights for each unit. This way, the probability of transmitting them
as a block is increased, in case an operator such as one-point crossover were
used. Obviously, recombination is not used in some EAs, e.g., in EDAs, so this
consideration should be rendered mute in such a situation.

2.3 Specific EA Details

The basic idea outlined in the previous subsection can be implemented in a
variety of ways depending upon the particular EA used. We will now discuss
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Figure 1.1 The weights of an ANN are encoded into a linear binary string in GAs,
or into a 2k-dimensional real vector in ESs (k weights plus k stepsizes). The EDA
encoding is similar to that of the ES, excluding the stepsizes, i.e., a k-dimensional
real vector.

these implementation details for the EA models mentioned in the previous
section, namely, GAs, ESs and EDAs.

2.3.1 Genetic Algorithms. GAs are popular members of the evolu-
tionary-computing paradigm. Initially conceived by Holland (Holland, 1975),
these techniques constitute nowadays the most widespread flavor of EAs. In
the context of traditional GAs, the encoding of solutions is approached via
binary strings. More precisely, m bits are used to represent each single weight;
subsequently, the k m-bit segments are concatenated into a `-bit binary string,
` = k ·m. This process is illustrated in Fig. 1.1.

This encoding of the network weights raises a number of issues. The first
one is the choice of m (the length of each segment encoding a weight). It is
intuitively clear that a low value of m would induce a very coarse discretization
of the allowed range for weights, thus introducing oscillations and slowing down
convergence during the learning process. On the contrary, too large a value
for m would result in very long strings, whose evolution is known to be very
slow. Hence, intermediate values for m seem to be appropriate. Unfortunately,
such intermediate values seem to be problem dependent, sometimes requiring
a costly trial-and-error process. Alternatively, advanced encoding techniques
such as delta coding (Whitley et al., 1991) could be used, although it has to be
taken into account that this introduces an additional level of complexity in the
algorithm.

A related issue is the encoding mechanism for individual weights, i.e., pure bi-
nary, Gray-coded numbers, magnitude-sign, etc. Some authors have advocated
for the use of Gray-coded numbers (Whitley, 1999) on the basis of theoretical
studies regarding the preservation of some topological properties in the result-
ing fitness landscape (Jones, 1995). However, the suitability of such analysis to
this problem is barely understood. Furthermore, the disruption caused by clas-
sical recombination operators, as well as the effects of multiple mutations per
segment being performed (a usual scenario) will dilute with high probability
the advantages (if any) of this particular encoding scheme. Hence, no preferred
encoding technique can be distinguished in principle.

2.3.2 Evolution Strategies. The ES (Rechenberg, 1973; Schwefel,
1977) approach is somewhat different from the GA approach presented in the
previous subsection. As a matter of fact, the relative intricacy of deciding the
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representation of the ANN weights in a genetic algorithm contrasts with the
simplicity of the ES approach. In this case, each solution is represented as it
is, a k-dimensional vector of real numbers in the interval [min,max] (see Fig.
1.1)2.

Associated to each weight wi, a stepsize parameter σi for performing Gaus-
sian mutation on each single weight is included3. These stepsizes undergo evo-
lution together with the parameters that constitute the solution, thus allowing
the algorithm to self-adapt the way the search is performed.

Notice also that the use of recombination operators (let alone positional
recombination operators) is often neglected in ESs, thus making irrelevant the
distribution of weights inside the vector.

Some works using ESs in the context of ANN training can be found in
(Wienholt, 1993; Berlanga et al., 1999a; Berlanga et al., 1999b).

2.3.3 Estimation of Distribution Algorithms. EDAs, intro-
duced by (Mühlenbein and Paaß, 1996), constitute a new tool for evolutionary
computation, in which the usual crossover and mutation operators have been re-
placed by the estimation of the joint density function of the individuals selected
at each generation, and the posterior simulation of this probability distribution,
in order to obtain a new population of individuals. For details about different
approaches the reader can consult Chapter 3 in this book.

When facing the weighting learning problem in the field of ANNs, discrete
as well as continuous EDAs may constitute effective approaches to solve it since
this problem can be viewed as an optimization problem.

If discrete EDAs are used to tackle the problem, then the representation of
the individuals would be similar to the one previously explained for GAs. On
the other hand, if continuous EDAs are considered, then the representation
would be analogous to one used by ESs. In the last case the representation
is even simpler than for evolutionary strategies as no mutation parameter is
required.

Works where EDA approaches have been applied to evolve weights in ar-
tificial neural networks can be consulted in (Baluja, 1995; Galić and Höhfeld,
1996; Maxwell and Anderson, 1999; Gallagher, 2000; Zhang and Cho, 2000).

2.3.4 Memetic Algorithms. Besides the standard operators used
in each of the EA models discussed above, it is possible to consider additional
operators adapted for the particular problem at hand. It is well-known –and
supported both by theoretical (Wolpert and Macready, 1997) and empirical
(Davis, 1991) results– that the appropriate utilization of problem-dependent
knowledge within the EA redounds to highly effective algorithms. In this case,
this addition of problem-dependent knowledge can be done by means of a local
search procedure specifically designed for ANN training: the BP algorithm.
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The resulting combination of an EA and BP can be described as a hybrid or
memetic (Moscato, 1999) algorithm.

The BP algorithm can be used in combination with an EA in a variety of
ways. For example, an EA has been utilized in (Gruau and Whitley, 1993) to
find the initial weights used in the BP algorithm for further training. Another
approach is using BP as a mutation operator, that is, as a procedure for mod-
ifying a solution (Davis, 1991). Due to the fact that BP is a gradient-descent
algorithm, this mutation is ensured to be monotonic in the sense that the mu-
tated solution will be no worse that the original solution. However, care has to
be taken with respect to the amount of computation left to the BP operator.
Despite BP can produce better solutions when executed for a longer time, it
can fall within a local optimum, being the subsequent computational effort use-
less; moreover, even when BP steadily progressed, the amount of improvement
could be negligible with respect to additional overhead introduced. For these
reasons, it is preferable to keep the BP utilization at a low level (the exact
meaning of “low level” is again a matter of the specific problem being tackled,
so no general guideline can be given).

3. Experimental Results
This section provides an empirical comparison of different evolutionary ap-

proaches for training ANNs. The details of these approaches, as well as a
description of the benchmark used are portrayed in Subsection 3.2. Next, the
results of the experimental evaluation of these techniques are presented and
analyzed in Subsection 3.3.

3.1 ANNs and Databases

The algorithms described in the previous section have been confronted with
the supervised training of three different ANNs. Each of these ANNs has
a different architecture, and is fed with different databases. These are the
following:

KILN: This database corresponds to the fault detection and diagnosis of
an industrial lime kiln (Ribeiro et al., 1995). There are 70 patterns in this
database, each one comprising 8 descriptive attributes, and its ascription
to one out of 8 eight different classes. The ANN architecture used in this
case is 8-4-8.

ECOLI: This database corresponds to the prediction of protein localiza-
tion sites in eukaryotic cells (Nakai and Kanehisa, 1992). There are 336
patterns in this database, each one comprising 8 descriptive attributes,
and its ascription to one out of 8 eight different classes. The ANN archi-
tecture used in this case is 8-4-2-8.
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BC: This database corresponds to the diagnosis of breast cancer (Man-
gasarian and Wolberg, 1990). There are 683 patterns in this database,
each one comprising 9 descriptive attributes, and one Boolean predictive
attribute (‘malignant’ or ‘benign’). The ANN architecture used in this
case is 9-4-3-1.

The weight range for each of the ANNs trained is [-10,10]. The sigmoid
function F (x) = (1 + e−x)−1 has been utilized as the activation function of all
units.

3.2 The Algorithms

The parameterization of the GA for these problems is as follows: populationSize

= 100, σ = Roulette-Wheel, ψ = Steady-state, crossoverOp= Uniform-Crossover
(pc = 1.0, 80% bias to the best parent), mutationOp = Bit-Flip (pm = 1/`),
m = 16 bits per weight.

As to the ES, the parameterization is even simpler: a standard (1,10)-ES
without recombination, and using non-correlated mutations has been utilized.
The stepsizes are mutated following the guidelines shown in (Bäck, 1996), i.e.,
a global learning rate τ = 1/

√
2n, and a local learning rate τ ′ = 1/

√√
2n.

Two instances of the EDA paradigm have been used to carry out the ex-
periments. The difference between them corresponds to the way in which the
factorization of the joint density function of selected individuals has been done.
In the case that the factorization is done as a product of univariate marginal
densities, we obtain the UMDAc. If the joint density is factorized as a chain
that considers statistics of order two, we refer to the algorithm as MIMICc. For
more information about these algorithms see (Larrañaga, 2001). In the EDAs
used in the experiments the number of simulated individuals at each generation
was 250. The best half of the population was selected to perform the learning
of the joint probability density function.

For any of the three basic algorithms (GAs, ESs, and EDAs), a maximum
number of 50.000 RMSE (rooted mean square error4) evaluations across the
whole training set is allowed. These algorithms have been hybridized with
the backpropagation algorithm as well. This is done by training each network
during 10 epochs, using the parameters γ = .1, and α = .5.

3.3 Analysis of Results

The experiments have been carried out in two different scenarios. In the first
one, all patterns within each database have been utilized for training purposes.
The RMSE has been used as the performance measure in this case. In the
second scenario, 5–fold cross–validation has been performed. The performance
measures in this case are the average RMSE for test patterns, and the per-
centage of correctly classified test patterns. To determine whether a pattern
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Table 1.1 Results obtained with the BC database.

Algorithm error–training error–test–5CV per–test–5CV

BP 0.4550±0.0324 0.2244±0.0074 63.2650±2.9311

GA 0.1879±0.0117 0.1125±0.0062 90.8676±1.1248
ES 0.1104±0.0017 0.0776±0.0039 95.8565±0.4529
UMDAc 0.1184±0.0081 0.0746±0.0035 95.2353±0.4609
MIMICc 0.1181±0.0091 0.0753±0.0042 95.0735±0.5892

GA + BP 0.3648±0.0246 0.1817±0.0059 71.3824±3.0779
ES + BP 0.1777±0.0266 0.0952±0.0098 93.7189±1.2528
UMDAc + BP 0.3081±0.0259 0.2747±0.0100 51.3529±3.4916
MIMICc + BP 0.3106±0.0018 0.2659±0.0206 54.2206±7.2556

has been correctly classified, the Boolean nature of desired output is exploited.
To be precise, the actual activation values for each output unit are saturated
to the closest Boolean value, and then compared to the desired output. If all
saturated actual outputs match the desired output, the pattern is considered
correctly classified.

Tables 1.1, 1.2 and 1.3 summarize the experimental results obtained. First of
all, a general inspection at the column showing the percentage of correctly clas-
sified test patterns reveals an evident hardness-ranking: the easiest database
is BC, and the hardest one is KILN. This particular ranking can be due to
several factors. On one hand, it is clear that the saturation criterion used to
determine whether a pattern has been correctly classified might be advanta-
geous for BC, since just one output-per-pattern exists. On the other hand, the
network architecture is more complex (and hence the ANN is more adaptable)
in BC and ECOLI than in KILN. Finally, KILN has lowest number of patterns,
a drawback a priori for learning to generalize. Actually, this hardness-ranking
coincides with the ordering of databases according to their size (smallest is
hardest).

Focusing in the error-training column, it can be seen that both ESs and
EDAs offer the best results in quality and stability, the former being slightly
better. It is not surprising that these two models are precisely the ones using
real-coded representation of weights. Unlike the binary representation, this
representation is less prone to abrupt changes in weight values5. This allows a
better exploitation of any gradient information that might be present. Notice
that the population-based search performed by these techniques makes it much
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Table 1.2 Results obtained with the ECOLI database.

Algorithm error–training error–test–5CV per–test–5CV

BP 0.2584±0.0051 0.1289±0.0017 8.3333±6.3909

GA 0.1968±0.0165 0.1001±0.0038 47.8308±7.8949
ES 0.1667±0.0085 0.0891±0.0027 65.8929±2.5301
UMDAc 0.1830±0.0067 0.0808±0.0022 58.5970±5.9286
MIMICc 0.1778±0.0134 0.0802±0.0018 58.5075±4.8153

GA + BP 0.3004±0.0126 0.1522±0.0040 8.0398±5.9927
ES + BP 0.1925±0.0202 0.0939±0.0019 53.5417±4.2519
UMDAc + BP 0.2569±0.0069 0.1593±0.0011 9.8209±6.9430
MIMICc + BP 0.2587±0.0064 0.1585±0.0010 10.4179±7.3287

Table 1.3 Results obtained with the KILN database.

Algorithm error–training error–test–5CV per–test–5CV

BP 0.3334±0.0011 0.1664±0.0003 0±0

GA 0.2379±0.0112 0.1229±0.0040 10.7619±5.3680
ES 0.2361±0.0043 0.1243±0.0023 19.7143±5.2511
UMDAc 0.2398±0.0025 0.1132±0.0002 6.1429±3.1623
MIMICc 0.2378±0.0077 0.1132±0.0002 8.4286±3.6546

GA + BP 0.3202±0.0392 0.1686±0.0076 4.5714±4.0301
ES + BP 0.2367±0.0074 0.1241±0.0039 8.2857±5.1199
UMDAc + BP 0.2760±0.0059 0.1437±0.0058 2.2857±2.4467
MIMICc + BP 0.2751±0.0086 0.1420±0.0044 3.1429±3.3537
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more unlikely getting trapped into local optima (this is specifically true in the
non-elitist ES model used), and allows a better diversification of the search.

Moving to the 5CV columns, the results are fairly similar: again ESs and
EDAs yield resembling results, generally better than GAs. An interesting fact
that it is worth mentioning is the superiority of EDAs over ESs in test error, and
the superiority of the latter in the percentage of correctly classified patterns.
This might indicate a difference in the underlying search progress. Neverthe-
less, more extensive results would be required in order to extract convincing
conclusions.

Notice also that the hybrid models of EAs and BP perform worse than
non-hybridized EAs. This can be due to several reasons. First of all, it was
mentioned before that the balance of computation between BP and EAs is a
very important factor. The parameterization chosen in this work might have
been inadequate in this sense. Also, it can not be ruled out that different results
would be obtained, were the BP parameters γ and α given different values.

A deeper analysis of the results was done by testing the null hypothesis
that stated that the results achieved by some groups of algorithms followed the
same density distribution. For this task the non–parametric Kruskal–Wallis
and Mann–Whitney tests were used. This analysis was carried out with the
statistical package S. P. S. S. release 10.0.6. The results were as follows:

Between no memetic algorithms. Using the Kruskal–Wallis test, we tested
the null hypothesis that the results obtained by GA, ES, UMDAc and
MIMICc follow the same density distribution obtaining that, for the three
databases and the three parameters (error–training, error–test–5CV and
per–test-5CV), the differences were statistically significant (p < 0.05) ex-
cept for the error–training parameter in the KILN database (p = 0.5743).

Between memetic algorithms. Comparing the density distributions fol-
lowed by the results of GA+BP, ES+BP, UMDAc+BP and MIMICc+BP
by the Kruskal–Wallis test, we obtained that there were statistically sig-
nificant differences (p < 0.05) in the three databases and for the three
parameters.

Between one no memetic algorithm and its corresponding memetic algo-
rithm. We also compared the differences in the behavior of the no memetic
algorithms and their corresponding memetic ones, that is, GA vs GA+BP,
ES vs ES+BP, UMDAc vs UMDAc+BP and MIMICc vs MIMICc+BP.
Using the Mann–Whitney test we obtained that for the comparisons be-
tween GA vs GA+BP, UMDAc vs UMDAc+BP and MIMICc vs MIMICc+BP
the differences were statistically significant (p < 0.05). When comparing
ES vs ES+BP we obtain that the differences were not statistically signifi-
cant for the error–training (p = 0.6305) and error–test–5CV (p = 0.9118)
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Figure 1.2 Convergence plot of different EAs on the KILN database.

parameters in the KILN database, maintaining the significativity in the
differences (p < 0.05) in the rest of the databases and parameters.

In the line of the above remarks about parameterization, it is also interesting
to consider the situation in which a larger number of RMSE calculations are
allowed. To be precise, the convergence properties of any of these algorithms
is concern arousing. A final experiment has been done to shed some light on
this: the convergence in a long (2 · 105 RMSE calculations) run of the differ-
ent algorithms considered has been compared. The results are shown in Fig.
1.2. Focusing first in the leftmost plot (corresponding to pure evolutionary ap-
proaches) it is evident the superiority of ESs in the short term (≤ 104 RMSE
calculations). In the medium term (∼ 5 · 104 RMSE calculations), UMDAc

emerges as a competitive approach. In the long term (∼ 105 RMSE calcula-
tions), UMDAc yields the best results, being the remaining techniques fairly
similar in performance. From that point on, there is not much progress, ex-
cept in the GA case, in which an abrupt advance takes place around 1.5 · 105

RMSE calculations. Due to this abruptness, it would be necessary to carry on
additional tests to determine the likelihood of such an event.

The scenario is different in the case of the hybridized algorithms. These
techniques seem to suffer from premature convergence to same extent (in a
high degree in the case of the GA, somewhat lower in the case of the EDAs,
and not so severely in the case of the ES). As a consequence, only ES and
MIMICc can advance beyond the 104-RMSE-calculation point. In any case,
and as mentioned before, more tests are necessary in order to obtain conclusive
results.
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4. Conclusions
This work has surveyed the utilization of EAs for supervised training in

ANNs. It is a remarkable fact that EAs remain a competitive technique for
this problem, despite their apparent simplicity. There obviously exist very spe-
cialized algorithms for training ANNs that can outperform these evolutionary
approaches but, in the same line of reasoning, it is foreseeable that more sophis-
ticated versions of these techniques could again constitute highly competitive
approaches. As a matter of fact, the study of specialized models of EAs for
this domain is a hot topic, continuously yielding new encouraging results, e.g.,
see (Castillo et al., 1999; Yang et al., 1999).

Future research can precisely be directed to the study of such sophisticated
models. There are a number of questions that remain open. For example, the
real usefulness of recombination within this application domain is still under
debate. Furthermore, and granting this usefulness, the design of appropriate
recombination operators for this problem is an area in which a lot of work
remains to be done. Finally, the lack of theoretical support of some of these
approaches (a situation that could alternatively be formulated as their excessive
experimental bias) is a problem to whose solution many efforts have to be
directed.
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Notes
1. Network weights comprise both the previously mentioned connection weights, as well

as bias terms for each unit. The latter can be viewed as the weight of a constant saturated
input the corresponding unit always receives.

2. Although it is possible to use real-number encodings in GAs, such models still lack
the strong theoretical corpus available for ESs (Beyer, 1993; Beyer, 1995; Beyer, 1996). Fur-
thermore, crossover is the main reproductive operator in GAs, so it is necessary to define
sophisticated crossover operators for this representation (Herrera et al., 1996). Again, ESs
offer a much simpler approach.

3. Some advanced ES models also include covariance values θij to make all perturbations
be correlated. We have not considered this possibility in this work since we intended to keep
the ES approach simple. On the other hand, notice that the number of these covariance
values is O(n2), where n is the number of variables being optimized. Thus, very long vectors
would have been required in the context of ANN training.

4. RMSE =
√

2E
mno

.

5. Of course, this also depends on the particular operators used in the algorithm. Re-
combination is a potentially disturbing operator in this sense. No recombination has been
considered in these two models though.
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