
Evolutionary Computation: Challenges and duties

Carlos Cotta1 and Pablo Moscato2

1Dept. Lenguajes y Ciencias de la Computación, Universidad de Málaga
ETSI Informática (3.2.49), Campus de Teatinos, 29071-Málaga, Spain

ccottap@lcc.uma.es

2School of Electrical Engineering and Computer Science,
University of Newcastle,

Callaghan, NSW, 2308 Australia

moscato@densis.fee.unicamp.br

14th January 2003

Abstract

Evolutionary Computation (EC) is now a few decades old. The impressive devel-
opment of the field since its initial conception has made it one of the most vigorous
research areas, specifically from an applied viewpoint. This should not hide the ex-
istence of some major gaps in our understanding on these techniques. In this essay
we propose a number of challenging tasks that –according to our opinion– should be
attacked in order to fill some of these gaps. They mainly refer to the theoretical basis
of the paradigm; we believe that an effective cross-fertilization among different areas
of Theoretical Computer Science and Artificial Intelligence (such as Parameterized
Complexity and Modal Logic) is mandatory for developing a new corpus of knowledge
about EC.

1 Introduction

On July 2, 2002, we made several queries using one of the most popular databases
for retrieval of research publications, the Web of Science1. Undoubtedly, one of
the best jewels of the crown of Theoretical Computer Science is the theory of NP -
completeness [18], so we thought that it would be relevant to identify how many papers
have been published and catalogued in this database that include either the terms ‘NP-
hard’ or ‘NP-complete’ in either the title or the abstract or even as a keyword. It has
been reported elsewhere that “thousands” of problems have been already catalogued
as NP -hard, so we thought that this search would at least help to indirectly quantify
the presence of NP -completeness theory in the scientific and technological literature.
Surprisingly for us, only 4,111 documents contained at least one of these terms. We
expected this number to be larger provided the significance and widespread usefulness
of this classification.

This result is curious, we hoped to get a larger figure, since, for comparison pur-
poses, the same database retrieved 1,361 documents containing either ‘salesman prob-
lem’ or ‘salesperson problem’ , in general referring to a particular problem member of
the NP Optimization class (the traveling salesman problem, Min TSP) .

1http://www.isinet.com

1

Regarding the current use of “single-agent” metaheuristic optimization methods,
two of them take the lead with “Simulated Annealing” [24] (4,676) and “Tabu Search”
[20] (856). These metaheuristics have been introduced at least one decade after the
theory of NP -completeness and they are widely used in practice. Noting that any
metaheuristic method turns into a heuristic when applied to a particular problem, it
is also relevant to query for “heuristic” or “heuristics” giving an impressive number
of 15,933 documents in the database, most of them on algorithmic approaches to solve
a problem modeled in formal mathematical terms.

There are many possible interpretations for the results of these database queries,
and each of these interpretations is the amalgamation of a number of factors and con-
jectures. The reader may agree with us in that the great success of metaheuristics
in solving in practice many hard optimization problems is certainly one of the cir-
cumstances to take into account. In our opinion, a subtle shift in research focus is
also a major factor in this result. More precisely, it may be that the relative weight
of applied research (recall that most of the works dealing with metaheuristics are of
applied nature) has increased with respect to fundamental research. The wide avail-
ability of computing resources is crucial in this sense: testing and comparing different
approaches for solving a problem can be much more amenable than complex mathe-
matical analysis. This philosophy could be summarized in “try to get probably good
solutions to your problem, for provably good solutions are overwhelmingly hard to ob-
tain”. For most problem domains, we should take extreme care in order to define what
can be a challenging instance, since it may be extremely easy to find optimal solutions
[25], biasing the chosen scenario favoring exact methods (see the discussion in [3]).

While the lack of a proper mathematical analysis is not something to be inherently
criticized from a scientific point of view, it is true that the lack of solid theoretical
basis for most metaheuristics will be a remora, jeopardizing their successful utilization
in the 21st Century. Quoting Lewis and Papadimitriou [27]:

“Explaining and predicting the impressive empirical success of some of these
algorithms is one of the most challenging frontiers of the theory of compu-
tation today.”

Indeed, developing formal theories for grasping the optimization dynamics of these
algorithms, and to devise appropriate metaheuristics for solving specific problems
appear as the major challenges researchers have to face. This is specifically true in
the field of evolutionary algorithms [2] (EAs), one of the metaheuristics families with
stronger impetus, yet whose foundation-knowledge corpus remains very incomplete.

In this essay, we will try to identify some of the principal challenges whose solution
we believe may constitute important milestones for EA development. Each of these
challenges will be described in a different section. It must be noted that their num-
bering is not intended to represent any relevance order. On the contrary, the reader
is invited to rank them according to his/her particular vision of the field.

2 Challenge #1: Hard problems for the paradigm –
Epistasis and Parameterized Complexity

It is absolutely necessary to identify and understand the relative “hardness” of
finding appropriate algorithms for specific problems, in particular with respect to the
computational complexity classes to which the problems belong. We believe that
it would be a better attitude, particularly toward building a bridge with Theory of
Computation, to try firstly to identify hard problems for EAs in relationship with
known computational classes. At present, the approach of creating “toy problems”
that are “hard” for the paradigm, while partly useful for identifying some particular
issues that need consideration, does not lead to an articulated, systematic approach to

2

understand for which problems, or problem instances, the EA approach is competitive
or even superior, to exact approaches or other metaheuristics. We may ask:

Is there any way to find efficient algorithms based on evolutionary search
principles which always give good approximations to optimization problems
to which it is hard to find the optimal solution ?

From some perspective, the answer of this question is most probably “No”, since
under the commonly believed assumption that P 6= NP , we know that there are some
problems that can not be approximated with efficient algorithms at all. On the other
hand, this question can be relativized by answering: “It depends on the problem” since
we know that for some problems that are equally hard to be solved to optimality, some
can be very well approximated with efficient algorithms. This leaves some room for
the possibility that some problems can be efficiently approximated using algorithms
based on evolutionary techniques while others do not.

To study the central question presented above, we identify three complementary
research directions:

• Identify NP -Optimization problems for which the evolutionary search paradigm
has proved not to be competitive against the best heuristic or approximation
algorithm known for those problems.

• Identify which optimization problems can be approached using an evolutionary
search paradigm and identify the reasons.

• For the problems of the two groups mentioned above, it will be important to find
links with the theory of computational complexity and the complexity classes
(regarding approximability and, in particular, parameterized complexity [16])
that those problems belong to.

Ideally, the outcome of the above research will also provide interesting clues in terms of
relating computational complexity classes with the typical measures of “EA-hardness”
such as epistasis [11, 17]. This phenomenon –the non-additive fitness dependence
among several genes– has a direct influence in the difficulty an EA faces for solving a
certain problem (defined as the combination of a particular representation and fitness
function). It is customary to quantify epistasis by means of a integer fixed parameter,
say p > 0. The existence of such a parameter in the context of the discussion about
complexity classes mentioned above immediately suggest a possible connection with
the paradigm of parameterized complexity (PC) (for an interesting introduction to the
general topic see [14]). This paradigm extends the classical paradigm by analyzing the
complexity of problems with respect to a certain parameter (or set of parameters).
Recall that classical classifications such as the conspicuous P − NP dichotomy are
based in a worst-case scenario. For instance, the paradigmatic SAT problem is known
to be easily solvable in general (for a particular type or randomly-generated instances)
except for instances located at the phase transition between satisfiability and non-
satisfiability [19]. The existence of structural parameters upon which to base the
complexity analysis can be very useful to isolate such scenarios.

The PC paradigm establishes a hierarchy of parameterized complexity classes
FPT ⊆ W [1] ⊆ W [2] ⊆ · · · ⊆ W [t] ⊆ W [SAT] ⊆ W [P] that allows discriminat-
ing problems of different complexity according to the chosen parameter. For example,
problems in the FPT (fixed-parameter tractable) class have algorithms whose worst-
case complexity is O(f(k)nc), where k is the parameter, f(k) and arbitrary function
of k only, and c is a constant. In contrast, the complexity of solving problems in W [1]
is O(f(k)ng(k)), substantially harder in general.

A prototypical example of an NP -complete problem whose parameterized version
is fixed-parameter tractable is Vertex Cover. This problem can be defined as fol-
lows:

3

k-Vertex Cover

• Instance: An undirected graph G(V,E), with |V | = n, an integer k > 0.

• Question: Does there exist a set V ′ ⊆ V of k vertices, such that for every
(u, w) ∈ E, it holds that u ∈ V ′ or w ∈ V ′?

If the size of the set V ′ is taken as a parameter, this problem can be shown to
be in FPT [13], existing algorithms for solving it in O(1.278k + n), i.e., linear in
n for fixed k, and polynomial in n for k ∈ O(log n). This surprising result can be
achieved by combining the results of [6] and the speed-up method of [31]. Notice that
while Vertex Cover would be dismissed as “probably intractable” according to its
NP -hardness, it turns out to be perfectly solvable for a wide range of values for its
structural parameter.

A lesson can be extracted, since we may apply these algorithms for recombination
operators. They appear to be greatly advantageous when the population has begun
to converge to similar individuals. We will return to this issue in the next challenge.

As mentioned above, the W -hierarchy allows encapsulating problems of increasing
difficulty. The membership of a certain problem to a precise PC class is established
by means of Boolean circuits. These are traditional networks of logical gates that
take a potential solution as an input, and output a Boolean value indicating whether
that is a solution for the problem considered. The structure of the circuit obviously
depends on the problem, and its complexity determines the precise PC class to which
membership is established. More precisely, an important parameter is the weft of the
circuit. This is the maximum number of logical gates whose fan-in is unrestricted
(depends on the problem data) in an input-output path. The higher the weft for a
constant depth of the circuit, the higher the class the circuit belongs to.

At this point, the resemblance between the weft of a Boolean circuit and the
structural interdependence of genes in epistatic representations suggests that some
deep connection may exist between PC and the yet informal notion of “EA-hardness”.
Disentangling this connection (if it effectively exists) constitutes a very attractive
challenge both for Computer Science theoreticians and EA researchers.

3 Challenge #2: Systematic design of provably good
recombination operators

Recombination is undoubtedly a major component of evolutionary algorithms, at
least in the case of genetic algorithms (GAs). While its intuitive rôle has been al-
ways clear (to combine the information present in a set of solutions to create new
solutions), the guidelines for designing effective recombination operators have experi-
enced a remarkable evolution. It is increasingly more accepted that instead of directly
manipulating the syntactic units used to encode solutions, the operator must extract
“relevant” information from these solutions and recombine it (with independence of
whether solutions are encoded on the basis of these particular information pieces or
not). Unfortunately, the concept of “relevance” is hardly defined in formal terms.

For instance, solutions of the NP optimization problem Min Traveling Sales-
man (Min TSP) can be encoded as permutations or even as binary strings. However,
operators working directly on these encodings such as cycle crossover [32] or uniform
crossover [35] will in general provide worse performance than operators extracting
the relevant information. For the symmetric instances of the Min TSP it has been
shown that the preservation of some features, in particular common edges is indeed
a good strategy [28], and this lead to the proposal of several “edge recombination”
methods [30].

We will refer to these relevant “pieces of information” as features. We note, how-
ever, that in most of the cases where the problem to be solved is intractable, these

4

features generally correspond to predicates computable in polynomial-time. Back to
the symmetric instance of the Min TSP example, when a recombination operator
requires to “find all common edges of the kpar ≥ 2 parents” this can be understood
as checking kpar×n(n−1)/2 predicates (where n denotes the number of cities). Each
one of them corresponds to one edge between two cities, and we return the edges for
which the associate predicate returns a ‘Yes’ for all parents.

After having identified the relevant features (let us suppose we managed to find
all features of a set of parent solutions in polynomial-time), the next and obviously
important step is deciding how we can use this information. While blind recombination
operators that randomly shuffle the set of features were more typical in the past, the
addition of problem-domain knowledge to guide the process is becoming increasingly
popular. The terms hybrid GAs and memetic algorithms (MAs) [29] [30] have been
coined to denote these methods that use smarter reproductive operators and periods
of single-agent optimization.

There exist a plethora of mechanisms to create these smart recombination opera-
tors, e.g., [9, 33], but, up to the best of our knowledge, no complexity results for some
of the decision problems involved have been reported. For instance, suppose we have
a number of m ≥ 3 tours from a relatively large population of size Pop À m. Let us
also suppose that m− 1 of them have lengths values which are below the current pop-
ulation’s average length value, but one has a value well above average. To strengthen
the argument we can even suppose that it is actually the longest tour in the entire
population. While the preservation of edges/features present in all m parents can still
make some sense, we notice that the preservation of edges/features present in the best
m − 1 parents and not present in the worst tour, seems also a valuable heuristic to
create new solutions. Analogously, the avoidance of a feature present in the worst
tour and not present in the other m− 1 tours is certainly another appealing heuristic.

It is clear that, while there might be other heuristics of interest for special cases, the
previous example clearly depicts the existence of a more general problem: given a set
of parents, find the optimal subset of features to avoid and to preserve. This problem
already appears when we have parents that can be categorized in two different classes.
A natural measure of optimality is the cardinality of the set, since we expect that m
is already a small number in comparison with the size of the instance, then we only
expect to make a valid inference if the number of chosen features is also small.

We think that the EC community may critique itself in having not yet defined
a systematic effort to understand how to extract useful features from populations
of solutions. Although some ad-hoc approaches work for particular problems, most
recombination approaches are naive attempts to solve a more fundamental issue, that
of extracting particular characteristics/features that the optimal solutions might have
and, possibly more important, which features might not be present in them.

Related with this latter point, it must be noted that we still lack a formal frame-
work for recombination, similar for instance to that we have for Local Search [23, 38].
In this sense, an interesting new direction for theoretical research arose after the in-
troduction of two computational complexity classes, the PMA class (for Polynomial
Merger Algorithms problems) and its unconstrained analogue, the uPMA class. We
will define the classes PMA and uPMA by referring to three analogous algorithms
to the ones that define the class of Polynomial Local Search problems (PLS). These
definitions (specially for PMA) are particularly dependent on an algorithm called k-
merger , that will help to formalize the notion of recombination of a set of k given
solutions, as generally used by most MAs (as well as other population approaches).
The input of a k-merger algorithm is a set Spar of k ≥ 2 feasible solutions. They
can be informally called “parent” solutions and, if successful, the k-merger delivers
as output at least one feasible solution (with some constraints). For the uPMA class
the construction of the new solution is less restricted than for PMA. In general, re-
combination processes can be very complex with many side restrictions involving the

5

detection, the preservation or avoidance, and the feasible combination of features al-
ready present in the parent solutions.

Definition (uPMA). Let x be an instance of an optimization problem P . With
MP (Spar, x) we denote the set of all possible outputs (i.e., feasible solutions) that the
k-merger algorithm can give if it receives as input the pair (Spar, x) for problem P .

A recombination problem P/M belongs to uPMA if there exist three polynomial-
time algorithms p-starter , p′-evaluator, and k-merger (where p, p′ and k are integer
numbers such that p′ ≥ p ≥ k ≥ 2) that satisfy the following properties:

• Given an input x (formally a string ∈ {0, 1}∗), the p-starter determines whether
x is an instance of problem P and in this case produces a set of p different feasible
solutions {y1, y2, . . . , yp}.

• Given an instance x of P and an input (formally a string ∈ {0, 1}∗), the p′-
evaluator determines whether this input represents a set of feasible solutions,
i.e. {y1, y2, . . . , yp′} and in that case it computes the value of the objective
function associated to each one of them, i.e. mP (yj , x), ∀j = 1, . . . , p′.

• Given an instance x of P and a set of k feasible solutions Spar, the k-merger de-
termines whether the set Spar is a k-merger optimum, and, if it is not, it outputs
at least one feasible solution y′ ∈ MP (Spar, x) with strictly better value of mP

(i.e. mP (y′, x) < max {mP (y1, x),mP (y2, x), . . ., mP (yk, x) } for a minimiza-
tion problem, and mP (y′, x) > min {mP (y1, x), mP (y2, x), . . ., mP (yk, x) } for
a maximization problem).

Analogously, the PMA class is more restricted since it embodies a particular type of
recombination. For uPMA the type of recombination is implicit in the way the group
neighborhood M is defined. However, the definition for PMA is still general enough to
encompasses most of the recombination procedures used in practical population-based
approaches.

Definition (PMA). A recombination problem P/M belongs to PMA if there
exist three polynomial-time algorithms p-starter , p′-evaluator, and k-merger (where
p, p′ and k are integer numbers such that p′ ≥ p ≥ k ≥ 2), such that the p-starter and
p′-evaluator satisfy the same properties required by the uPMA class but the k-merger
is constrained to be of a particular type, i.e.:

• Given an instance x of P and a set of k feasible solutions Spar, the k-merger
determines whether the set Spar is a k-merger optimum, and, if it is not, it does
the following:

– For each y ∈ Spar, it solves n1 polynomial-time decision problems {Π1(y),
Π2(y), . . ., Πn1(y)}. Let D be a matrix of k×n1 Boolean coefficients formed
by the output of all these decision problems, i.e. Di,j = Πj(yi).

– It creates a set of n2 constraints C, such that C can be partitioned in
two subsets, i.e. C = Cin ∪ Cout. Each constraint c ∈ C is represented
by a predicate πc such that its associated decision problem Πc(y) can be
solved in polynomial-time for every feasible solution y. Any predicate πc

is a polynomial-time computable function that has as input the Boolean
matrix D and the instance x. It is required that at least one predicate π∗c
to be a non-constant function of at least two different elements of Spar.

– It outputs at least one offspring , i.e. another feasible solution y′ ∈MP (Spar, x)
with strictly better value of mP , (i.e. mP (y′, x) < max {mP (y1, x),mP (y2, x),
. . ., mP (yk, x) } for a minimization problem, and mP (y′, x) > min {mP (y1, x),

6

mP (y2, x), . . ., mP (yk, x) } for a maximization problem) subject to

max
y′

[(
∑

(c∈Cin)∧Πc(y′)

wc)− (
∑

(c∈Cout)∧Πc(y′)

wc)] (1)

where wc is an integer weight associated to constraint c.

Conducting research to identify problems, and their associated recombination proce-
dures, such that membership, in either PMA or uPMA, can be proved is a definitely
important task. It is also hoped that after some initial attempts on challenging prob-
lems completeness and reductions for the classes can be properly defined.

We should also note that the definition are such that they would naturally give
several new interesting parameterized complexity problems. So, while proving NP-
hardness is a good start, we hope that the research focus should be directed towards
proving many problems to be fixed-parameter tractable. In essence, that would lead
toward developing “optimal” recombination operators, that while exponential on the
parameters, can be polynomial on the instance size.

4 Challenge #3: Using Modal Logic and Logic Pro-
gramming methods to guide the search

Looking ahead one of the possible directions that EC can take, after checking the
current trends, it is then reasonable to affirm that increasingly more complex schemes
evolving solutions, agents, as well as representations, will soon be implemented. The
way they would handle information (actually it is a “distributed” information for it
is carried by a population of solutions, which can be transmitted, recombined, and
analyzed) have some points in common with Blackboard Systems [15]. This has been
recognized in the past yet it is conspicuously hardly being mentioned in the current
metaheuristics literature.

We are proposing to call these new methods as Belief Search and to show they can
work in an EC setting, we will resort to two illustrative examples. We will assume
that the formula Bi

aφ has the following meaning “agent i believes with strength (at
least) a that φ is true”, such that the strength values a are restricted to be rational
numbers in [0,1]. Let us also suppose we accept as an axiom that from ψ being true
we can deduce Bi

1ψ for all i. Now let us suppose that our agents are trying to solve
a Min TSP and that the particular instance being considered is Euclidean and two-
dimensional. Let φk represent the proposition “edge ek is present in the optimum
tour” and let χk,l be true if edges ek and el cross each other, and false otherwise. It
can be proved (a “folk theorem”) that for such particular type of TSP instances (a
form of problem-domain, or better, instance-domain knowledge) “if edges ek and el

cross each other, then ek and el can not both be present in the optimal tour”. Then
we can assume that this is known by all agents, and by the previous axiom we can
deduce that agent 2 now believes B2

1(χk,l → ¬(φk ∧ φl)). Now let us suppose that
agent 1 believes, with strength 0.4, that “either edge ek or el, but not both, is present
in the optimal tour”. We will represent this as B1

0.4φk,l. We will not enter into the
discussion of how that agent reached that belief and we take it as a fact. Now let
us suppose that another agent believes, at a level 0.7 that χk,l → φk,l, then we write
B3

0.7(χk,l → φk,l). This is curious, since this kind of assumption confuses our common
sense. In general we do not see any relationship between the fact that two edges
cross and that we can deduce that as a consequence one of them should be present
in the optimum tour. We can take this as a fact, as if a “co-evolving” algorithm, is
generating these predicates to guide the search. However, note that agent 3 believes
in this relationship (at a 0.7 level) for a particular pair of edges ek and el. Now, what
can we say about the distributed belief of this group of three agents ? How can we
recombine this information ?

7

At this point we need to introduce a logic to recombine belief information. Dis-
cussions on which particular type of logic to guide heuristic search process is a much
more elegant and useful method than keeping on discussing values of parameters based
on trial-and-error experimental tests. It may also lead to improved convergence in
Estimation-of-Distributions (EDA) metaheuristics [26].

According to one possible selection for such a logic, just picked to exemplify the
discussion, we can use PL⊗n , a multi-agent epistemic logic recently introduced by
Boldrin and Saffiotti, the opinions shared by a set of n different agents can be recom-
bined in a distributed belief. Using PL⊗n we can deduce D0.82φk,l. The distributed
belief about proposition φk,l is then stronger than any individual belief about it, and
is even stronger than what you would get if any agent would believe the three facts.
We offer now two examples on its application.

4.1 Example 1

In PL⊗n we have the following axioms and inference rules, where φ and ψ range
over formulas of L; a, b and c over rational numbers in [0,1]; and i = 1, . . . , n. The
five axioms are:

(A0) Axiom 0 All propositional tautologies
(A1) Axiom 1 Bi

0 ⊥
(A2) Axiom 2 Bi

a(φ → ψ) → (Bi
bφ → Bi

cψ) c ≤ min{a, b}
(A3) Axiom 3 Da(φ → ψ) → (Dbφ → Dcψ) c ≤ min{a, b}
(A4) Axiom 4 (∧n

i=1B
i
ai

φ) → Dcφ c = ⊕n
i=1ai

The three inference rules are :

(MP) Modus Ponens from φ and φ → ψ deduce ψ

(NEC) Necesitation from φ deduce Bi
1φ

(US) Uniform substitutions

A formula φ is said to be a theorem of PL⊗n written ` φ, if φ is obtained from
A0-A4 by a finite number of applications of MP, NEC and uniform substitutions.
Then, if Γ ⊆ L we will write Γ ` φ to mean ` (∧φ∈Γ) → φ.

Proposition: Given Γ = {(a), (b), (c)} (see below) then Γ ` (D0.82φk,l∧D0.82(χk,l →
φk,l)).

(a)B1
0.4φk,l,

(b)χk,l,
(c)B3

0.7(χk,l → φk,l).

Proof:

8

(1)φk,l → (χk,l → φk,l) A0
(2)B1

1(φk,l → (χk,l → φk,l)) NEC, 1
(3)B1

1(φk,l → (χk,l → φk,l))
→ (B1

0.4φk,l → B1
0.4(χk,l → φk,l)) A2, US

(4)B1
0.4φk,l → B1

0.4(χk,l → φk,l) MP, 2, 3
(5)B1

0.4(χk,l → φk,l) MP, (a), 4
(6)⊥→ (χk,l → φk,l) A0
(7)B2

1(⊥→ (χk,l → φk,l)) NEC, 6
(8)B2

0 ⊥ A1
(9)B2

1(⊥→ (χk,l → φk,l))
→ (B2

0 ⊥→ B2
0(χk,l → φk,l)) A2, US

(10)B2
0 ⊥→ B2

0(χk,l → φk,l) MP, 7, 9
(11)B2

0(χk,l → φk,l) MP, 8, 10
(12)B2

0(χk,l → φk,l) → (B2
1χk,l → B2

0φk,l) A2, US
(13)B2

1χk,l → B2
0φk,l, MP, 11, 12

(14)B2
1χk,l NEC, (b)

(15)B2
0φk,l MP, 14, 13

(16)B3
1χk,l NEC, (b)

(17)B3
0.7(χk,l → φk,l) → (B3

1χk,l → B3
0.7φk,l) A2, US

(18)B3
1χk,l → B3

0.7φk,l MP, (c), 17
(19)B3

0.7φk,l MP, (c), 18
(20)D0.82(χk,l → φk,l) A4, (5), (11), (c)
(21)D0.82φk,l A4, (a), 15, 19

We can leave to the reader the task of checking this example following section 3.3.
of [4].

Another interesting exercise is the following: let φk (φl) be the predicate “edge
ek (respectively, el) is present in the optimal tour”. The task is then to deduce
according to PL⊗n what can be distributedly believed about individual edges ek and
el if in addition to the three previous agents there are also two other agents, such that
B4

0.54φk, B4
0.27φl, B5

0.63φk, B5
0.15φl.

4.2 Example 2

The following are theorems of PL⊗n :

(TH1) (Bi
aφ ∧Bi

bψ) → Bi
c(φ ∨ ψ) c = max{a, b}

(TH2) (Bi
aφ ∧Bi

bψ) → Bi
c(φ ∧ ψ) c = min{a, b}

If the agents are trying to solve an Euclidean, 2-dimensional instance of the TSP,
then we also have the instance-dependent axioms or IDAs.

IDA1 χk,l → ¬(φk ∧ φl)

In addition, we also know that:

IDA2 φk,l ≡ ((φk → ¬φl) ∧ (¬φk → φl))

Proposition: Given Γ′ = {(a), . . . , (g)} (see below) then Γ′ ` D0.96934φk,l.
(a)B1

0.4φk,l

(b)χk,l

(c)B3
0.7(χk,l → φk,l)

(d)B4
0.54φk

(e)B4
0.27φl

(f)B5
0.63φk

(g)B5
0.15φl

9

Proof:

(1)B4
1(χk,l → ¬(φk ∧ φl)) IDA1, NEC

(2)B4
1(χk,l → (φk → ¬φl)) A0

(3)B4
1χk,l (b), NEC

(4)B4
1(χk,l → (φk → ¬φl)) → (B4

1χk,l → B4
1(φk → ¬φl)) A2, US

(5)B4
1χk,l → B4

1(φk → ¬φl) MP, 2, 4
(6)B4

1(φk → ¬φl) MP, 3, 5
(7)B4

1(φk → ¬φl) → (B4
0.54φk → B4

0.54(¬φk)) A2
(8)B4

0.54φk → B4
0.54(¬φl) MP, 6, 7

(9)B4
0.54(¬φl) MP, (d), 8

analogously we can deduce:

(18)B4
0.27(¬φk) MP, (e), 17

(27)B5
0.63(¬φl) MP, (f), 26

(36)B5
0.15(¬φk) MP, (g), 35

and now we will use one of the theorems:

(37)(B4
0.54φk ∧B4

0.27φl) → B4
0.54(φk ∨ φl) TH1, US

(38)B4
0.54(φk ∨ φl) MP, (d), (e), 37

(39)(B5
0.63φk ∧B5

0.15φl) → B5
0.63(φk ∨ φl) TH1, US

(40)B5
0.63(φk ∨ φl) MP, (f), (g), (39)

(41)(B4
0.54(¬φl) ∧B4

0.27(¬φk)) → B4
0.54(¬φk ∨ ¬φl) TH1, US

(42)B4
0.54(¬φk ∨ ¬φl) MP, 9, 18, 41

(43)(B5
0.63(¬φl) ∧B5

0.15(¬φk)) → B5
0.63(¬φk ∨ ¬φl) TH1, US

(44)B5
0.63(¬φk ∨ ¬φl) MP, 27, 36, 43

and now we combine the information using the other theorem:

(45)(B4
0.54(φk ∨ φl)) ∧ (B4

0.54(¬φk ∨ ¬φl))
→ B4

0.54((φk ∨ φl) ∧ (¬φk ∨ ¬φl)) TH2, US
(46)B4

0.54((φk ∨ φl) ∧ (¬φk ∨ ¬φl)) MP, 38, 42, 45
(47)B4

0.54φk,l A0
(48)(B5

0.63(φk ∨ φl)) ∧B5
0.63(¬φk ∨ ¬φl))

→ B5
0.63((φk ∨ φl) ∧ (¬φk ∨ ¬φl)) TH2, US

(49)B5
0.63((φk ∨ φl) ∧ (¬φk ∨ ¬φl)) MP, 40, 44, 48

(50)B5
0.63φk,l A0

(51)B3
0.7(χk,l → φk,l) → (B3

1χk,l → B3
0.7φk,l) A2, US

(52)B3
1χk,l → B3

0.7φk,l MP, (c), 51
(53)B3

1χk,l NEC
(54)B3

0.7φk,l MP, 53, 52
(55)B2

1(⊥→ φk,l) A0, NEC
(56)B2

1(⊥→ φk,l) → (B2
0 ⊥→ B2

0φk,l) A2, US
(57)B2

0 ⊥→ B2
0φk,l MP, 55, 56

(58)B2
0 ⊥ A1

(59)B2
0φk,l MP, 58, 57

(60)D0.96934φk,l A4, (a), 47, 50, 54, 59

We note that, by computing the distributed belief of the set of solutions in an
EA (or agents in an MA), it is possible to use this information to bias constructive
algorithms. This said, a Belief-Search-based EA can also benefit from constructive
heuristics already available in the literature. In addition, exact search methods can

10

prioritize some pending decisions based on the information that is distributedly be-
lieved . This may also allow parallel search by a set of agents, allowing the agents
to have many alternatives instead of the depth-first or best-first guiding procedures
generally used.

By no means we affirm that PL⊗n is the definitive logic that should be used to
guide EAs with Belief Search. We mention this, since PL⊗n is related to multi-modal
logics of partial belief and it may be the case that some other forms for connectives
are more appropriate than the T-norm proposed for merging information. However,
PL⊗n already embodies very interesting features that we would like to highlight and we
have not noticed in other logics of belief. First, it allows nested epistemic reasoning ,
i.e., an expression like Bi

aDbφ can be interpreted as agent i believes at level a that φ is
distributedly believed at level B”. This is very interesting since some ad-hoc heuristics
for generalizing recombination operators, like the rebel , conciliator , and obsequent be-
haviors [3], can be interpreted in terms of an underlying nested epistemic reasoning.
Second, the negation is typically modal conveying the concept of absence of informa-
tion. As remarked by Boldrin and Saffiotti, this contrast with the algebraic approach
of other logics in which negation represents positive information on some “orthogonal”
formula. Again, this is best illustrated with the Min TSP as our favorite example. A
strong belief on a subset of O(n) edges to be in the optimal solution does not necessary
mean that the O(n2) remaining edges might not be in the optimal solution. Modal
logic seems to have an interesting role in this respect. Finally, according to Boldrin
and Saffiotti, PL⊗n can be extended to also include a set of epistemic operators DG,
with G being a subset of the agents. The intended meaning of this is that they will
combine the distributed belief of subsets of the agents.

5 Challenge #4: Learning from other metaheuris-
tics and other open challenges

Evolutionary Computation metaheuristics are far from being the only method of
choice to perform heuristic search. We have shown in the introduction how Simulated
Annealing (SA) and Tabu Search (TS) are among the most popular “‘single-agent”
stochastic optimization methods. The key of the success is the simplicity of their
implementation and the fact that for many optimization problems (and the problem
instances under study) it is relatively easy to get very good solutions.

One of the authors of this chapter, back in 1989, introduced the denomination
of ‘memetic algorithms’ (MAs) as a paradigm aimed to liberate population-search
methods from the current biologically motivated metaphors at that time. Several
ideas were introduced, the use of single-agent metaheuristics for individual search
optimization steps, the use of different neighborhoods for the different agents, the
study of correlation of local optima, etc. After more than a decade from that work,
we see that several ideas have been upraised up to the point of constituting new
metaheuristics, like variable neighborhood search (VNS) [21]. We can quote from [29]:

Another advantage that can be exploited is that the most powerful comput-
ers in the network can be doing the most time-consuming heuristics, while
others are using a different heuristics. The program to do local search in
each individual can be different. This enriches the whole, since what is a
local minima for one of the computers is not a local minima for another
in the network. Different heuristics may be working fine due to different
reasons. The collective use of them would improve the final output. In a
distributed implementation we can think in a division of jobs, dividing the
kind of moves performed in each computing individual. It leads to an inter-
esting concept, where instead of dividing the physical problem (assignment
of cities/cells to processors) we divide the set of possible moves. This set

11

is selected among the most efficient moves for the problem.

and also,

Is this the ultimate solution for the problems that the search involves ? Is
it wise to use a set of many different moves, to continue adding different
moves ad infinitum ? Certainly not. Effective moves are those that, on
the average, create a new configuration with similar values of the objective
value, reflecting the efficient use of the correlation between the configura-
tions given by the representation.

Despite the clear coincidences present in these early discussions, and contrarily to
what the reader might suspect, we are not interested in claiming that the VNS ideas
were already contained in MAs. On the contrary, we view the systematic development
of particular strategies as a healthy sign. If a simpler metaheuristic (SA, TS, VNS,
GRASP, etc.) performs the same as a more complex method (GAs, MAs, Ant Colonies,
etc.) we should either resort to the simpler method, or to the one that has less free
parameters, or to the one that is easier to implement. On the other hand, such a fact
challenges us to adapt the more complex methodology to beat a simpler heuristic, if
that is possible at all. What we do not consider as a healthy sign, however, are the
attempts to encapsulate some metaheuristics on stretched confinements. For instance,
a MA is not just a “hybrid” GA, or a “parallel GA”, or a GA in which all solutions are
local optima. Actually this latter strategy was not part of the proposed definitions,
since already the MAs in 1988 and 1989 were using SA or stochastic methods and
the solutions were far from being locally optimal at the time of recombination. Not
every method that uses a population and a recombination operator is a GA, not every
hybrid GA is a MA. An “ant colony” metaheuristic [12] is indeed a new idea, but when
the “ants” use local search, the resulting algorithm exhibits a strong resemblance to
an MA.

We think that there are several “learned lessons” from work in other metaheuristics.
For instance, TS decides to accept another new configuration (whether a feasible
solution or not) without restriction to the relative objective function value of the two
solutions. This has lead to good performance in some configuration spaces where
evolutionary methods and Simulated Annealing perform poorly. A classical example
of this situation is the Min Number Partitioning problem [3]. In addition, we
have also identified some problems with evolutionary search methods in instances of
the TSP in which the entries of the distance matrix have a large number of decimal
digits. We believe that there is an inherent problem to be solved, for evolutionary
methods to deal with fitness functions that have so many decimal digits. Traditional
rank-based or fitness-based selection schemes to keep new solutions in the current
population fail. It would be then reasonable to investigate whether some ideas from
basic TS mechanisms could be adapted to allow less stringent selection approaches.

Problems like STRIPS planning [5] or the less known Sokoban [10] can provide
good test-beds for the performance of EC methods in problems of other complexity
classes. Unfortunately, although there are exceptions [36] they are seldom addressed.
Other related challenges have been described in [34]. Multi-objective optimization is
another interesting field full of new challenges where several metaheuristics are being
evaluated [7].

In [34] we can read in their second challenge:

Minsky (1967) was foundational in establishing the theory of computation,
but after Hartmanis (1971) there has been a fixation with asymptotic com-
plexity. In reality lots of problems we face in building real AI systems do
not get out of hand in terms of the size of problems for individual modules–
in particular with behavior-based systems most of the submodules need only
deal with bounded size problems.

12

We have recently initiated work in an area which we have tentatively called Evolution-
ary Analysis of Algorithms [8]. This approach deals with the problem of finding, for a
fixed-size, the worst-case instance for a particular algorithm; there are problems that
by their intrinsic nature have been defined with a natural upper-bound on the instance
size. Then the real challenging problem is to find new methods allowing “co-evolution”
between the tasks of designing a better algorithm and the worst-case instance. This
hopefully will lead to more robust methodology for algorithms development.

6 Conclusions

By looking back at the development of Evolutionary Computation in the previous
decades, we can say that it is a healthy field. The number of researchers and published
articles is steadily growing at a superlinear rate [1]. So is also the number of successful
applications of these techniques. Hence, the field is now well grounded and mature
enough to endeavor the challenging task of understanding how, when and why these
techniques work or should be deployed on an specific problem.

We have proposed a number of challenges whose successful resolution will –in our
opinion– provide major boosts for the vigorous development of the field. Obviously,
these challenges are only a part of a bigger picture, as the reader will verify by reading
other essays in this collection. They nevertheless reflect our view of the area, a view
in which the lack of a solid theoretical corpus as well as insufficient connections with
other areas of metaheuristic optimization (let alone with other areas of Theoretical
Computer Science) constitute a Damocles’ sword whose existence we have to face (and
indeed solve).

It is up to us, EC researchers, to determine whether future EC practitioners will
regard the field as a collection of elaborate recipes to be adapted to one’s taste, or as a
cooking book from which to learn how to cook the dish he/she likes. Admittedly, this
is an ambitious objective. It is also true that some of the most optimistic perspectives
about the capabilities of the paradigm a decade ago were dismissed by theoretical
results such as Hart & Belew’s hardness results [22] and Wolpert & Macready’s No Free
Lunch Theorem [37], so in principle, this could be the case for some of these challenges.
However, we have to consider that these past experiences did not compromise the
future of EC; on the contrary, they allowed redirecting efforts in more fruitful ways.
Theoretical results cannot thus be negative, for they represent the underlying truth
about the paradigm. It is to this underlying ground upon which we have to settle and
adapt. Whatever the outcome of the challenges we have depicted in this essay, this
should be the philosophy with which we have to react.

References

[1] J.T. Alander. Indexed bibliography of genetic algorithms and neural networks.
Technical Report 94-1-NN, University of Vaasa, Department of Information Tech-
nology and Production Economics, 1994.

[2] Th. Bäck, D.B. Fogel, and Z. Michalewicz. Handbook of Evolutionary Computa-
tion. Oxford University Press, New York NY, 1997.

[3] R. Berretta and P. Moscato. The number partitioning problem: An open chal-
lenge for evolutionary computation ? In D. Corne, M. Dorigo, and F. Glover,
editors, New Ideas in Optimization, pages 261–278. McGraw-Hill, Maidenhead,
Berkshire, England, UK, 1999.

[4] L. Boldrin and A. Saffiotti. A modal logic for merging partial belief of multiple
reasoners. Journal of Logic and Computation, 9(1):81–103, 1999. Online at
http://www.aass.oru.se/∼asaffio/.

13

[5] T. Bylander. The computational complexity of propositional STRIPS planning.
Artificial Intelligence, 69(1-2):165–204, 1994.

[6] J. Chen, I.A. Kanj, and W. Jia. Vertex cover: further observations and further
improvements. In Proceedings of the 25th International Workshop on Graph-
Theoretic Concepts in Computer Science, number 1665 in Lecture Notes in Com-
puter Science, pages 313–324. Springer-Verlag, 1999.

[7] C.A. Coello. An updated survey of evolutionary multiobjective optimization
techniques: State of the art and future trends. In Peter J. Angeline, Zbyszek
Michalewicz, Marc Schoenauer, Xin Yao, and Ali Zalzala, editors, Proceedings of
the Genetic and Evolutionary Computation Conference, volume 1, pages 3–13,
Piscataway, NJ, 1999. IEEE Press.

[8] C. Cotta and P. Moscato. A mixed evolutionary-statistical analysis of an algo-
rithm’s complexity. Applied Mathematics Letters, 16(1):41–47, 2003.

[9] C. Cotta and J.M. Troya. Genetic forma recombination in permutation flowshop
problems. Evolutionary Computation, 6(1):25–44, 1998.

[10] J. Culberson. Sokoban is PSPACE-complete. In E. Lodi, L. Pagli, and N. San-
toro, editors, Proceedings in Informatics 4, Fun With Algorithms, pages 65–76,
Waterloo, 1999. Carleton Scientific.

[11] Y. Davidor. Epistasis variance: A viewpoint on GA-hardness. In G.J.E. Rawl-
ins, editor, Foundations of Genetic Algorithms, pages 23–35. Morgan Kaufmann,
1991.

[12] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: Optimization by
a colony of cooperating agents. IEEE Transactions on Systems, Man, and
Cybernetics-Part B, 26(1):29–41, 1996.

[13] R. Downey and M. Fellows. Fixed parameter tractability and completeness I:
Basic theory. SIAM Journal of Computing, 24:873–921, 1995.

[14] R.G. Downey, M.R. Fellows, and U. Stege. Computational tractability: The
view from mars. Bulletin of the European Association for Theoretical Computer
Science, 69:73–97, 1999.

[15] R. Englemore and T. Morgan (eds.). Blackboard Systems. Addison-Wesley, 1988.

[16] M. Fellows. Parameterized Complexity: The main ideas and connections to prac-
tical computing. Electronic Notes in Theoretical Computer Science, 61, 2002.
available at http://www.elsevier.nl/locate/entcs/volume61.html.

[17] S. Forrest and M. Mitchell. What makes a problem hard for a genetic algorithm?
some anomalous results and their explanation. In R.K Belew and L.B. Booker,
editors, Proceedings of the 4th International Conference on Genetic Algorithms,
pages 182–189, San Mateo, CA, 1991. Morgan Kaufman.

[18] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, San Francisco, 1979.

[19] I.P. Gent and T. Walsh. The SAT phase transition. In A.G. Cohn, editor,
Proceedings of 11th European Conference on Artificial Intelligence, pages 105–
109. John Wiley & Sons, 1994.

[20] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, Boston,
MA, 1997.

[21] P. Hansen and N. Mladenović. Variable neighborhood search: Principles and
applications. European Journal of Operational Research, 130(3):449–467, 2001.

[22] W.E. Hart and R.K. Belew. Optimizing an arbitrary function is hard for the
genetic algorithm. In R.K. Belew and L.B. Booker, editors, Proceedings of the
4th International Conference on Genetic Algorithms, pages 190–195, San Mateo
CA, 1991. Morgan Kaufmann.

14

[23] D.S. Johnson, C.H. Papadimitriou, and M. Yannakakis. How easy is local search ?
Journal of Computers and System Sciences, 37:79–100, 1988.

[24] S. Kirkpatrick, C.D. Gelatt Jr., and M.P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, 1983.

[25] M. Krivelevich. Sparse graphs usually have exponentially many optimal colorings.
Electronic Journal of Combinatorics, 9(1):#R27, 2002.

[26] P. Larrañaga and J.A. Lozano, editors. Estimation of Distribution Algorithms. A
New Tool for Evolutionary Computation. Kluwer Academic Publishers, Boston,
2001.

[27] H.R. Lewis and C.H. Papadimitriou. Elements of the Theory of Computation.
Prentice-Hall, Inc., Upper Saddle River, New Jersey, 1998.

[28] K. Mathias and D. Whitley. Genetic operators, the fitness landscape and the
traveling salesman problem. In R. Männer and B. Manderick, editors, Paral-
lel Problem Solving From Nature II, pages 259–268, Amsterdam, 1992. Elsevier
Science Publishers B.V.

[29] P. Moscato. On Evolution, Search, Optimization, Genetic Algorithms and Martial
Arts: Towards Memetic Algorithms. Technical Report Caltech Concurrent Com-
putation Program, Report. 826, California Institute of Technology, Pasadena,
California, USA, 1989.

[30] P. Moscato. Memetic algorithms: A short introduction. In D. Corne, M. Dorigo,
and F. Glover, editors, New Ideas in Optimization, pages 219–234. McGraw-Hill,
Maidenhead, Berkshire, England, UK, 1999.

[31] R. Niedermeier and P. Rossmanith. A general method to speed up fixed-
parameter-tractable algorithms. Information Processing Letters, 73:125–129,
2000.

[32] I.M. Oliver, D.J. Smith, and J.R.C. Holland. A study of permutation crossover
operators on the traveling salesman problem. In J.J. Grefenstette, editor, Proceed-
ings of the 2nd International Conference on Genetic Algorithms, pages 224–230,
Hillsdale NJ, 1987. Lawrence Erlbaum Associates.

[33] N.J. Radcliffe and P.D. Surry. Fitness Variance of Formae and Performance Pre-
diction. In L.D. Whitley and M.D. Vose, editors, Proceedings of the 3rd Workshop
on Foundations of Genetic Algorithms, pages 51–72, San Francisco, 1994. Morgan
Kaufmann.

[34] Bart Selman, Henry A. Kautz, and David A. McAllester. Ten challenges in
propositional reasoning and search. In Proceedings of the 15th International Joint
Conference on Artificial Intelligence (IJCAI’97), pages 50–54, 1997.

[35] G. Syswerda. Uniform crossover in genetic algorithms. In J.D. Schaffer, editor,
Proceedings of the 3rd International Conference on Genetic Algorithms, pages
2–9, San Mateo, CA, 1989. Morgan Kaufmann.

[36] C. H. Westerberg and J. Levine. Investigation of different seeding strategies
in a genetic planner. In E.J.W. Boers, S. Cagnoni, J. Gottlieb, E. Hart, P.L.
Lanzi, G. Raidl, R.E. Smith, and H. Tijink, editors, Applications of Evolutionary
Computing, volume 2037 of Lecture Notes in Computer Science, pages 505–514.
Springer-Verlag, Berlin Heidelberg, 2001.

[37] D.H. Wolpert and W.G. Macready. No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation, 1(1):67–82, 1997.

[38] M. Yannakakis. Computational complexity. In E.H.L. Aarts and J.K. Lenstra,
editors, Local Search in Combinatorial Optimization, pages 19–55. Wiley, Chich-
ester, 1997.

15

