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1.1 INTRODUCTION

In the past decades advances in fields of molecular biology and genomic technologies
have led to a very important growth in the biological information generated by the
scientific community. The needs of biologist to utilize, interpret, and analyze that
large amount of data have increased the importance of the bioinformatics [1]. This
area is an interdisciplinary field involving biology, computer science, mathematics,
and statistics for achieving faster and better methods in that tasks.

Most of the bioinformatic tasks are formulated as hard combinatorial problems.
Thus, is not viable to solve large instances of it using exacttechniques such as branch
and bound. As a consequence the use of metaheuristics and other approximate tech-
niques is mandatory. In short, a metaheuristic [2, 3] can be defined as a top-level
general strategy which guides other heuristics to search for good solutions. Up to
now there is no commonly accepted definition for the term metaheuristic. It is just
in the last few years that some researchers in the field tried to propose a definition.
Some fundamental characteristics:

• The goal is to efficiently explore the search space in order tofind (near-) opti-
mal solutions.

• Metaheuristic algorithms are usually non-deterministic.

• They may incorporate mechanisms to avoid getting trapped inconfined areas
of the search space.
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• The basic concepts of metaheuristics permit an abstract level description.

• Metaheuristics are not problem-specific.

• Metaheuristics usually allow an easy parallel implementation.

• Metaheuristics must make use of domain-specific knowledge in the form of
heuristics that are controlled by the upper level strategy.

The main advantages of using metaheuristics to solve bioinformatics tasks are the
following:

• Problems of bioinformatics seldom need the optimal solution. In fact, they
require robust, fast and near-optimal solutions.

• Data obtained from laboratories inherently involve errors. Metaheuristics, due
to their non-deterministics process, are more tolerant in these cases than deter-
ministic ones.

• Several tasks in bioinformatics involve the optimization of different objectives,
thereby making the application of (population based) metaheuristics more nat-
ural and appropriate.

In this chapter, we first present a brief survey about metaheuristic techniques and
main bioinformatic tasks. Later, we describe in more detailtwo important problems
in the area of sequence analysis: the DNA fragment assembly and the shortest com-
mon supersequence problem. We use them to exemplify how metaheuristics can be
used to solve difficult bioinformatic tasks.

1.2 METAHEURISTICS AND BIOINFORMATICS

In this section we present some background information about metaheuristics and
problems of bioinformatics.

1.2.1 Metaheuristics

As we said before, a inxmetaheuristic [2, 3] can be defined as atop-level general
strategy which guides other heuristics to search for good solutions. There are differ-
ent ways to classify and describe metaheuristic algorithms. One of them classifies
them depending on the number of solutions: population based(a set of solutions)
and trajectory based (work with a single solution). The former starts with a single
initial solution. At each step of the search the current solution is replaced by an-
other (often the best) solution found in its neighborhood. Very often, they allow to
find a local optimal solution, and so are called exploitation-oriented methods. On
the other hand, the latter make use of a randomly generated population of solutions.
The initial population is enhanced through a natural evolution process. At each gen-
eration of the process, the whole population or a part of the population is replaced
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by newly generated individuals (often the best ones). Population based methods are
often called exploration-oriented methods. In next paragraph we discuss the features
of the most important metaheuristics.

Trajectory based metaheuristics:

• Simulated Annealing (SA) [4] is a stochastic search method in which at each
step, the current solution is replaced by another one that improves the objec-
tive function, randomly selected from the neighborhood. SAuses a control
parameter, called temperature, to determine the probability of accepting non-
improving solutions. The objective is to escape from local optima, and so to
delay the convergence. The temperature is gradually decreased according to
a cooling schedule such that few non-improving solutions are accepted at the
end of the search.

• Tabu Search (TS) [5] manages a memory of solutions or moves recently ap-
plied, called thetabu list. When a local optimum is reached, the search carries
on by selecting a candidate worse than the current solution.To avoid the pre-
vious solution to be chosen again, and so to avoid cycles, TS discards the
neighboring candidates that have been previously applied.

• Variable Neighborhood Search. The basic idea of the Variable Neighbor-
hood Search (VNS) [6] is to successively explore a set of pre-defined neigh-
borhoods to provide a better solution. It uses the descent method to get the
local minimum. Then, it explores either at random or systematically the set
of neighborhoods. At each step, an initial solution is shaked from the current
neighborhood. The current solution is replaced by a new one if and only if
a better solution has been found. The exploration is thus re-started from that
solution in the first neighborhood. If no better solution is found the algorithm
moves to the next neighborhood, randomly generates a new solution and at-
tempts to improve it.

Population based metaheuristics:

• Evolutionary Algorithms (broadly called EAs) are stochastic search tech-
niques that have been successfully applied in many real and complex applica-
tions (epistatic, multimodal, multi-objective and highlyconstrained problems).
Their success in solving difficult optimization tasks has promoted the research
in the field known asevolutionary computing(EC) [7]. An EA is an iterative
technique that applies stochastic operators on a pool of individuals (the popu-
lation). Every individual in the population is the encoded version of a tentative
solution. Initially, this population is generated randomly. An evaluation func-
tion associates a fitness value to every individual indicating its suitability to
the problem. There exist several well-accepted subclassesof EAs depending
on representation of the individuals or how makes each step of the algorithm.
The main subclasses of EAs are the genetic algorithm (GA), evolutionary pro-
gramming (EP), the evolution strategy (ES), and some othersnot shown here.
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• Estimated Distribution Algorithms (EDAs) are a recent type of optimization
and learning techniques based in the concept of using a population of tentative
solutions to improve the best-so-far optimum for a problem [8]. The key step
in this algorithm is to estimatep∗(x, t) and to generate new points according
to this distribution. This represents a clear difference with respect to other
evolutionary algorithms that use recombination and/or mutation operators to
compute a new population of tentative solutions.

• Scatter Search (SS) [9] is a population-based metaheuristic that combines
solutions selected from a reference set to build others. Themethod starts by
generating an initial population of disperse and good solutions. The reference
set is then constructed by selecting good representative solutions from the pop-
ulation. The selected solutions are combined to provide starting solutions to
an improvement procedure. According to the result of such procedure the ref-
erence set and even the population of solutions can be updated. The process
is iterated until a stopping criterion is satisfied. The SS approach involves
different procedures allowing to generate the initial population, to build and
update the reference set, to combine the solutions of such set, to improve the
constructed solutions, etc.

Both approaches -trajectory-based and population-based-can be also combined
to yield more powerful optimization techniques. This is particularly the case of
memetic algorithms (MA) [10], that blend ideas of different metaheuristics within
the framework of population-based techniques. This can be done in a variety of ways,
but most common approaches rely on the embedding of a trajectory-based technique
within an EA-like algorithm, see [11, 12]. It is also worth mentioning those meta-
heuristics included in the so-calledswarm intelligenceparadigm, such as for example
ant colony optimization (ACO), andparticle swarm optimization (PSO). These
techniques regard optimization as an emergent phenomenon from the interaction of
simple search agents.

1.2.2 Bioinformatic tasks

Now, in this subsection we describe the main bioinformatic tasks, giving, at the of the
section, a table with the metaheuristic approaches appliedto solve them. Based on
the availability of the date and goals, we can classify the problems of bioinformatics
as follows:

• Alignment and comparison of Genome and Proteome Sequences:From the
biological point of view, sequence comparison is motivatedby the fact that
all living organism are related by evolution. That implies that the genes of
species that are closer to each other should exhibit similarities at DNA level.
In biology, the sequences to be compared are either nucleotides (DNA, RNA),
or amino acids (proteins). In the case of nucleotides, one usually aligns iden-
tical nucleotide symbols. When dealing with amino acids thealignment of
two amino acids occurs if they are identical or if one can be derived from the
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other by substitutions that are likely to occur in nature. The comparison of se-
quences comprise pairwise and simultaneous multiple sequence comparisons
(and alignments). Therefore, algorithms for these problems should allow the
deletion, insertion, and replacement of symbols (nucleotides or amino acids)
and they should be capable of comparing large number of long sequences. An
interesting problem related to both sequence alignment andmicroarray pro-
duction (see below) will be described in Section 1.4.

• DNA Fragment Assembly: The fragment assembly problem consists in the
building of the DNA sequence from several hundreds (or even,thousands) of
fragments obtained by biologists in the laboratory. This isan important task in
any genome project since the rest of the phases depend on the accuracy of the
results of this stage. This problem will be detailed in Section 1.3.

• Gene Finding and Identification: It is frequently the case inbioinformatics that
one wishes to delimit parts of sequences that have a biological meaning. Typi-
cal examples are determining the locations of promoters, exons, and introns in
RNA. In particular automatic identification of the genes from the large DNA
sequences is an important problem. Recognition of regulatory regions in DNA
fragments has become particularly popular because of the increasing number
of completely sequenced genomes and mass application of DNAchips.

• Gene Expression Profiling: This is the process for determining when and
where particular genes are expressed. Furthermore, the expression of one gene
is often regulated by the expression of another gene. A detailed analysis of all
this information will provide and understanding about the inter-networking of
different genes and their functional roles. Microarray technology is used for
that purpose.

Microarray technology allows expression levels of thousand of genes to be
measured at the same time. This allows the simultaneous study of tens of
thousand of different DNA nucleotide sequences on a single microscopic glass
slide. Many important biological results can be obtained bycorrectly select-
ing, assembling, analyzing, and interpreting microarray data. Clustering is the
most common task, and allows to identify groups of genes thatshare similar
expressions and maybe similar functions.

• Structure Prediction: Determining the structure of protein is very important
since there exists a strong relation between the structure and the function. This
is one of the most challenging tasks in bioinformatics. There are three main
levels of protein structure:

1. The primary structure is its linear sequence of amino acids.

2. The secondary structure is the folding of the primary structure via hydro-
gen bonds.

3. The tertiary structure refers to the 3-D structure of the protein and it is
generated by packing the secondary structural elements. Generally the
protein function depends on its tertiary structure.
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Table 1.1 Main bionformatic tasks and some representative metaheuristics applied to
them.

Bioinformatic Tasks Metaheuristics

Sequence comparison and alignmentEA [13, 14]MA [15] ACS[16] PSO[17]
DNA fragment assembly EA [18, 19]SA[20] ACS[21]
Gene Finding and Identification EA [22, 23]
Gene Expression Profiling EA [24] MA [25, 26]PSO[27]
Structure Prediction EA [28, 29]MA [30] SA[31] EDA [32]
Phylogenetic Trees EA [33, 34]SS[35] MA [36]

4. The quaternary structure describe the formation of protein complexes
composed of more than one chain of amino acids.

Also, the protein docking problem is related to the structure of the protein.
This problem is to determine how interact with other proteins and plays a key
role in understanding the protein function.

• Phylogenetic Analysis: All species undergo a slow transformation process
called evolution. Phylogenetic trees are labelled binary trees where leaves
represent current species and inner nodes represent hypothesized ancestors.
Phylogenetic analysis is used to study evolutionary relationships.

1.3 THE DNA FRAGMENT ASSEMBLY PROBLEM

In this section we study the behavior of a several metaheuristics for the DNA frag-
ment assembly problem. The DNA fragment assembly is a problem solved in the
early phases of the genome project and thus very important, since the other steps de-
pend on its accuracy. This is an NP-hard combinatorial optimization problem which
is growing in importance and complexity as more research centers become involved
on sequencing new genomes.

In the next subsection, we present background information about the DNA frag-
ment assembly problem. Later, the details of our approachesare presented and how
to design and implement these methods for the DNA fragment assembly problem.
We finish this section analyzing the results of our experiments.

1.3.1 Description of the problem

In order to determine the function of specific genes, scientists have learned to read
the sequence of nucleotides comprising a DNA sequence in a process called DNA
sequencing. To do that, multiple exact copies of the original DNA sequence are
made. Each copy is then cut into short fragments at random positions. These are the
first three steps depicted in Fig. 1.1 and they take place in the laboratory. After the



THE DNA FRAGMENT ASSEMBLY PROBLEM vii

fragment set is obtained, a traditional assemble approach is followed in this order:
overlap, layout, and then consensus. To ensure that enough fragments overlap, the
reading of fragments continues until a coverage is satisfied. These steps are the last
three ones in Fig. 1.1. In what follows, we give a brief description of each of the
three phases, namely overlap, layout, and consensus.

1. Duplicate and
2. Sonicate

3. Sequence

4. Call Bases

CCGTAGCCGGGATCCCGTCC

CCCGAACAGGCTCCCGCCGTAGCCG

AAGCTTTTTCCCGAACAGGCTCCCG

CCGTAGCCGGGATCCCGTCC

CCCGAACAGGCTCCCGCCGTAGCCG

AAGCTTTTCTCCCGAACAGGCTCCCG

5. Layout

AAGCTTTTCTCCCGAACAGGCTCCCGCCGTAGCCGGGATCCCGTCC

6. Call Consensus

Fig. 1.1 Graphical representation of DNA sequencing and assembly



viii METAHEURISTICS IN BIOINFORMATICS: DNA SEQUENCING AND RECONSTRUCTION

Overlap Phase - Find the overlapping fragments. This phase consists in finding the
best or longest match between the suffix of one sequence and the prefix of another.
In this step, we compare all possible pairs of fragments to determine their similarity.
Usually, a dynamic programming algorithm applied to semiglobal alignment is used
in this step. The intuition behind finding the pairwise overlap is that fragments with
a high overlap are very likely next to each other in the targetsequence.

Layout Phase - Find the order of fragments based on the computed similarity score.
This is the most difficult step because it is hard to tell the true overlap due to the
following challenges:

1. Unknown orientation: After the original sequence is cut into many fragments,
the orientation is lost. One does not know which strand should be selected. If
one fragment does not have any overlap with another, it is still possible that its
reverse complement might have such an overlap.

2. Base call errors: There are three types of base call errors: substitution, inser-
tion, and deletion. They occur due to experimental errors inthe electrophoresis
procedure (the method used in the laboratories to read the ADN sequences).
Errors affect the detection of fragment overlaps. Hence, the consensus deter-
mination requires multiple alignments in highly coverage regions.

3. Incomplete coverage: It happens when the algorithm is notable to assemble
a given set of fragments into a single contig. A contig is a sequence in which
the overlap between adjacent fragments is greater or equal to a predefined
threshold (cutoff parameter).

4. Repeated regions: “Repeats” are sequences that appear two or more times in
the target DNA. Repeated regions have caused problems in many genome-
sequencing projects, and none of the current assembly programs can handle
them perfectly.

5. Chimeras and contamination: Chimeras arise when two fragments that are not
adjacent or overlapping on the target molecule join together into one fragment.
Contamination occurs due to the incomplete purification of the fragment from
the vector DNA.

After the order is determined, the progressive alignment algorithm is applied to
combine all the pairwise alignments obtained in the overlapphase.

Consensus Phase - Derive the DNA sequence from the layout. The most common
technique used in this phase is to apply the majority rule in building the consensus.

To measure the quality of a consensus, we can look at the distribution of the
coverage. Coverage at a base position is defined as the numberof fragments at that
position. It is a measure of the redundancy of the fragment data, and it denotes the
number of fragments, on average, in which a given nucleotidein the target DNA is
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expected to appear. It is computed as the number of bases readfrom fragments over
the length of the target DNA [37].

Coverage =

∑n

i=1
length of the fragment i

target sequence length
(1.1)

wheren is the number of fragments. The higher the coverage, the fewer number of
the gaps, and the better the result.

1.3.2 DNA Fragment Assembly Using Metaheuristics

Let us give some details about the most important issues of our implementation and
how we have used the some metaheuristics to solve the DNA fragment assembly
problem. First, we address the common details such as the solution representation
or the fitness function, and then, we describe the specific features of each algorithm.
The methods used are a genetic algorithm (GA) [38], a CHC method [39], a scatter
search (SS) [9], and a simulated annealing (SA) [4] (for moredetail about these
algorithms, we refer the reader to [3].

Common Issues

• Solution Representation: We use the permutation representation with integer
number encoding. A permutation of integers represents a sequence of frag-
ment numbers, where successive fragments overlap. The solution in this rep-
resentation requires a list of fragments assigned with a unique integer ID. For
example, 8 fragments will need eight identifiers: 0, 1, 2, 3, 4, 5, 6, 7. The
permutation representation requires special operators tomake sure that we al-
ways get legal (feasible) solutions. In order to maintain a legal solution, the
two conditions that must be satisfied are (1) all fragments must be presented
in the ordering, and (2) no duplicate fragments are allowed in the ordering.

• Fitness Function: A fitness function is used to evaluate how good a particu-
lar solution is. In the DNA fragment assembly problem, the fitness function
measures the multiple sequences alignment quality and findsthe best scoring
alignment. Our fitness function [18] sums the overlap score (w(f, f1)) for
adjacent fragments (f [i] andf [i + 1]) in a given solution. When this fitness
function is used, the objective is to maximize such a score. It means that the
best individual will have the highest score, since the orderproposed by that
solution has strong overlap between adjacent fragments.

F1(l) =

n−2
∑

i=0

w(f [i]f [i + 1]) (1.2)
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• Program Termination: The program can be terminated in one oftwo ways. We
can specify the maximum number of evaluations to stop the algorithm or we
can also stop the algorithm when the solution is no longer improving.

GA Details

• Population Size: We use a fixed size population to initializerandom solutions.

• Recombination Operator: Two or more parents are recombinedto produce one
or more offspring. The purpose of this operator is to allow partial solutions to
evolve in different individuals and then combine them to produce a better so-
lution. It is implemented by running through the populationand for each indi-
vidual, deciding whether it should be selected for crossover using a parameter
calledcrossover rate(Pc). For our experimental runs, we use the order-based
crossover (OX). This operator first copies the fragment ID between two ran-
dom positions in Parent1 into the offspring’s corresponding positions. We then
copy the rest of the fragments from Parent2 into the offspring in the relative
order presented in Parent2. If the fragment ID is already present in the off-
spring, then we skip that fragment. The method preserves thefeasibility of
every tentative solution in the population.

• Mutation Operator: This operator is used for the modification of single individ-
uals. The reason we need a mutation operator is for the purpose of maintaining
diversity in the population. Mutation is implemented by running through the
whole population and for each individual, deciding whetherto select it for mu-
tation or not, based on a parameter calledmutation rate(Pm). For our exper-
imental runs, we use the swap mutation operator and invert segment mutation
operator. The first operator randomly selects two positionsfrom a permutation
and then swaps the two fragment positions. The second one also selects two
positions from a permutation and then inverts the order of the fragments in par-
tial permutation defined by the two random positions (i.e., we swap two edges
in the equivalent graph). Since these operators do not introduce any duplicate
number in the permutation, the solution they produce is always feasible.

• Selection operator: The purpose of the selection is to weed out the bad solu-
tions. It requires a population as a parameter, processes the population using
the fitness function, and returns a new population. The levelof the selection
pressure is very important. If the pressure is too low, convergence becomes
very slow. If the pressure is too high, convergence will be premature to a local
optimum.

In this work, we use ranking selection mechanism [40], in which the GA first
sorts the individuals based on the fitness and then selects the individuals with
the best fitness score until the specified population size is reached. Preliminary
results favored this method out of a set of other selection techniques analyzed.
Note that the population size will grow whenever a new offspring is produced
by crossover or mutation operators.
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CHC Details

• Incest Prevention: CHC method has a mechanism ofincest preventionto avoid
recombination of similar solutions. Typically, it is used the hamming distance
as measure of similarity but this one is unsuitable for permutations. In the
experiments, we consider that the distance between two solutions is the total
number of edges minus the number of common edges.

• Recombination: The crossover that we use in our CHC, createsa single child
by preserving the edges that parents have in common and the randomly assign-
ing the remaining edges in order to generate a legal permutation.

• Population restart: Whenever the population converges, the population is par-
tially randomized for a restart by using the best individualfound so far as a
template and creating new individuals by repeatedly swapping edges until a
specific fraction of edges differ from those template.

SS Details

• Initial population creation: There exist several ways to get an initial population
of good and disperse solutions. In our experiments, the solutions for the pop-
ulation was randomly generated to achieve a certain level ofdiversity. Then,
we apply theImprovement method(that it will be explained in next section) to
these solutions in order to get better solutions.

• Subsets generation and Recombination operator: It generates all 2-elements
subsets and then it applies the recombination operator to them. For our experi-
mental runs, we use the order-based crossover that it was explained in previous
section.

• Improvement method: We apply a hillclimber procedure to improve the so-
lutions. The hillclimber is a variant of Lin’s two-opt [41].Two position are
randomly selected, and then it inverts the subpermutation by swapping the two
edges. Whenever an improvement is found, the solution is updated, and the
hillclimber continues until it achieves a predetermined number of swap opera-
tions.

SA Details

• Cooling scheme: The cooling schedule controls the values ofthe temperature
parameter. It specifies the initial value and how the temperature is updated at
each stage of the algorithm.

Tk = α ∗ Tk−1 (1.3)

In this case, we use a decreasing function (Eq. 1.3) controlled by theα factor
whereα ∈ (0, 1).
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• Markov chain length: The number of the iterations between two consecutive
changes of the temperature is given by the parameterMarkov Chain length,
whose name alludes the fact that the sequence of accepted solutions is a Markov
chain (a sequence of states in which each state only depends on the previous
one).

• Move operator: This operator generates a new neighbor from current solution.
For our experimental runs, we use the edge swap operator. This operator ran-
domly selects two positions from a permutation and then invert the order of
the fragment between these two fragment positions.

1.3.3 Experimental Results

A target sequence with accession number BX842596 (GI 38524243) was used in this
work. It was obtained from the NCBI web site1. It is the sequence of a Neurospora
crassa (common bread mold) BAC, and is 77,292 base pairs long. To test and an-
alyze the performance of our algorithm, we generated two problem instances with
GenFrag [42]. GenFrag takes a known DNA sequence and uses it as a parent strand
from which to randomly generate fragments according to the criteria (mean fragment
length and coverage of parent sequence) supplied by the user. The first problem in-
stance, 8425964, contains442 fragments with average fragment length of708 bps
and coverage4. The second problem instance, 8425967, contains773 fragments
with average fragment length of703 bps and coverage7. We evaluated the results in
terms of the number of contigs assembled.

We use a GA, a CHC, a SS, and a SA to solve this problem. To allow afair com-
parison among the results of these heuristics, we have configured them to perform a
similar computational effort (the maximum number of evaluations for any algorithm
is 512000). Since the results of these algorithms vary depending on the different
parameter settings, we previously performed a complete analysis to study how the
parameters affect the performance of the algorithms. A summary of the conditions
for our experimentation is found in Table 1.2. We have performed statistical analyses
to ensure the significance of the results and to confirm that our conclusions are valid
(all the results are statistically different).

Table 1.3 shows all the results and performance with all datainstances and al-
gorithms described in this work. The table shows the fitness of the best solution
obtained (b), the average fitness found (f ), average number of evaluations (e), and
average time in seconds (t). We do not show the standard deviation because the
fluctuations in the accuracy of different runs are rather small, claiming that the al-
gorithms are very robust (as proved by the ANOVA results). The best results are
boldfaced.

Let us discuss some of the results found in this table. First,for the two instances,
it is clear that the SA outperforms the rest of the algorithmsfrom every point of view.
In fact, SA obtains better fitness values than the previous best known solutions [20].

1http://www.ncbi.nlm.nih.gov
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Table 1.2 Parameters when heading and optimum solution of the problem.

Common Parameters

Independent runs 30
Cutoff 30
Max Evaluations 512000

Genetic Algorithms

Popsize 1024
Crossover OX (0.8)
Mutation Edge Swap (0.2)
Selection Ranking

CHC

Popsize 50
Crossover specific (1.0)
Restart Edge Swap (30%)

Scatter Search

Initial Popsize 15
Reference set 8 (5 + 3)
Subset generation All 2-elements subsets (28)
Crossover OX (1.0)
Improvement Edge Swap (100 iterations)

Simulated Annealing

Move operator Edge Swap
Markov chain length total number evaluations

100

Coolin scheme Proportional (α = 0.99)

Also, its execution time is the lowest one. The reason of thatis that the SA oper-
ates on a single solution, while the rest of the methods are population-based and in
addition they execute time-consuming operators (specially the crossover operation).

The CHC is the worst algorithm in both, execution time and solution quality. Its
larger runtime is due to the additional computations neededto detect the converge of
the population or to detect incest mating. CHC is not able of solving the DNA frag-
ment assembly problem adequately and maybe it needs a local search (as proposed
by [39]) to reduce the search space.

Table 1.3 Results on the Two Instances.
38524243 4 38524243 7

Algorithm b f e t b f e t

Genetic Algorithm 92772 88996 508471 32.62 108297 104330 499421 85.77
CHC 61423 54973 487698 65.33 86239 81943 490815 162.29
Scatter Search 94127 90341 51142 27.83 262317 254842 52916 66.21
Simulated Annealing 225744 223994 504850 7.92 416838 411818 501731 12.52
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The SS obtains better solutions than the GA, and it also achieves these solutions
in a smaller runtime. This means that a structured application of operator and explicit
reference search points are good idea for this problem.

The computational effort to solve this problem (only considering the number of
evaluations) is similar for all the heuristics with the exception of the SS, because its
most time-consuming operation is the improvement method that does not perform
complete evaluations of the solutions. This result indicates that all the algorithms
examine a similar number of points in the search space, and the difference in the
solution quality is due to how they explore the search space.For this problem, tra-
jectory based methods such as the simulated annealing are more effective than pop-
ulation based ones. Thus, the resulting ranking of algorithms from best to worse is
SA, SS, GA, and finally CHC.

Table 1.4 Final Best Contigs.

Algorithms 38524243 4 38524243 7

GA 6 4
CHC 7 5
SS 6 4
SA 4 2

Finally, Table 1.4 shows the final number of contigs computedin every case. A
contig is a sequence in which the overlap between adjacent fragments is greater than
a threshold (cutoff parameter). Hence, the optimum solution has a single contig.
This value is used as a high-level criterion to judge the whole quality of the results
since, as we said before, it is difficult to capture the dynamics of the problem into
a mathematical function. These values are computed by applying a final step of re-
finement with a greedy heuristic popular in this application[19]. We have found that
in some (extreme) cases it is possible that a solution with a better fitness than other
one generates a larger number of contigs (worse solution). This is the reason for still
needing more research to get a more accurate mapping from fitness to contig num-
ber. The values of this table however confirm again that the SAmethod outperform
the rest clearly, the CHC obtains the worst results, and the SS and GA obtain similar
number of contigs.

1.4 THE SHORTEST COMMON SUPERSEQUENCE PROBLEM

The Shortest Common Supersequence Problem (SCSP) is a classical problem from
the realm of string analysis. Roughly speaking, the SCS problem amounts to finding
a minimal-length sequenceS ∈ Σ∗ of symbols from a certain alphabetΣ, such that
every sequence in a certain setL ∈ 2Σ

∗

can be generated fromS by removing some
symbols of the latter. The resulting combinatorial problemis enormously interest-
ing from the point of view of bioinformatics [43], and bears close relationship with
sequence alignment and microarray production among other tasks.
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Unfortunately, the SCS problem has been shown to be hard under various formu-
lation and restrictions, resulting not just in a NP-hard problem, but also in a non-FPT
problem [44], so practical resolution is likely unaffordable by conventional exact
techniques. Therefore, several heuristics and metaheuristics have been defined to
tackle it. Before detailing these, let us firstly describe more formally the SCSP.

1.4.1 Description of the Problem

We write |s| for the length of sequences (|s1s2 . . . sn| = n), and|Σ| for the cardi-
nality of setΣ. Let ǫ be the empty sequence (|ǫ| = 0). We uses D α for the total
number of occurrences of symbolα in sequences:

s1s2 . . . sn D α =
∑

1≤i≤n,si=α

1.

We write αs for the sequence obtained by appending the symbolα in front of se-
quences. Deleting symbolα from the front of sequences is denoted bys|α.
We also use the| symbol to delete a symbol from the front of a set of strings:
{s1, · · · , sm}|α = {s1|α, · · · , sm|α}.

Sequences is said to be a supersequence ofr (denoted ass ≻ r) if r = ǫ, or if
s|s1

is a supersequence ofr|s1
. Plainly, s ≻ r implies thatr can be embedded in

s, meaning that all symbols inr are present ins in the same exact order, although
not necessarily consecutive. We can now state the SCSP as follows: an instance
I = (Σ, L) for the SCSP is given by a finite alphabetΣ and a setL of m sequences
{s1, · · · , sm}, si ∈ Σ∗. The problem consists of finding a sequences of minimal
length that is a supersequence of each sequence inL (s ≻ si, ∀si ∈ L and |s| is
minimal).

A particularly interesting situation for bioinformatics arises when the sequences
represent molecular data, i.e., sequences of nucleotides or amino acids.

1.4.2 Heuristics and Metaheuristics for the SCSP

One of the most simple and effective algorithms for the SCSP is MAJORITY MERGE

(MM). This is a greedy algorithm that constructs a supersequence incrementally by
adding the symbol most frequently found at the front of the sequences inL, and re-
moving these symbols from the corresponding strings. Ties can be randomly broken,
and the process is repeated until all sequences inL are empty. A drawback of this
algorithm is its myopic functioning, that makes it incapable of grasping the global
structure of strings inL. In particular, MM misses the fact that the strings can have
different lengths [45]. This implies that symbols at the front of short strings will have
more chances to be removed, since the algorithm has still to scan the longer strings.
For this reason, it is less urgent to remove those symbols. Inother words, it is better
to concentrate in shortening longer strings first. This can be done by assigning a
weight to each symbol, depending on the length of the string in whose front is lo-
cated. Brankeet al. [45] propose to use precisely this string length as weight (i.e., the
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weight of a symbol is the sum of the length of all strings at whose front it appears).
This modified heuristic is termed WEIGHTED MAJORITY MERGE (WMM), and its
empirical evaluation indicates it can outperform MM on someproblem instances in
which there is no structure, or the structure is deceptive [46, 45].

The limitations of these simple heuristics have been dealt via the use of more so-
phisticated techniques. One of the first metaheuristic approaches to the SCSP is due
to Brankeet al. [45]. They consider several evolutionary algorithms approaches, and
in particular a GA that uses WMM as decoding mechanism. More precisely, the GA
evolves weights (or meta-weights actually) that are used tofurther refine the weights
computed by the WMM heuristic. This latter algorithm is thenused to compute
tentative supersequences on the basis of these modified weights (this procedure is
similar to the EA used in [47] for the multidimensional knapsack problem, in which
a greedy heuristic was used to generate solutions, and weights were evolved in order
to modify the value of objects). A related approach is presented in [48] based on ant
colony optimization (ACO). Pheromone values take the role of weights, and ants take
probabilistic decisions based on these weights. An interesting feature of this ACO
approach is the fact that pheromone update is not done on an individual basis (i.e.,
just on the symbols being picked each time), but globally (i.e., whenever a symbol is
picked, the pheromone of previous symbols that allowed thatsymbol being picked is
also increased).

More recent approaches to the SCSP are based on EAs [46]. These EAs range
from simple direct approaches based on penalty functions, to more complex ap-
proaches based on repairing mechanisms or indirect encodings:

• Simple EA: solutions are represented as a sequence of symbols corresponding
to a tentative supersequence. Fitness is computed as the length of the superse-
quence, plus a penalty term in case a solution does not contain a valid super-
sequence. This penalty term is precisely the length of the solution provided by
the MM heuristic for the remaining sequences, i.e.,

F (s, L) =







0 if ∀i : si = ǫ
1 + F (s′, L|α) if ∃i : si 6= ǫ and s = αs′

|MM(L)| if ∃i : si 6= ǫ and s = ǫ
(1.4)

Standard recombination and mutation operators can be used in this EA.

• EA + repairing: based on the simple EA, a repair functionρ is used to complete
the supersequence with the symbols indicated by the MM heuristic, i.e.,

ρ (s, L) =















s if ∀i : si = ǫ
ρ(s′, L) if ∃i : si 6= ǫ and ∄i : si = αs′i and s = αs′

αρ(s′, L|α) if ∃i : si = αs′i and s = αs′

MM(L) if ∃i : si 6= ǫ and s = ǫ
(1.5)
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Notice that this function not only turns infeasible solutions to feasible ones,
but it also improves feasible solutions by removing unproductive steps.

• indirect EAs: in the line of the GRASP-like decoding mechanism defined in
[49], the EA evolves sequences of integers that denote the rank of the symbol
that has to be picked at each step, on the basis of the ranking provided by a
simple heuristic such as MM or WMM.

The experimental results [46] indicate that the EA with repairing is better than
the other two approaches for small alphabet sizes, e.g., in the case of nucleotide
sequences. for larger alphabets, the EA with indirect encoding is slightly better. Fur-
ther improvements are obtained from the inclusion of a localsearch technique within
the EA, thus resulting in a MA [15]. Local search is done by removing symbols from
the supersequence, and retaining the deletion if the resulting solution is valid. This
local search procedure is costly, so it has to be used with caution. To be precise, it
is shown that partial lamarckism rates -around 1% or 5%- provide the best tradeoff
between computational cost and quality of results.

A completely different metaheuristic - beam search (BS)- has been also proposed
for the SCSP in [50]. This technique approaches the incremental construction ofk
(a parameter) solutions via a pseudo-population-basedgreedy mechanism inspired in
branch and bound, and the breadth-first traversal of search trees. This is a fully deter-
ministic approach (save for tie breaking) that is shown to provide moderately good
solutions to the problem. Several improvements to this basic technique have been
proposed. On one hand, the hybridization of BS and MAs has been also attempted
in [50]. On the other hand, a probabilistic version of BS (PBS) has been described in
[51]. Both approaches have been shown to be superior to the basic technique, and are
very competitive in general. PBS is remarkable for its success in small sequences,
but starts to suffer scalability problems when the length ofsequences increases.

1.5 EXPERIMENTAL RESULTS

A experimental comparison has been made between the most competitive algorithms
described before, namely the MA-BS hybrid [50] and both the simple heuristics MM
and WMM. The instances considered for the experimentation comprise both DNA
sequences (|Σ| = 4) and protein sequences (|Σ| = 20). In the first case, we have
taken two DNA sequences of the SARS coronavirus from a genomic database2; these
sequences are 158 and 1269 nucleotides long. As to the protein sequences, we have
considered three of them, extracted from Swiss-Prot3:

• Oxytocin: quite important in pregnant women, this protein causes contraction
of the smooth muscle of the uterus and of the mammary gland. The sequence
is 125 amino acid long.

2http://gel.ym.edu.tw/sars/genomes.html
3http://www.expasy.org/sprot/
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Fig. 1.2 Results of MM, WMM, and MA-BS on the SARS158 and SARS1269 instances.
Each group of bars indicate the results of the correspondingalgorithm (MM, WMM and MA-
BS) for the three different values ofp (i.e.,p = {5%, 10%, 20%}). The star indicates the
best solution found by the corresponding algorithm, the cross marks the mean, and the bars
indicate the standard deviation.

• p53: this protein is involved in the cell cycle, and acts as tumorsuppressor in
many tumor types; the sequence is 393 amino acid long.

• Estrogen: involved in the regulation of eukaryotic gene expression,this protein
affects cellular proliferation and differentiation; the sequence is 595 amino
acid long.

In all cases, problem instances are constructed by generating strings from the
target sequence by removing symbols from the latter with probability p%. In our
experiments, problem instances comprise 10 strings, andp = {5%, 10%, 20%}, thus
representing increasingly hard optimization problems.

All algorithms are run for 600 seconds on a P4 2.4GHz 512MB computer. The
particular parameters of the MA component arepopsize= 100, pX = .9, pM = 1/L,
pLS = .01, uniform crossover, tournament selection, and steady-state replacement.
As to the BS component, it considersk = 10, 000. The results (averaged for 20 runs)
are shown in Fig. 1.2-1.3.

As it can be seen, the conventional greedy heuristics cannotcompete with the
hybrid approach. Notice that the results of the latter ones are very close to the puta-
tive optimal (the original sequence to be reconstructed). Actually, it can be seen that
the hybrid MA-BS algorithm manages to find this original solution in all runs. As
reported in [51], the PBS algorithm is also capable of performing satisfactorily for
most of these problem instances, but is affected by the increased dimensionality of
the problem in the SARS 1269 instance, for high values ofp. MA-BS is somewhat
more robust in this sense.
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Fig. 1.3 Results of MM, WMM, and MA-BS on the P53 and Estrogen instances; all tech-
niques manage to find the optimal solution in most runs for theOxytocin instance. The
exceptions are MM and WMM for the 20% case.

1.6 CONCLUSIONS

The increasing of biological data and the needs to analyze and interpret them have
opened several important research lines in computation science since the application
of computational approaches allows to facilitate the understanding of various bio-
logical process. In this chapter we have shown how these problems can be solved
with metaheuristics. In particular, we have tackled two difficult problems: the DNA
fragment assembly problem and the shortest common supersequence problem.

Both the DNA FAP and the SCSP are very complex problems in computational
biology. We tackled the first problem with four sequential heuristics: three popula-
tion based ones (genetic algorithm, scatter search, and CHC), and a trajectory based
method (simulated annealing). We have observed that this last outperforms the rest
of the methods (what implies more research in trajectory based methods in the fu-
ture). It obtains a much better solutions than the others andit runs faster. This local
search algorithm outperformed here the best known fitness values in the literature.
As to the second one, we have shown that the best approach described in the litera-
ture is the hybrid of memetic algorithms and beam search defined by Gallardoet al.
[50]. This hybrid method vastly outperforms conventional greedy heuristics on both
DNA sequences and protein sequences.
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