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1.1 INTRODUCTION

Inthe past decades advances in fields of molecular biologiganomic technologies
have led to a very important growth in the biological infotioa generated by the
scientific community. The needs of biologist to utilize,ergret, and analyze that
large amount of data have increased the importance of theftimatics [1]. This
area is an interdisciplinary field involving biology, compuscience, mathematics,
and statistics for achieving faster and better methodsantésks.

Most of the bioinformatic tasks are formulated as hard comtarial problems.
Thus, is not viable to solve large instances of it using eteattniques such as branch
and bound. As a consequence the use of metaheuristics asrdapiproximate tech-
nigues is mandatory. In short, a metaheuristic [2, 3] candfed as a top-level
general strategy which guides other heuristics to seanchdod solutions. Up to
now there is no commonly accepted definition for the term heaistic. It is just
in the last few years that some researchers in the field toiguidpose a definition.
Some fundamental characteristics:

e The goal is to efficiently explore the search space in ordéntb(near-) opti-
mal solutions.

e Metaheuristic algorithms are usually non-deterministic.

e They may incorporate mechanisms to avoid getting trappedmfined areas
of the search space.
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e The basic concepts of metaheuristics permit an abstrastdescription.
e Metaheuristics are not problem-specific.
e Metaheuristics usually allow an easy parallel impleméonat

e Metaheuristics must make use of domain-specific knowledghae form of
heuristics that are controlled by the upper level strategy.

The main advantages of using metaheuristics to solve lnoimdtics tasks are the
following:

e Problems of bioinformatics seldom need the optimal sofutitn fact, they
require robust, fast and near-optimal solutions.

e Data obtained from laboratories inherently involve errddstaheuristics, due
to their non-deterministics process, are more tolerartese cases than deter-
ministic ones.

e Several tasks in bioinformatics involve the optimizatiddifferent objectives,
thereby making the application of (population based) metaktics more nat-
ural and appropriate.

In this chapter, we first present a brief survey about metésteutechniques and
main bioinformatic tasks. Later, we describe in more dewedl important problems
in the area of sequence analysis: the DNA fragment assemtlth& shortest com-
mon supersequence problem. We use them to exemplify howhegtatics can be
used to solve difficult bioinformatic tasks.

1.2 METAHEURISTICS AND BIOINFORMATICS

In this section we present some background information abmiaheuristics and
problems of bioinformatics.

1.2.1 Metaheuristics

As we said before, a inxmetaheuristic [2, 3] can be defined tagp-devel general
strategy which guides other heuristics to search for goadisas. There are differ-
ent ways to classify and describe metaheuristic algorith@se of them classifies
them depending on the number of solutions: population bésegt of solutions)
and trajectory based (work with a single solution). The ferrstarts with a single
initial solution. At each step of the search the current thotuis replaced by an-
other (often the best) solution found in its neighborhoodrwoften, they allow to
find a local optimal solution, and so are called exploitatisiented methods. On
the other hand, the latter make use of a randomly generafdatn of solutions.
The initial population is enhanced through a natural evotuprocess. At each gen-
eration of the process, the whole population or a part of thygufation is replaced
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by newly generated individuals (often the best ones). Rajoul based methods are
often called exploration-oriented methods. In next paaphmwe discuss the features
of the most important metaheuristics.

Trajectory based metaheuristics:

e Simulated Annealing (SA) [4] is a stochastic search method in which at each
step, the current solution is replaced by another one thatawes the objec-
tive function, randomly selected from the neighborhood. \&&s a control
parameter, called temperature, to determine the probabfliaccepting non-
improving solutions. The objective is to escape from logatiroa, and so to
delay the convergence. The temperature is gradually destlesccording to
a cooling schedule such that few non-improving solutiomsasmicepted at the
end of the search.

e Tabu Search (TS) [5] manages a memory of solutions or moves recently ap-
plied, called theabu list When a local optimum is reached, the search carries
on by selecting a candidate worse than the current solufiomvoid the pre-
vious solution to be chosen again, and so to avoid cycles, i3&udls the
neighboring candidates that have been previously applied.

e Variable Neighborhood Search. The basic idea of the Variable Neighbor-
hood Search (VNS) [6] is to successively explore a set ofgefaied neigh-
borhoods to provide a better solution. It uses the descetitaddo get the
local minimum. Then, it explores either at random or systigaby the set
of neighborhoods. At each step, an initial solution is skigkem the current
neighborhood. The current solution is replaced by a new baad only if
a better solution has been found. The exploration is thistaed from that
solution in the first neighborhood. If no better solutionasifid the algorithm
moves to the next neighborhood, randomly generates a newicsohnd at-
tempts to improve it.

Population based metaheuristics:

e Evolutionary Algorithms (broadly called EAs) are stochastic search tech-
nigues that have been successfully applied in many real amglex applica-
tions (epistatic, multimodal, multi-objective and higlelynstrained problems).
Their success in solving difficult optimization tasks hasmoted the research
in the field known agvolutionary computingeC) [7]. An EA is an iterative
technique that applies stochastic operators on a pool ofichails (the popu-
lation). Every individual in the population is the encodedlsion of a tentative
solution. Initially, this population is generated randgnmAn evaluation func-
tion associates a fitness value to every individual indigptis suitability to
the problem. There exist several well-accepted subclafdeAs depending
on representation of the individuals or how makes each dtdpealgorithm.
The main subclasses of EAs are the genetic algorithm (GA)ugenary pro-
gramming (EP), the evolution strategy (ES), and some otin@rshown here.
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e Estimated Distribution Algorithms(EDAS) are a recent type of optimization
and learning techniques based in the concept of using a aiipubf tentative
solutions to improve the best-so-far optimum for a probl&n The key step
in this algorithm is to estimatg*(z, t) and to generate new points according
to this distribution. This represents a clear differencéhwespect to other
evolutionary algorithms that use recombination and/oratiom operators to
compute a new population of tentative solutions.

e Scatter Search (SS) [9] is a population-based metaheuristic that combines
solutions selected from a reference set to build others. méod starts by
generating an initial population of disperse and good smist The reference
setis then constructed by selecting good representativéamts from the pop-
ulation. The selected solutions are combined to providgisgasolutions to
an improvement procedure. According to the result of sucleguiure the ref-
erence set and even the population of solutions can be updake process
is iterated until a stopping criterion is satisfied. The S®rapch involves
different procedures allowing to generate the initial gapan, to build and
update the reference set, to combine the solutions of suctosenprove the
constructed solutions, etc.

Both approaches -trajectory-based and population-basedbe also combined
to yield more powerful optimization techniques. This istgadarly the case of
memetic algorithms (MA) [10], that blend ideas of different metaheuristics it
the framework of population-based techniques. This carobe th a variety of ways,
but most common approaches rely on the embedding of a toayebtaised technique
within an EA-like algorithm, see [11, 12]. It is also worth ni®ning those meta-
heuristics included in the so-callsdiarm intelligenc@aradigm, such as for example
ant colony optimization (ACO), andparticle swarm optimization (PSO). These
techniques regard optimization as an emergent phenomemniortiie interaction of
simple search agents.

1.2.2 Bioinformatic tasks

Now, in this subsection we describe the main bioinformaisks, giving, at the of the
section, a table with the metaheuristic approaches apfiisdlve them. Based on
the availability of the date and goals, we can classify thb@ms of bioinformatics
as follows:

e Alignment and comparison of Genome and Proteome SequeRcesi the
biological point of view, sequence comparison is motivatgdhe fact that
all living organism are related by evolution. That impliést the genes of
species that are closer to each other should exhibit sitiglgat DNA level.
In biology, the sequences to be compared are either nudésotDNA, RNA),
or amino acids (proteins). In the case of nucleotides, onallysaligns iden-
tical nucleotide symbols. When dealing with amino acids dtignment of
two amino acids occurs if they are identical or if one can biévdd from the
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other by substitutions that are likely to occur in naturee Ebmparison of se-
guences comprise pairwise and simultaneous multiple segueomparisons
(and alignments). Therefore, algorithms for these problshould allow the
deletion, insertion, and replacement of symbols (nudlestior amino acids)
and they should be capable of comparing large number of leqgences. An
interesting problem related to both sequence alignmentaintbarray pro-

duction (see below) will be described in Section 1.4.

DNA Fragment Assembly: The fragment assembly problem stsén the
building of the DNA sequence from several hundreds (or etleysands) of
fragments obtained by biologists in the laboratory. Theismportant task in
any genome project since the rest of the phases depend oociimaey of the
results of this stage. This problem will be detailed in Setti.3.

Gene Finding and Identification: It is frequently the caskiginformatics that
one wishes to delimit parts of sequences that have a bi@bgieaning. Typi-
cal examples are determining the locations of promotem®xand introns in
RNA. In particular automatic identification of the genesnfrthe large DNA
sequences is an important problem. Recognition of regylaggions in DNA
fragments has become particularly popular because of ttiedasing number
of completely sequenced genomes and mass application ofdiibs.

Gene Expression Profiling: This is the process for detemginvhen and

where particular genes are expressed. Furthermore, thessipn of one gene
is often regulated by the expression of another gene. Alddtanalysis of all

this information will provide and understanding about thiei-networking of

different genes and their functional roles. Microarrayhtealogy is used for

that purpose.

Microarray technology allows expression levels of thoasahgenes to be
measured at the same time. This allows the simultaneouy stuténs of

thousand of different DNA nucleotide sequences on a singteascopic glass
slide. Many important biological results can be obtaineccbsgrectly select-
ing, assembling, analyzing, and interpreting microar@padClustering is the
most common task, and allows to identify groups of genesshate similar
expressions and maybe similar functions.

Structure Prediction: Determining the structure of protei very important
since there exists a strong relation between the structutéha function. This
is one of the most challenging tasks in bioinformatics. €hae three main
levels of protein structure:

1. The primary structure is its linear sequence of aminosacid

2. The secondary structure is the folding of the primarycitrnee via hydro-
gen bonds.

3. The tertiary structure refers to the 3-D structure of thetgin and it is
generated by packing the secondary structural elementser&léy the
protein function depends on its tertiary structure.
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Table 1.1 Main bionformatic tasks and some representative metaheuristics applied to
them.

Bioinformatic Tasks Metaheuristics

Sequence comparison and alignmeriA[13, 14]MA [15] ACS[16] PSO[17]
DNA fragment assembly EA[18, 19]SA[20] ACS[21]

Gene Finding and Identification EA[22, 23]

Gene Expression Profiling EA[24] MA[25, 26]1PSO[27]
Structure Prediction EA[28, 29]MA[30] SA[31] EDA[32]
Phylogenetic Trees EA[33, 34]SS[35] MA[36]

4. The quaternary structure describe the formation of pratemplexes
composed of more than one chain of amino acids.

Also, the protein docking problem is related to the struetof the protein.
This problem is to determine how interact with other prateand plays a key
role in understanding the protein function.

e Phylogenetic Analysis: All species undergo a slow transfition process
called evolution. Phylogenetic trees are labelled binagggs where leaves
represent current species and inner nodes represent legmst ancestors.
Phylogenetic analysis is used to study evolutionary retethips.

1.3 THE DNA FRAGMENT ASSEMBLY PROBLEM

In this section we study the behavior of a several metahisifor the DNA frag-
ment assembly problem. The DNA fragment assembly is a proklaved in the
early phases of the genome project and thus very imporiaot the other steps de-
pend on its accuracy. This is an NP-hard combinatorial dpéitron problem which
is growing in importance and complexity as more researckecetvecome involved
on sequencing new genomes.

In the next subsection, we present background informatimutthe DNA frag-
ment assembly problem. Later, the details of our approaafeepresented and how
to design and implement these methods for the DNA fragmesarakly problem.
We finish this section analyzing the results of our experitsien

1.3.1 Description of the problem

In order to determine the function of specific genes, saentiave learned to read
the sequence of nucleotides comprising a DNA sequence inaegs called DNA
sequencing. To do that, multiple exact copies of the origibidA sequence are
made. Each copy is then cut into short fragments at randoitigpus These are the
first three steps depicted in Fig. 1.1 and they take placednathoratory. After the
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fragment set is obtained, a traditional assemble appraafiilowed in this order:
overlap, layout, and then consensus. To ensure that encagiménts overlap, the
reading of fragments continues until a coverage is satisfibése steps are the last
three ones in Fig. 1.1. In what follows, we give a brief dgstioh of each of the
three phases, namely overlap, layout, and consensus.

1. Duplicate and
2. Sonicate

G ORVUR
DOV IV

3. Sequence

4. Call Bases

CCGTAGCCGGGATCCCGTCC
CCCGAACAGGCTCCCGCCGTAGCCG
AAGCTTTTTCCCGAACAGGCTCCCG

5. Layout

CCGTAGCCGGGATCCCGTCC
CCCGAACAGGCTCCCGCCGTAGCCG
AAGCTTTTCTCCCGAACAGGCTCCCG

6. Call Consensus
AAGCTTTTCTCCCGAACAGGCTCCCGCCGTAGCCGGGATCCCGTCC

Fig. 1.1 Graphical representation of DNA sequencing and assembly
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Overlap Phase - Find the overlapping fragments. This phase consists inrfinthe
best or longest match between the suffix of one sequence amirefix of another.
In this step, we compare all possible pairs of fragments terdene their similarity.
Usually, a dynamic programming algorithm applied to sentgl alignment is used
in this step. The intuition behind finding the pairwise oaerls that fragments with
a high overlap are very likely next to each other in the tasgeuence.

Layout Phase - Find the order of fragments based on the computed sinyilacibre.
This is the most difficult step because it is hard to tell theetoverlap due to the
following challenges:

1. Unknown orientation: After the original sequence is ot imany fragments,
the orientation is lost. One does not know which strand shbalselected. If
one fragment does not have any overlap with another, itligsssible that its
reverse complement might have such an overlap.

2. Base call errors: There are three types of base call esabstitution, inser-
tion, and deletion. They occur due to experimental errotiserelectrophoresis
procedure (the method used in the laboratories to read the gdduences).
Errors affect the detection of fragment overlaps. Henae cinsensus deter-
mination requires multiple alignments in highly coveraggions.

3. Incomplete coverage: It happens when the algorithm isahtg to assemble
a given set of fragments into a single contig. A contig is ausage in which
the overlap between adjacent fragments is greater or equalpredefined
threshold (cutoff parameter).

4. Repeated regions: “Repeats” are sequences that appear tore times in
the target DNA. Repeated regions have caused problems iy gemome-
sequencing projects, and none of the current assembly arsgcan handle
them perfectly.

5. Chimeras and contamination: Chimeras arise when twarfeads that are not
adjacent or overlapping on the target molecule join togstite one fragment.
Contamination occurs due to the incomplete purificatiorhefftagment from
the vector DNA.

After the order is determined, the progressive alignmegarithm is applied to
combine all the pairwise alignments obtained in the oveplagse.

Consensus Phase - Derive the DNA sequence from the layout. The most common
technique used in this phase is to apply the majority rulauitding the consensus.

To measure the quality of a consensus, we can look at thebdistm of the
coverage. Coverage at a base position is defined as the nofrfbgments at that
position. It is a measure of the redundancy of the fragmetat, dand it denotes the
number of fragments, on average, in which a given nucleatidiee target DNA is
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expected to appear. It is computed as the number of basefoeafragments over
the length of the target DNA [37].

Yoi i length of the fragment i
target sequence length

Coverage = (1.2)
wheren is the number of fragments. The higher the coverage, therfeumber of
the gaps, and the better the result.

1.3.2 DNA Fragment Assembly Using Metaheuristics

Let us give some details about the most important issuesrahmalementation and
how we have used the some metaheuristics to solve the DNAnEagassembly
problem. First, we address the common details such as thémolepresentation
or the fitness function, and then, we describe the speciftarfesiof each algorithm.
The methods used are a genetic algorithm (GA) [38], a CHC ok}B9], a scatter
search (SS) [9], and a simulated annealing (SA) [4] (for naetail about these
algorithms, we refer the reader to [3].

Common Issues

e Solution Representation: We use the permutation repraemtwith integer
number encoding. A permutation of integers represents aes®g of frag-
ment numbers, where successive fragments overlap. Thiosoin this rep-
resentation requires a list of fragments assigned with quainteger ID. For
example, 8 fragments will need eight identifiers: 0, 1, 2,,3546, 7. The
permutation representation requires special operatarat@ sure that we al-
ways get legal (feasible) solutions. In order to maintaiegal solution, the
two conditions that must be satisfied are (1) all fragmentstrba presented
in the ordering, and (2) no duplicate fragments are allowetié ordering.

e Fitness Function: A fithess function is used to evaluate howadga particu-
lar solution is. In the DNA fragment assembly problem, theefits function
measures the multiple sequences alignment quality andtfiredsest scoring
alignment. Our fitness function [18] sums the overlap scargf(f1)) for
adjacent fragmentsf(i] and f[¢ + 1]) in a given solution. When this fitness
function is used, the objective is to maximize such a scdrmelans that the
best individual will have the highest score, since the opteposed by that
solution has strong overlap between adjacent fragments.

n—2

Fi() = ) w(filfli+1]) (1.2)

~
Il
o
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e Program Termination: The program can be terminated in ohemvays. We
can specify the maximum number of evaluations to stop therifgn or we
can also stop the algorithm when the solution is no longerawipg.

GA Details
e Population Size: We use a fixed size population to initial@edom solutions.

e Recombination Operator: Two or more parents are recombgiduce one
or more offspring. The purpose of this operator is to allowtiphsolutions to
evolve in different individuals and then combine them todurce a better so-
lution. Itis implemented by running through the populatéord for each indi-
vidual, deciding whether it should be selected for crossosing a parameter
calledcrossover rat€ P.). For our experimental runs, we use the order-based
crossover (OX). This operator first copies the fragment IBvieen two ran-
dom positions in Parentl into the offspring’s correspogdgiasitions. We then
copy the rest of the fragments from Parent2 into the offgpitmthe relative
order presented in Parent2. If the fragment ID is alreadgqarein the off-
spring, then we skip that fragment. The method preservesetimbility of
every tentative solution in the population.

e Mutation Operator: This operator is used for the modificatibsingle individ-
uals. The reason we need a mutation operator is for the peigdesaintaining
diversity in the population. Mutation is implemented by ming through the
whole population and for each individual, deciding whetioeselect it for mu-
tation or not, based on a parameter cahmatation rate(P,,). For our exper-
imental runs, we use the swap mutation operator and invgmeert mutation
operator. The first operator randomly selects two posititom a permutation
and then swaps the two fragment positions. The second oaeeliscts two
positions from a permutation and then inverts the orderefitlgments in par-
tial permutation defined by the two random positions (i.@ swap two edges
in the equivalent graph). Since these operators do notdat® any duplicate
number in the permutation, the solution they produce is yiaasible.

e Selection operator: The purpose of the selection is to we¢the bad solu-
tions. It requires a population as a parameter, processgojbulation using
the fitness function, and returns a new population. The lef/ie selection
pressure is very important. If the pressure is too low, coymece becomes
very slow. If the pressure is too high, convergence will benpaiture to a local
optimum.

In this work, we use ranking selection mechanism [40], inclitthe GA first
sorts the individuals based on the fitness and then selextadividuals with
the best fithess score until the specified population sizsishred. Preliminary
results favored this method out of a set of other selectionrtigues analyzed.
Note that the population size will grow whenever a new offgpis produced
by crossover or mutation operators.
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CHC Details

e Incest Prevention: CHC method has a mechanisimagfst preventioto avoid
recombination of similar solutions. Typically, it is uségethamming distance
as measure of similarity but this one is unsuitable for peations. In the
experiments, we consider that the distance between twdaadls the total
number of edges minus the number of common edges.

e Recombination: The crossover that we use in our CHC, creasaggle child
by preserving the edges that parents have in common andttiemdy assign-
ing the remaining edges in order to generate a legal perioantat

e Population restart: Whenever the population convergesptipulation is par-
tially randomized for a restart by using the best individioaind so far as a
template and creating new individuals by repeatedly swappdges until a
specific fraction of edges differ from those template.

SS Details

e Initial population creation: There exist several ways tbageinitial population
of good and disperse solutions. In our experiments, thdisakifor the pop-
ulation was randomly generated to achieve a certain leveivefsity. Then,
we apply thdmprovement methofdhat it will be explained in next section) to
these solutions in order to get better solutions.

e Subsets generation and Recombination operator: It gerseadit2-elements
subsets and then it applies the recombination operatoetn.tkror our experi-
mental runs, we use the order-based crossover that it wieiesg in previous
section.

e Improvement method: We apply a hillclimber procedure toriowve the so-
lutions. The hillclimber is a variant of Lin’s two-opt [41]Two position are
randomly selected, and then it inverts the subpermutafiawapping the two
edges. Whenever an improvement is found, the solution iatepdd and the
hillclimber continues until it achieves a predeterminedhier of swap opera-
tions.

SA Details

e Cooling scheme: The cooling schedule controls the valuéseofemperature
parameter. It specifies the initial value and how the tentpegas updated at
each stage of the algorithm.

Tk = * Tk—l (13)

In this case, we use a decreasing function (Eq. 1.3) coattdly thex factor
wherea € (0,1).
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e Markov chain length: The number of the iterations betweem ¢ansecutive
changes of the temperature is given by the paraniéterkov_Chain_length,
whose name alludes the fact that the sequence of accepttidnsiis a Markov
chain (a sequence of states in which each state only depenitie @revious
one).

e Move operator: This operator generates a new neighbor froneiot solution.
For our experimental runs, we use the edge swap operata.oplerator ran-
domly selects two positions from a permutation and thenrirtbe order of
the fragment between these two fragment positions.

1.3.3 Experimental Results

A target sequence with accession number BX842596 (Gl 38824/as used in this
work. It was obtained from the NCBI web sitelt is the sequence of a Neurospora
crassa (common bread mold) BAC, and is 77,292 base pairs [bmgest and an-
alyze the performance of our algorithm, we generated twlpro instances with
GenFrag [42]. GenFrag takes a known DNA sequence and usea parent strand
from which to randomly generate fragments according to ther@ (mean fragment
length and coverage of parent sequence) supplied by theTisefirst problem in-
stance, 842594, containsi42 fragments with average fragment length768 bps
and coveragd. The second problem instance, 842596containsr73 fragments
with average fragment length @03 bps and coveragé We evaluated the results in
terms of the number of contigs assembled.

We use a GA, a CHC, a SS, and a SA to solve this problem. To alfav eom-
parison among the results of these heuristics, we have emafighem to perform a
similar computational effort (the maximum number of evélas for any algorithm
is 512000). Since the results of these algorithms vary déipgron the different
parameter settings, we previously performed a completlysiado study how the
parameters affect the performance of the algorithms. A samrof the conditions
for our experimentation is found in Table 1.2. We have penfed statistical analyses
to ensure the significance of the results and to confirm that@oclusions are valid
(all the results are statistically different).

Table 1.3 shows all the results and performance with all dettances and al-
gorithms described in this work. The table shows the fithégdhie best solution
obtained §), the average fitness found)( average number of evaluationg,(and
average time in seconds)( We do not show the standard deviation because the
fluctuations in the accuracy of different runs are ratherlsroiming that the al-
gorithms are very robust (as proved by the ANOVA results).e Dest results are
boldfaced.

Let us discuss some of the results found in this table. Fosthe two instances,
itis clear that the SA outperforms the rest of the algoritifirom every point of view.
In fact, SA obtains better fithess values than the previogskrewn solutions [20].

Ihtt p: // www. ncbi . nl m ni h. gov
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Tablel1.2 Parameterswhen heading and optimum solution of the problem.

Common Parameters

Independent runs 30
Cutoff 30
Max Evaluations 512000
Genetic Algorithms
Popsize 1024
Crossover 0X (0.8)
Mutation Edge Swap (0.2)
Selection Ranking
CHC

Popsize 50
Crossover specific (1.0)
Restart Edge Swap (30%)

Scatter Search
Initial Popsize 15
Reference set 8(5+3)
Subset generation All 2-elements subsets (28)
Crossover 0OX (1.0)
Improvement Edge Swap (100 iterations)

Simulated Annealing

Move operator Edge Swap
Markov chain length tetalnumber cvaluations
Coolin scheme Proportionak(= 0.99)

Also, its execution time is the lowest one. The reason of ithéttat the SA oper-
ates on a single solution, while the rest of the methods apelption-based and in
addition they execute time-consuming operators (spgdiadl crossover operation).

The CHC is the worst algorithm in both, execution time andisoh quality. Its
larger runtime is due to the additional computations ne¢oléétect the converge of
the population or to detect incest mating. CHC is not ableobfisg the DNA frag-
ment assembly problem adequately and maybe it needs a Esrahs(as proposed
by [39]) to reduce the search space.

Table1.3 Resultson the Two Instances.

38524243_4 385242437
Algorithm b f e t b f e t
Genetic Algorithm 92772 88996 508471 32.62 108297 104330 9429 85.77
CHC 61423 54973 487698  65.33 86239 81943 490815  162.29
Scatter Search 94127 90341 51142 27.83 262317 254842 52916 66.21

Simulated Annealing 225744 223994 504850 7.92 416838 411818 501731 1252
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The SS obtains better solutions than the GA, and it also eebithese solutions
in a smaller runtime. This means that a structured apptinatf operator and explicit
reference search points are good idea for this problem.

The computational effort to solve this problem (only coesidg the number of
evaluations) is similar for all the heuristics with the eptien of the SS, because its
most time-consuming operation is the improvement methatldbes not perform
complete evaluations of the solutions. This result inéisdhat all the algorithms
examine a similar number of points in the search space, andifference in the
solution quality is due to how they explore the search sp&oe this problem, tra-
jectory based methods such as the simulated annealing aecaffiective than pop-
ulation based ones. Thus, the resulting ranking of algmstfrom best to worse is
SA, SS, GA, and finally CHC.

Table1.4 Final Best Contigs.
Algorithms ~ 38524243.4 385242437

GA 6 4
CHC 7 5
SS 6 4
SA 4 2

Finally, Table 1.4 shows the final number of contigs compinieglvery case. A
contig is a sequence in which the overlap between adjacamtfents is greater than
a threshold (cutoff parameter). Hence, the optimum satutias a single contig.
This value is used as a high-level criterion to judge the witplality of the results
since, as we said before, it is difficult to capture the dymanoif the problem into
a mathematical function. These values are computed by iygpdyfinal step of re-
finement with a greedy heuristic popular in this applicafit®]. We have found that
in some (extreme) cases it is possible that a solution withtgebfitness than other
one generates a larger number of contigs (worse solutidn3.i3 the reason for still
needing more research to get a more accurate mapping froesdito contig num-
ber. The values of this table however confirm again that ther@thod outperform
the rest clearly, the CHC obtains the worst results, and $arl GA obtain similar
number of contigs.

1.4 THE SHORTEST COMMON SUPERSEQUENCE PROBLEM

The Shortest Common Supersequence Problem (SCSP) is malggsblem from

the realm of string analysis. Roughly speaking, the SCSlpnolamounts to finding
a minimal-length sequence € X* of symbols from a certain alphab¥®f such that

every sequence in a certain get 2~ can be generated fro$ by removing some
symbols of the latter. The resulting combinatorial probisrenormously interest-
ing from the point of view of bioinformatics [43], and beatese relationship with
sequence alignment and microarray production among abkst
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Unfortunately, the SCS problem has been shown to be hard wvadeus formu-
lation and restrictions, resulting not just in a NP-hardybem, but also in a non-FPT
problem [44], so practical resolution is likely unaffordalby conventional exact
techniques. Therefore, several heuristics and metaliesrisave been defined to
tackle it. Before detailing these, let us firstly describeeformally the SCSP.

1.4.1 Description of the Problem

We write |s| for the length of sequence(|s1ss . .. s,| = n), and|X| for the cardi-
nality of setX. Lete be the empty sequenck|(= 0). We uses > « for the total
number of occurrences of symhelin sequencs:

§182...5, D a= Z 1.

1<i<n,s;=«

We write as for the sequence obtained by appending the symbiol front of se-
quences. Deleting symbola from the front of sequence is denoted bys|,.
We also use the symbol to delete a symbol from the front of a set of strings:
{Sla Tty Sm}|o¢ — {31|o¢7 Tty Sm|a}-

Sequence is said to be a supersequence-dflenoted as >~ r) if r = ¢, orif
s|s, IS @ supersequence of;,. Plainly, s > r implies thatr can be embedded in
s, meaning that all symbols in are present i in the same exact order, although
not necessarily consecutive. We can now state the SCSPlawgolan instance
I = (%, L) for the SCSP is given by a finite alphal¥efind a sef. of m sequences

{s1,",8m}, $; € X*. The problem consists of finding a sequercaf minimal
length that is a supersequence of each sequenée(in>- s;,Vs; € L and|s| is
minimal).

A particularly interesting situation for bioinformaticsses when the sequences
represent molecular data, i.e., sequences of nucleotidasioo acids.

1.4.2 Heuristicsand Metaheuristics for the SCSP

One of the most simple and effective algorithms for the SGI®AJORITY MERGE
(MM). This is a greedy algorithm that constructs a supersaqa incrementally by
adding the symbol most frequently found at the front of thguemces inl, and re-
moving these symbols from the corresponding strings. Taase randomly broken,
and the process is repeated until all sequencdsane empty. A drawback of this
algorithm is its myopic functioning, that makes it incapabf grasping the global
structure of strings ir. In particular, MM misses the fact that the strings can have
differentlengths [45]. This implies that symbols at thentrof short strings will have
more chances to be removed, since the algorithm has stitlaio the longer strings.
For this reason, it is less urgent to remove those symbolsthier words, it is better
to concentrate in shortening longer strings first. This cardbne by assigning a
weight to each symbol, depending on the length of the stringhose front is lo-
cated. Branket al. [45] propose to use precisely this string length as weigét, he
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weight of a symbol is the sum of the length of all strings at adéront it appears).
This modified heuristic is termed 'WGHTED MAJORITY MERGE (WMM), and its
empirical evaluation indicates it can outperform MM on sgoneblem instances in
which there is no structure, or the structure is deceptie43].

The limitations of these simple heuristics have been deéalthe use of more so-
phisticated techniques. One of the first metaheuristicagugres to the SCSP is due
to Brankeet al. [45]. They consider several evolutionary algorithms apptes, and
in particular a GA that uses WMM as decoding mechanism. Mogeipely, the GA
evolves weights (or meta-weights actually) that are usédrtber refine the weights
computed by the WMM heuristic. This latter algorithm is thesed to compute
tentative supersequences on the basis of these modifiethtwéihis procedure is
similar to the EA used in [47] for the multidimensional knapk problem, in which
a greedy heuristic was used to generate solutions, and tseigie evolved in order
to modify the value of objects). A related approach is presgtin [48] based on ant
colony optimization (ACO). Pheromone values take the rélgaights, and ants take
probabilistic decisions based on these weights. An intieigéeature of this ACO
approach is the fact that pheromone update is not done ordasidnal basis (i.e.,
just on the symbols being picked each time), but globaley (ivhenever a symbol is
picked, the pheromone of previous symbols that alloweddjraibol being picked is
also increased).

More recent approaches to the SCSP are based on EAs [46]e BAesrange
from simple direct approaches based on penalty functiansndre complex ap-
proaches based on repairing mechanisms or indirect ergsdin

e Simple EA: solutions are represented as a sequence of sgmiroésponding
to a tentative supersequence. Fitness is computed as tith &frthe superse-
guence, plus a penalty term in case a solution does not coataalid super-
sequence. This penalty term is precisely the length of theien provided by
the MM heuristic for the remaining sequences, i.e.,

0 ifVi:s; =€
F(s,L)y=< 14+ F(s,L|y) ifJi:s; #eands=as (1.4)
IMM(L)] ifJdi:s; Aecands=¢

Standard recombination and mutation operators can be ngbisiEA.

e EA +repairing: based on the simple EA, a repair funcp@sused to complete
the supersequence with the symbols indicated by the MM &tieiri.e.,

s ifVi:s;=¢
p(s’, L) if 3i:s; #cand i : 5, = as) and s = as’
ap(s’,L|o) if Fi:s; =as,and s = as’

MM(L) ifJdi:s; Zeands=¢

p(s, L) =

(1.5)
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Notice that this function not only turns infeasible solusato feasible ones,
but it also improves feasible solutions by removing unpaie steps.

e indirect EAs: in the line of the GRASP-like decoding meclsamidefined in
[49], the EA evolves sequences of integers that denote tiieafthe symbol
that has to be picked at each step, on the basis of the rankawigpd by a
simple heuristic such as MM or WMM.

The experimental results [46] indicate that the EA with igpg is better than
the other two approaches for small alphabet sizes, e.ghdrcase of nucleotide
sequences. for larger alphabets, the EA with indirect eimgdd slightly better. Fur-
ther improvements are obtained from the inclusion of a leeatch technique within
the EA, thus resulting in a MA [15]. Local search is done by oging symbols from
the supersequence, and retaining the deletion if the negudblution is valid. This
local search procedure is costly, so it has to be used wittiazauTo be precise, it
is shown that partial lamarckism rates -around 1% or 5%-igdethe best tradeoff
between computational cost and quality of results.

A completely different metaheuristic - beam search (BS}-Ieen also proposed
for the SCSP in [50]. This technique approaches the incrémheanstruction of
(a parameter) solutions via a pseudo-population-basedygmechanism inspired in
branch and bound, and the breadth-first traversal of seageh.tThis is a fully deter-
ministic approach (save for tie breaking) that is shown twvjgte moderately good
solutions to the problem. Several improvements to thisco@sihnique have been
proposed. On one hand, the hybridization of BS and MAs has hks® attempted
in [50]. On the other hand, a probabilistic version of BS (PB&s been described in
[51]. Both approaches have been shown to be superior to Hieteahnique, and are
very competitive in general. PBS is remarkable for its sesde small sequences,
but starts to suffer scalability problems when the lengtheafuences increases.

15 EXPERIMENTAL RESULTS

A experimental comparison has been made between the mopttitive algorithms
described before, namely the MA-BS hybrid [50] and both thepte heuristics MM
and WMM. The instances considered for the experimentationprise both DNA
sequences|X| = 4) and protein sequencel®( = 20). In the first case, we have
taken two DNA sequences of the SARS coronavirus from a gemdatabase these
sequences are 158 and 1269 nucleotides long. As to the pesguences, we have
considered three of them, extracted from SwissProt

e Oxytocin quite important in pregnant women, this protein causesraotion
of the smooth muscle of the uterus and of the mammary gland.séhuence
is 125 amino acid long.

2http://gel.ym edu.tw sars/genomes. ht n
Shtt p: // www. expasy. or g/ sprot/
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Fig. 1.2 Results of MM, WMM, and MA-BS on the SARS158 and SARS1269anses.
Each group of bars indicate the results of the corresporalgngyithm (MM, WMM and MA-
BS) for the three different values pf(i.e.,p = {5%, 10%, 20%}). The star indicates the
best solution found by the corresponding algorithm, thessmarks the mean, and the bars
indicate the standard deviation.

e p53 this protein is involved in the cell cycle, and acts as tuswgpressor in
many tumor types; the sequence is 393 amino acid long.

e Estrogen involved in the regulation of eukaryotic gene expressibis, protein
affects cellular proliferation and differentiation; thegaence is 595 amino
acid long.

In all cases, problem instances are constructed by gengrstiings from the
target sequence by removing symbols from the latter wittbabdity p%. In our
experiments, problem instances comprise 10 stringspaad 5%, 10%, 20%}, thus
representing increasingly hard optimization problems.

All algorithms are run for 600 seconds on a P4 2.4GHz 512MBpaer. The
particular parameters of the MA componentpopsize- 100, px = .9,pym = 1/L,
prs = .01, uniform crossover, tournament selection, and steadg-séplacement.
As to the BS component, it considdrs= 10, 000. The results (averaged for 20 runs)
are shown in Fig. 1.2-1.3.

As it can be seen, the conventional greedy heuristics catomapete with the
hybrid approach. Notice that the results of the latter omewveary close to the puta-
tive optimal (the original sequence to be reconstructedjudlly, it can be seen that
the hybrid MA-BS algorithm manages to find this original smn in all runs. As
reported in [51], the PBS algorithm is also capable of penfag satisfactorily for
most of these problem instances, but is affected by the asexd dimensionality of
the problem in the SARS 1269 instance, for high values. dflIA-BS is somewhat
more robust in this sense.
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Fig. 1.3 Results of MM, WMM, and MA-BS on the P53 and Estrogen instanedl tech-
nigues manage to find the optimal solution in most runs for@xgtocin instance. The
exceptions are MM and WMM for the 20% case.

1.6 CONCLUSIONS

The increasing of biological data and the needs to analyddrdaerpret them have
opened several important research lines in computati@mseisince the application
of computational approaches allows to facilitate the usi@@ding of various bio-
logical process. In this chapter we have shown how thesdegmshcan be solved
with metaheuristics. In particular, we have tackled twdiclilt problems: the DNA
fragment assembly problem and the shortest common supenseg problem.

Both the DNA FAP and the SCSP are very complex problems in coational
biology. We tackled the first problem with four sequentialifigtics: three popula-
tion based ones (genetic algorithm, scatter search, and Gin@ a trajectory based
method (simulated annealing). We have observed that thiglaperforms the rest
of the methods (what implies more research in trajectorgthasethods in the fu-
ture). It obtains a much better solutions than the otherdtands faster. This local
search algorithm outperformed here the best known fithdsgewan the literature.
As to the second one, we have shown that the best approadtibéesio the litera-
ture is the hybrid of memetic algorithms and beam search efiy Gallardeet al.
[50]. This hybrid method vastly outperforms conventionaegy heuristics on both
DNA sequences and protein sequences.
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