
1 Exact, Metaheuristic and
Hybrid Approaches to
Multi-dimensional Knapsack
Problems

J. E. GALLARDO, C. COTTA, A. J. FERNÁNDEZ,
Dpto. de Lenguajes y Ciencias de la Computación, E.T.S.I. Informática
Campus Teatinos 29071, Málaga, SPAIN
e-mail : {pepeg,ccottap,afdez}@lcc.uma.es

1.1 INTRODUCTION

This chapter reviews our recent work on applying hybrid collaborative tech-
niques that integrate Branch and Bound (B&B) and Memetic Algorithms
(MAs) in order design effective heuristics for the Multidimensional Knapsack
Problem (MKP). To this end, let us recall that Branch and Bound (B&B) [1]
is an exact algorithm for finding optimal solutions to combinatorial problems,
that, basically works by producing convergent lower and upper bounds for
the optimal solution using an implicit enumeration scheme. A different ap-
proach to optimization is provided by evolutionary algorithms [2, 3, 4] (EAs).
These are powerful heuristics for optimization problems based on principles
of natural evolution, namely adaptation and survival of the fittest. Starting
from a population of randomly generated individuals (representing solutions),
a process consisting of selection, (promising solutions are chosen from the pop-
ulation) reproduction (new solutions are created by combining selected ones)
and replacement (some solutions are replaced by the new ones) is repeated.
A fitness function measuring the quality of the solution is used to guide the
process.

A key aspect of EAs is robustness, meaning that they can be deployed
on a wide range of problems. However, it has been shown that some kind
of domain knowledge has to be incorporated into EAs for them to be com-

i



ii APPROACHES TO MULTI-DIMENSIONAL KNAPSACK PROBLEMS

petitive with other domain specific optimization techniques [5, 6, 7]. A very
successful approach to achieve this knowledge-augmentation are Memetic Al-
gorithms (MAs) [8, 9, 10, 11], that integrate domain-specific heuristics into
the EA. In this chapter hybridizations of an MAs with B&B are presented.
These hybridizations are aimed to combining the search capabilities of both
algorithms in a synergetic way.

The remainder of the chapter is organized as follows: in the rest of this
section, general descriptions of Branch and Bound and Memetic Algorithms
will be given. In Section 1.2, the Multidimensional Knapsack Problem will be
described along with Branch and Bound and a Memetic Algorithm to tackle it.
Then, Section 1.3 presents our hybrid proposals integrating both approaches.
Subsequently, Section 1.4 shows and analyzes the empirical results obtained
by the application of each of the described approaches on different instances
of the benchmark. Finally, Section 1.5 provides the conclusions and outlines
ideas for future work.

1.1.1 Branch and Bound

The Branch and Bound algorithm (B&B) is a very general exact technique,
first proposed in [12], that can be used to solve combinatorial optimization
problems. B&B is basically an enumeration approach that prunes the non-
promising regions of the search space [1]. For this purpose, the algorithm uses
two key ingredients: a branching rule, that provides a way of dividing a region
of the search space into smaller regions (ideally partitions of the original one),
and a way to calculate an upper bound (assuming a maximization problem)
on the best solution that can be attained in a region of the search space.

A very general pseudo code for this algorithm is shown in Figure 1.1. The
algorithm maintains the best solution found so far (sol in the pseudo code),
usually named the incumbent one. B&B starts by considering the whole search
space of the problem (S). This is split into several subspaces (denoted by
set C in the algorithm) using the branching rule. If a subspace is trivially
solved and its value improves on the incumbent solution, the latter is updated.
Otherwise, a bound for each subspace is calculated. If the bound of one
subspace is worse than the incumbent solution, this part of the search space
can safely be eliminated (this is called pruning). Otherwise, the process goes
on until all subspaces are either solved or pruned, and the final value of the
incumbent solution is returned as an optimal solution to the problem.

The efficiency of the algorithm relies on the effectiveness of the branching
rule and the accuracy of the bounds. If these ingredients of the algorithm
are not well defined, the technique degenerates into an exhaustive inefficient
search. On one side, an effective branching rule will avoid revisiting the
same regions of the search space. One the other side, tight bounds will allow
more pruning. Usually, it is difficult to find tight bounds that are not too
expensive computationally, and a balance has to be found between the amount
of pruning achieved and the computational complexity of the bounds. In any



INTRODUCTION iii

Branch and Bound Algorithm

1 : open := S
2 : sol := null /* whose value is assumed −∞ */
3 : while open 6= ∅ do
4 : select s from open
5 : open := open \ {s}
6 : C := branch on s
7 : for c ∈ C do
8 : if is Solved(c) then
9 : if value(c) > value(sol) then sol := c end if

10 : else if Upper Bound(c) > value(sol) then
11 : open := open ∪ {c}
12 : end if
13 : end for
14 : end while
15 : return sol

Fig. 1.1 Generic template for Branch and Bound algorithm.

case, these techniques cannot practically be used on large instances for many
combinatorial optimization problems (COPs).

Note that the search performed by the algorithm can be represented as a
tree traversed in a certain way (that depends on the order in which subspaces
are introduced and extracted in set open). If a depth-first strategy is used,
the memory required grows linearly with the depth of the tree; hence large
problems can be considered. However, the time-consumption can be exces-
sive. On the other hand, a best-first strategy minimizes the number of nodes
explored, but the size of the search tree (that is, the number of nodes kept for
latter expansion) will grow exponentially in general. A third option is to use
a breadth-first traversal (i.e., every node in a level is explored before moving
on to the next). In principle, this option would have the drawbacks of the
previous two strategies, unless a heuristic choice is made: to keep at each
level only the best nodes (according to some quality measure). This implies
sacrificing exactness, but provides a very effective heuristic search approach.
The name Beam Search (BS) has been coined to denote this strategy [13, 14].
As such, BS algorithms are incomplete derivatives of B&B algorithms, and
are thus heuristic methods. A generic description of BS is depicted in Fig-
ure 1.2. Essentially, BS works by extending every partial solution from a set
B (called the beam) in all possible ways. Each new partial solution so gener-
ated is stored in a set B’. When all solutions in B have been processed, the
algorithm constructs a new beam by selecting the best up to kbw (called the



iv APPROACHES TO MULTI-DIMENSIONAL KNAPSACK PROBLEMS

Beam Search Algorithm

1 : sol := null /* whose value is assumed −∞ */
2 : B := { () }
3 : while B 6= ∅ do
4 : B′ := ∅
5 : for s ∈ B do
6 : for c ∈ Children of(s) do
7 : if is Completed(c) then
8 : if value(c) > value(sol) then sol := c end if
9 : else if Upper Bound(c) > sol then

10 : B′ := B′ ∪ { c }
11 : end if
12 : end for
13 : end for
14 : B := select best kbw nodes from B’
15 : end while
16 : return sol

end function

Fig. 1.2 Generic template for Beam Search algorithm.

beam width) solutions from B’. Clearly, a way of estimating the quality of
partial solutions, such as an upper bound or an heuristic, is needed for this.

One context in which B&B is frequently used is Integer Programming (IP)
[15]. IP is a generalization of Linear Programming (LP) [16], so let us first
describe this latter problem. In LP there are decision variables, constraints
and an objective function. Variables take real values, and both the objective
function and the constraints must be expressed as a series of linear expressions
in the decision variables. The goal is to find an assignment for the variables
maximizing (or minimizing) the objective function. Linear programs can be
used to model many practical problems, and nowadays solvers can find optimal
solutions to problems with hundred of thousands of constraints and variables
in reasonable time. The first proposed algorithm to solve LPs was the Simplex
Method devised by Dantzig in 1947 [17], that performs very well in practice
although its performance is exponential in the worst case. Afterwards, other
methods that run in polynomial time have been proposed like Interior Points
methods [18]. In practice, the Simplex Algorithm works very well in most
cases, and other approaches are only useful for very large instances.

An Integer Program is a Linear Program in which some or all variables
are restricted to take integer values. This small change in the formulation
increases considerably the number of problems that can be modeled, but also
increases dramatically the difficulty of solving problems. One approach for



INTRODUCTION v

solving IPs is to use a B&B algorithm that uses solutions to Linear Relax-
ations as bounds. These LP-relaxations are obtained by removing the in-
tegral requirements on decision variables and can efficiently be solved using
any LP method. Assuming a maximization problem, it follows that a solu-
tion to its LP-relaxation is an upper bound for the solution of the original
problem. In order to branch, the search space is usually partitioned into two
parts by choosing an integer variable xi that has fractional value vf

i in the LP-
relaxed solution, and introducing two branches with the additional constraints
xi ≤ bvf

i c and xi ≥ dvf
i e. One common heuristic is to choose as branching

variable the one with fractional part closest to 0.5, although commercial IP
solvers use more sophisticated techniques.

1.1.2 Memetic Algorithms

The need to exploit problem-knowledge in heuristics has been repeatedly
shown in theory and in practice [7, 19, 5, 6]. Different attempts have been
made to answer this need; Memetic Algorithms [8, 9, 10, 11] (MAs) is probably
one of the most successful to date [20].

The adjective ‘memetic’ comes from the term ‘meme’, coined by R. Dawkins
[21] to denote an analogous to the gene in the context of cultural evolution.
As Evolutionary Algorithms, MAs are also population based metaheuristics.
The main difference is that the components of the population (named agents
in the MAs terminology) are not passive entities. These agents are active
entities that cooperate and compete in order to find improved solutions.

There are many possible ways to implement MAs. The most common
implementation consists of combining an EA with a procedure to perform
local search that is usually done after evaluation, although it must be noted
however that the MA paradigm does not simply reduce itself to this particular
scheme. According to Eiben and Smith [4], Figure 1.3 shows places were
problem specific knowledge can be incorporated. Some of the possibilities
are:

• During the initialization of the population some heuristic method may
be used to generate high quality initial solutions. One example of this
kind of techniques will be elaborated in this chapter: namely using a
variant of a B&B algorithm to periodically initialize the population of
a MA with the aim of improving its performance.

• Recombination or mutation operators can be intelligently designed so
that specific problem knowledge is used in order to improve the offspring.

• Problem knowledge can be incorporated in the genotype to phenotype
mapping present in many EAs, like when repairing an unfeasible solu-
tion. This technique is used in the MA designed by Chu and Beasley
[22] for the MKP, that is described in Section 1.2.3.



vi APPROACHES TO MULTI-DIMENSIONAL KNAPSACK PROBLEMS

 

Mutation 

Crossover 

Initial Population 

Mating pool 

Offspring 

Offspring 

Selection Modified operators 

Use problem-specific 
information 

Local search 

Local search 

Use problem-specific 
information 

Known solution 
Constructive heuristics 
Selective initialization 
Local search 

Fig. 1.3 Places to incorporate problem knowledge within an evolutionary algorithm,
according to [4].

In addition to other domains, MAs have proven very successful across a
wide range of combinatorial optimization problems, where they are state-of-
the-art approaches for many problems. For a comprehensive bibliography, the
reader may consult [23]1.

1.2 THE MULTIDIMENSIONAL KNAPSACK PROBLEM

In this section, we will review B&B Algorithms and a Memetic Algorithm that
have been proposed to tackle the MKP. Let us first introduce the problem.

1.2.1 Description of the Problem

The Multidimensional Knapsack Problem (MKP) is a generalization of the
classical knapsack problem (KP). In the KP, there is a knapsack with an
upper weight limit b, and a collection of n items with different values pj and
weights rj . The problem is to choose the collection of items which gives the
highest total value without exceeding the weight limit of the knapsack.

In the MKP, m knapsacks with different weight limits bi must be filled with
the same items. Furthermore, these items have a different weight rij for each
knapsack i. The objective is to find a set of objects with maximal profit such
that the capacities of the knapsacks is not exceeded. Formally, the problem
can be formulated as:

1See also the Memetic Algorithms home page http://www.densis.fee.unicamp.br/

~moscato/memetic_home.html



THE MULTIDIMENSIONAL KNAPSACK PROBLEM vii

maximise
n∑

j=1

pjxj , (1.1)

subject to
n∑

j=1

rijxj ≤ bi, i = 1, . . . , m, (1.2)

xj ∈ {0, 1}, j = 1, . . . , n. (1.3)

where x is an n-ary binary vector such that xj = 1 if i-th object is included
in the knapsacks or 0 otherwise.

Each of the m constraints in Eq. (1.2) is called a knapsack constraint.
The problem can be seen as a general statement of any zero-one integer pro-
gramming problem with non-negative coefficients. Many practical problems
can be formulated as an instance of the MKP, for example, the capital bud-
geting problem, project selection and capital investment, budget control, and
numerous loading problems (see e.g. [24]).

Although the classical Knapsack Problem is weakly NP-hard and admits
a fully polynomial time approximation scheme (FPTAS) [25], this is not the
case for the MKP which is much harder even for m = 2, and does not admit a
FPTAS unless P=NP [26]. On the other hand, there exists a polynomial time
approximation scheme (PTAS) with a running time of O(ndm/εe−m) [27, 28],
that implies a non-polynomial increase in running time with respect to the
accuracy sought.

1.2.2 Branch and Bound algorithms for the MKP

As stated earlier, a complete solution for an instance of the MKP with n
objects will be represented by an n-ary binary vector v such that vi = 1 if i-th
object is included in the solution or 0 otherwise. The natural way of devising
a B&B algorithm for the MKP is to start with a totally unspecified solution
(a solution for which the inclusion or exclusion of any object is unknown),
and to progressively fix the state of each object. This will lead to a branching
rule that generates two new nodes from each partial node in the B&B tree by
including or excluding a new object in the corresponding solution.

A way of estimating an upper bound for partial solutions is needed, so that
non-promising partial solutions can be eliminated from the B&B queue. For
this purpose, we will consider two possibilities. In the first one, when the j-th
object is included in the solution, the lower bound for this partial solution is
increased with the corresponding profit pj (and the remaining available space
is decreased by rij in each knapsack i), whereas the upper bound is decreased
by pj when the item is excluded.

The second possibility is to carry out an standard LP exploration of the
search tree for this kind of problems, as it was described in Section 1.1.1 (see
also [29]). More precisely, the linear relaxation of each node is solved (i.e.,



viii APPROACHES TO MULTI-DIMENSIONAL KNAPSACK PROBLEMS

the problem corresponding to unfixed variables is solved, assuming variables
can take fractional values in the interval [0,1]) using linear-programming (LP)
techniques, like the Simplex method [17]. If all variables take integral values,
the subproblem is solved. This is not generally the case though, and some
variables are non-integer in the LP-relaxed solution; in the latter situation,
the variable whose value is closest to 0.5 is selected, and two subproblems are
generated, fixing this variable to 0 or to 1 respectively. The LP-relaxed value
of the node is used as its upper-bound, so that nodes whose value is below
the best-known solution can be pruned from the search tree.

1.2.3 Chu and Beasley’s MA for the MKP

The MKP has been tackled via EAs in many works, e.g., [22, 30, 31, 32, 33, 34].
Among these, the EA developed by Chu and Beasley [22] remains as one of
the cutting-edge approaches for solving the MKP. This EA uses the natural
codification of solutions, namely binary n-dimensional strings ~x, representing
the incidence vector of a subset S of objects on the universal set O (i.e.,
(xj = 1) ⇔ oj ∈ S).

Of course, infeasible solutions might be encoded in this way, and this has
to be considered in the EA. Typically, these situations can be solved in three
ways: (i) allowing the generation of infeasible solutions and penalizing ac-
cordingly, (ii) using a repairing mechanism for mapping infeasible solutions to
feasible solutions, and (iii) defining appropriate operators and/or problem rep-
resentation to avoid the generation of infeasible solutions. Chu and Beasley’s
approach is based on the second solution, that is, a Lamarckian repairing
mechanism is used (see [35] for a comparison of Lamarckian and Baldwinian
repair mechanisms for the MKP). To do so, an initial pre-processing of the
problem instance is performed off-line. The goal is to obtain a heuristic prece-
dence order among variables: they are ordered by decreasing pseudo-utility
values : uj = pj∑m

i=1 airij
, where we set the surrogate multipliers ai to the dual

variable values of the solution of the LP-relaxation of the problem (see [22]
for details). Variables near the front of this ordered list are more likely to
be included in feasible solutions (and analogously, variables near the end of
the list are more likely to be excluded from feasible solutions). More pre-
cisely , whenever an infeasible solution is obtained, variables are set to zero
in increasing order of pseudo-utility until feasibility is restored. After this,
feasible solutions are improved by setting variables to one in decreasing order
of pseudo-utility (as long as no constraint is violated). This way, the repair-
ing algorithm can actually be regarded as a (deterministic) local improvement
procedure, and hence this EA certainly qualifies as a MA. Since this MA just
explores the feasible portion of the search space, the fitness function can be
readily defined as f(~x) =

∑n
j=1 pjxj .



HYBRID MODELS ix

1.3 HYBRID MODELS

In this section, we present hybrid models that integrates an MA with B&B.
Our aim is to combine the advantages of both approaches and, at the same
time, avoid (or at least minimize) their drawbacks working alone. Firstly, in
the following subsection, we briefly discuss some related works existing in the
literature regarding the hybridization of exact techniques and metaheuristics.

1.3.1 Hybridizing exact and metaheuristic techniques

Although exact and heuristics methods are two very different ways of tacking
COPs, they can be combined in hybrid approaches with the aim of combin-
ing synergistically their characteristics. This has been recognized by many
researchers, and as a result, many proposals have emerged in the last years.
Some authors have reviewed and classified the literature on this topic.

In [36], a classification of algorithms that combine local search and ex-
act methods is presented. They focus on hybrid algorithms in which exact
methods are used to strengthen local search.

In [37], an extensive compendium of exact/metaheuristics hybrid ap-
proaches for different COPs is presented. Among the different families of
problems reviewed are mixed integer programming, graph coloring, frequency
assignment, partitioning, maximum independent sets, maximum clique, trav-
eling salesman, vehicle routing, packing, job-shop scheduling problems, etc.

Puchinger and Raidl [38] classification of exact and metaheuristics hybrid
techniques is possibly the more general one. There are two main categories
in their classification: Collaborative and Integrative combinations. In the
following, we describe in detail each one.

1.3.1.1 Collaborative combinations This class includes hybrid algo-
rithms were the exact and metaheuristic methods exchange information, but
none of them is a subordinate of the other. As both algorithms have to be
executed, two cases can be considered:

• Sequential execution, in which one of the algorithms is completely exe-
cuted before the other. For instance, one technique can act as a kind of
preprocessing for the other or the result of one algorithm can be used
to initialize the other.

• Parallel or intertwined execution, where both techniques are executed
simultaneously, either in parallel (i.e., running at the same time on dif-
ferent processors) or in an intertwined way by alternating between both
algorithms.

One example in the first group is the hybrid algorithm proposed by Vasquez
and Hao [39] to tackle the MKP, that combines Linear Programming and
Tabu Search. Their central hypothesis is that the neighborhood of a solution



x APPROACHES TO MULTI-DIMENSIONAL KNAPSACK PROBLEMS

to a relaxed version of the problem contains high quality solutions to the
original problem. They use a two phase algorithm that first solves exactly
a relaxation of the problem, and afterwards explores carefully and efficiently
its neighborhood. For the first phase, they use the Simplex method, whereas
for the second one they use a Tabu Search procedure. This hybrid algorithm
produces excellent results for large and very large instances of the problem.

An example of parallel execution is the one presented by Denzinger et al
[40]. It is based on a multi-agent model for obtaining cooperation between
search systems with different search paradigms. The basic schema consisted
of teams with a number of agents subjected to the same search paradigm
and that exchanged certain class of information. To demonstrate the viability
of the approach, a GA and B&B based system for a Job-Shop Scheduling
Problem was described. Here, the GA and B&B agents exchanged only in-
formation in form of solutions whereas the B&B agents could also exchange
information in form of closed subtrees. As results of the cooperation, better
solutions were found given a timeout.

This chapter presents proposals in the second group, namely hybridizations
of a B&B variant (like using depth first strategy or a Beam Search algorithm)
– and a Memetic Algorithm, that are executed in an intertwined way.

1.3.1.2 Integrative combinations Here, one of the technique uses the
other one for some purpose, and so the first one acts as a master whereas the
second one behaves as a subordinate component of the other.

Again, two cases can be considered. The first one consists of incorporating
an exact algorithm into a metaheuristic. One example is the MA for the MKP
by Chu and Beasley [22] (described in detail in Section 1.2.3).

Cotta et al [41] presented a framework for the hybridization along the
lines initially sketched in [42], i.e., based on using the B&B algorithm as a
recombination operator embedded in the EA. This hybrid operator is used
for recombination: it intelligently explores the possible children of solutions
being recombined, providing the best possible outcome. The resulting hybrid
algorithm provided better results than pure EAs in several problems where a
full B&B exploration was unpractical on its own.

Puchinger and Raidl [43] represented another attempt to incorporate exact
methods in metaheuristics. This work considered different heuristics algo-
rithms for a real world glass cutting problem and a combined GA and B&B
approach was proposed. The GA used an order-based representation that was
decoded with a greedy heuristic. Incorporating B&B in the decoding for oc-
casionally (with a certain probability) locally optimizing subpatterns turned
out to increase the solution quality in a few cases.

The other possibility for integrative combinations is to incorporate a meta-
heuristics into an exact algorithm. One example is the hybrid algorithm
combining Genetic Algorithms and Integer Programming B&B approaches to
solve MAX-SAT problems described in [44]. This hybrid algorithm gathered
information during the run of a linear programmming-based B&B algorithm,



HYBRID MODELS xi

and used it to build the population of an EA population. The EA was even-
tually activated, and the best solution found was used to inject new nodes
in the B&B search tree. The hybrid algorithm was run until the search tree
was exhausted, and hence it is an exact approach. However, in some cases
it expands more nodes than the B&B algorithm alone. A different approach
has been tackled recently in [45] where a metaheuristic is used for strategic
guidance of an exact method of B&B. The idea was to use a genetic program-
ming (GP) model to obtain improved node selection strategies within B&B
for solving mixed integer problems. The information collected from the B&B
after operating a certain amount of time is used as a training set for GP which
is run to find a node selection strategy more adequate for the specific problem.
Then a new application of the B&B used this improved strategy. The idea
was very interesting although it is not mature and requires further research
to obtain more general conclusions.

Cotta et al [42] used a problem-specific B&B approach for the Traveling
Salesman Problem based on 1-trees and the Lagrangean relaxation [46], and
made use of an EA to provide bounds in order to guide the B&B search. More
specifically, two different approaches for the integration were analyzed. In the
first model, the genetic algorithm played the role of master and the B&B was
incorporated as a slave. The primary idea was to build a hybrid recombination
operator based in the B&B philosophy. More precisely, the B&B was used
in order to build the best possible tour within the (Hamiltonian) subgraph
defined by the union of edges in the parents. This recombination procedure
was costly, but provided better results than blind edge recombination. The
second model proposed consisted of executing in parallel the B&B algorithm
with a certain number of EAs which generated a number of different high-
quality solutions. The diversity provided by the independent EAs contributed
to make that edges suitable to be part of the optimal solution were likely
included in some individuals, and non-suitable edges were unlikely taken into
account. Despite these approaches showed encouraging results, the work in
[42] described only preliminary results.

1.3.2 Our Hybrid Proposals

One way to do the integration of evolutionary techniques and B&B models is
via a direct collaboration that consists of letting both techniques work alone in
parallel (i.e., let both processes perform independently), that is, at the same
level. Both processes will share the solution. There are two ways of obtaining
a benefit of this parallel execution:

• The B&B can use the lower bound provided by the EA to purge the
problem queue, deleting those problems whose upper bound is smaller
than the one obtained by the EA.

• The B&B can inject information about more promising regions of the
search space into the EA population in order to guide the EA search.



xii APPROACHES TO MULTI-DIMENSIONAL KNAPSACK PROBLEMS

In our hybrid approach, a single solution is shared among the EA and
B&B algorithms that are executed in an interleaved way. Whenever one of
the algorithms finds a better approximation, it updates the solution and yields
control to the other algorithm.

Two implementation of this scheme will be considered. In the first one
[47], the hybrid algorithm starts by running the EA in order to obtain a
first approximation to the solution. In this initial phase, the population is
randomly initialized and the EA executed until the solution is not improved
for a certain number of iterations. This approximation can be later used by
the B&B algorithm to purge the problem queue. No information from the
B&B algorithm is incorporated in this initial phase of the EA, in order to
avoid the injection of high-valued building blocks that could affect diversity,
polarizing further evolution.

Afterwards, the B&B algorithm is executed. Whenever a new solution is
found, it is incorporated into the EA population (replacing the worst individ-
ual), the B&B phase is paused and the EA is run to stabilization. Periodically,
pending nodes in the B&B queue are incorporated into the EA population.
Since these are partial solutions and the EA population consists of full solu-
tions, they are completed and corrected using the repair operator. The inten-
tion of this transfer is to direct the EA to these regions of the search space.
Recall that the nodes in the queue represent the subset of the search space
still unexplored. Hence, the EA is used for finding probably good solutions
in this region. Upon finding an improved lower bound (or upon stabilization
of the EA, in case no improvement is found), control is returned to the B&B,
hopefully with an improved lower bound. This process is repeated until the
search tree is exhausted, or a time limit is reached. The hybrid is then an any-
time algorithm that provides both a quasi-optimal solution, and an indication
of the maximum distance to the optimum.

One interesting peculiarity of BS is that it works by extending in parallel a
set of different partial solutions in several possible ways. For this reason, BS is
a particulary suitable tree search method to be used in a hybrid collaborative
framework, as it can be used to provide periodically diverse promising partial
solutions to a population based search method such as a MA. We have pre-
cisely used this approach in our second implementation [48, 49], and a general
description of the resulting algorithm is given in Figure 1.4.

The algorithm starts by executing BS for l0 levels of the search tree. Af-
terwards, the MA and BS are interleaved until a termination condition is
reached. Every time the MA is run, its population is initialized using the
nodes in the BS queue. Usually, the size of the BS queue will be larger than
the MA population size, so some criteria must be used to select a subset from
the queue. For instance, this criteria may be selecting the best nodes accord-
ing to some measure of quality or selecting a subset from the BS queue that
provides high diversity. Let us note, that nodes in the BS queue represent
schemata, i.e, they are partial solutions in which some genes are fixed but
others are indeterminate, so they must first be converted to full solutions in



EXPERIMENTAL RESULTS xiii

General description of hybrid algorithm

1 : for l0 levels do run BS
2 : do
3 : select popsize nodes from problem queue
4 : initialize MA population with selected nodes
5 : run MA
6 : if MA solution better than BS solution then
7 : let BS solution := MA solution
8 : for l levels do run BS
9 : until timeout or tree-exhausted

10 : return BS solution

Fig. 1.4 The general template for hybrid of Beam Search and MA.

a problem dependent way. This is another aspect that must be considered
when instantiating the general schema for different combinatorial problems.

Upon stabilization of the MA, control is returned to the B&B algorithm.
The lower bound for the optimal solution obtained by the MA is then com-
pared to the current incumbent in the B&B, updating the latter if necessary.
This may lead to new pruned branches in the BS tree. Subsequently, BS is
executed for descending l levels of the search tree .This process is repeated
until the search tree is exhausted or a time limit is reached.

1.4 EXPERIMENTAL RESULTS

We tested our algorithms with problems available at the OR-library [50] main-
tained by Beasley. We took two instances per problem set. Each problem set
is characterized by a number m of constraints (or knapsacks), a number n of
items and a tightness ratio, 0 ≤ α ≤ 1. The closer to 0 the tightness ratio the
more constrained the instance. All algorithms were coded in C, and all tests
were carried on a Pentium IV PC (1700MHz and 256MB of main memory).

1.4.1 Results for first model

In this section we describe the results obtained by the first hybrid model
described in Section 1.3.2. The B&B algorithm explores the search tree in
a depth first way, and uses the first simple upper bound described in Sec-
tion 1.2.2. A single execution for each instance was performed for the B&B
methods whereas ten runs were carried out for the EA and hybrid algorithms.
The algorithms were run for 600 seconds in all cases. For the EA and the
hybrid algorithm, population size was fixed at 100 individuals that were ini-
tialized with random feasible solutions. Mutation probability was set to 2



xiv APPROACHES TO MULTI-DIMENSIONAL KNAPSACK PROBLEMS

0.25/10/100 0.75/10/100 0.25/10/250 0.75/10/250 0.25/10/500 0.75/10/500 0.25/30/100 0.75/30/100 0.25/30/250 0.75/30/250 0.25/30/500 0.75/30/500
0

0.098

0.1959

0.2939

0.3919

0.4898

0.5878

0.6858

4

6 5
10

0

5

0

7

0

3

0

1
10

0

10

3

10

0

1

0

1
1

0

instance (α / m / n) 

%
 d

is
ta

nc
e 

to
 b

es
t s

ol
ut

io
n

B&B
EA
Hybrid EA−B&B

Fig. 1.5 Results of the B&B algorithm, the EA, and the first hybrid model for
problem instances of different number of items (n), knapsacks (m), and tightness
ratio (α). Boxplots show the relative distance to the best solution found by the three
algorithms. In all box plots, the figure above indicates the number of runs (out of
10) leading to the best solution. A + sign indicates the mean of the distribution,
whereas a ¤ marks its median. Boxes comprise the second and third quartiles of the
distribution. Outliers are indicated by small circles in the plot.

bits per string, recombination probability to 0.9, binary tournament selection
method was used, and a standard uniform crossover operator was chosen.

The results are shown in Figure 1.5, were the relative distances to the best
solution found by any of the algorithms are shown. As it can be seen, the
hybrid algorithm outperforms the original algorithms in most cases.

Figure 1.6 shows the on-line evolution of the lower bound for the three
algorithms on two instances. Notice how the hybrid algorithm yields consis-
tently better results all over the run. This confirms the goodness of the hybrid
model as an anytime algorithm.

1.4.2 Results for second model

We solved the same problems using the EA, a Beam Search (BS) algorithm
(kbw = 100)–, and the second hybrid algorithm. The upper bound was ob-
tained solving the LP-relaxation of the problem in all cases. A single execution
for each instance was performed for the BS method whereas ten independent
runs per instance were carried out for the EA and hybrid algorithms. The
algorithms were run for 600 seconds in all cases. For the EA and the hy-
brid algorithm, the size of the population was fixed at 100 individuals that
were initialized with random feasible solutions. With the aim of maintaining
some diversity in the population, duplicated individuals were not allowed in



EXPERIMENTAL RESULTS xv

0 100 200 300 400 500 600
6.0512

6.0533

6.0553

6.0574

6.0595

6.0615
x 10

4

time (s)

be
st

 s
ol

ut
io

n 
fo

un
d

Hybrid EA−B&B
EA
B&B

0 100 200 300 400 500 600
1.4938

1.4942

1.4945

1.4949

1.4952

1.4956
x 10

5

time (s)
be

st
 s

ol
ut

io
n 

fo
un

d

Hybrid EA−B&B
EA
B&B

Fig. 1.6 Temporal evolution of the lower bound in the three algorithms for an
problem instance with α = .75, m = 30, n = 100 (Left) and α = .75, m = 30,
n = 250 (Right). Curves are averaged for the ten runs in the case of the EA and the
hybrid algorithm.

0.25/10/100 0.75/10/100 0.25/10/250 0.75/10/250 0.25/10/500 0.75/10/500 0.25/30/100 0.75/30/100 0.25/30/250 0.75/30/250 0.25/30/500 0.75/30/500
0

0.0115

0.0231

0.0346

0.0461

0.0576

0.0692

0.0807

0.0922

0.1037

0.1153

0.1268

0.1383

10

1

10 10

3

0

10

7

3
8

5
7

10 10 10 10 10

2
1

2

1
1

instance (α / m / n) 

%
 d

is
ta

nc
e 

to
 b

es
t s

ol
ut

io
n

BS
EA
Hybrid EA−BS

Fig. 1.7 Results of the BS algorithm, the EA, and the second hybrid model for
problem instances of different number of items (n), knapsacks (m), and tightness
ratio (α).

the population. The crossover probability was set to 0.9, binary tournament
selection was used, and standard uniform crossover operator was chosen.

Execution results for BS algorithm, the EA and the hybrid model are shown
in Figure 1.7. As it can be seen, the hybrid algorithm provides better results
for the largest problem instances regardless of the tightness ratio. For the
smallest problem instances, the EA performs better. This may be due to the
lower difficulty of the latter instances; the search overhead of switching from
the EA to the B&B may not be worth in this case. The hybrid algorithm
just starts being advantageous in larger instances, where the EA faces a more



xvi APPROACHES TO MULTI-DIMENSIONAL KNAPSACK PROBLEMS

0 100 200 300 400 500 600
1.1568

1.1573

1.1578

1.1583

1.1588

1.1593
x 10

5

time (s)

be
st

 s
ol

ut
io

n 
fo

un
d

Hybrid EA−BS
EA
BS

0 100 200 300 400 500 600
3.0698

3.0699

3.07

3.0702

3.0703

3.0705
x 10

5

time (s)

be
st

 s
ol

ut
io

n 
fo

un
d

Hybrid EA−BS
EA
BS

Fig. 1.8 Evolution of the best solution in the evolutionary algorithm (EA), beam
search, and the hybrid algorithm during 600 seconds of execution. (Left) problem
instance with α = .25, m = 30, n = 500. (Right) problem instance with α = .75,
m = 10, n = 500. In both cases, curves are averaged for ten runs for the EA and the
hybrid algorithm.

difficult optimization scenario. Notice also that the hybrid algorithm is always
able to provide a solution better or equal to the one provided by BS.

Figure 1.8 shows the evolution of the best value found by the different
algorithms for two specific problem instances. Note that the hybrid algorithm
always provides here better results than the original ones, specially in the case
of the more constrained instance (α = .25).

1.5 CONCLUSIONS AND FUTURE WORK

We have presented hybridizations of an EA with a B&B algorithm. The EA
provides lower bounds that the B&B can use to purge the problem queue,
whereas the B&B guides the EA to look into promising regions of the search
space. The resulting hybrid algorithm has been tested on large instances of
the MKP problem with encouraging results: the hybrid EA produces better
results than the constituent algorithms at the same computational cost. This
indicates the synergy of this combination, thus supporting the idea that this
is a profitable approach for tackling difficult combinatorial problems.

Acknowledgments

The authors are partially supported by the Ministry of Science and Technology
and FEDER under contract TIN2005-08818-C04-01 (the OPLINK project).
First and third authors are also supported under contract TIN-2007-67134.



References

1. E. L. Lawler and D. E. Wood. Branch and bounds methods: A survey.
Operations Research, 4(4):669–719, 1966.

2. T. Bäck. Evolutionary Algorithms in Theory and Practice. Oxford Uni-
versity Press, New York NY, 1996.

3. T. Bäck, D.B. Fogel, and Z. Michalewicz. Handbook of Evolutionary Com-
putation. Oxford University Press, New York NY, 1997.

4. A. E. Eiben and J. E. Smith. Introduction to evolutionary computation.
Springer-Verlag, 2003.

5. L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New
York NY, 1991.

6. D. H. Wolpert and W. G. Macready. No free lunch theorems for opti-
mization. IEEE Transactions on Evolutionary Computation, 1(1):67–82,
1997.

7. J. Culberson. On the futility of blind search: An algorithmic view of “no
free lunch”. Evolutionary Computation, 6(2):109–128, 1998.

8. P. Moscato. Memetic algorithms: A short introduction. In D. Corne,
M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages 219–
234. McGraw-Hill, Maidenhead, Berkshire, England, UK, 1999.

9. P. Moscato and C. Cotta. A gentle introduction to memetic algorithms.
In F. Glover and G. Kochenberger, editors, Handbook of Metaheuristics,
pages 105–144. Kluwer Academic Press, Boston, Massachusetts, USA,
2003.

10. P. Moscato, A. Mendes, and C. Cotta. Memetic algorithms. In G.C.
Onwubolu and B.V. Babu, editors, New Optimization Techniques in En-
gineering, pages 53–85. Springer-Verlag, Berlin Heidelberg, 2004.

11. N. Krasnogor and J. Smith. A tutorial for competent memetic algorithms:
model, taxonomy, and design issues. IEEE Transactions on Evolutionary
Computation, 9(5):474–488, 2005.

xvii



xviii REFERENCES

12. A. H. Land and A. G. Doig. An automatic method for solving discrete
programming problems. Econometrica, 28:497–520, 1960.

13. A. Barr and E. A. Feigenbaum. Handbook of Artificial Intelligence. Mor-
gan Kaufmann, New York NY, 1981.

14. P. Wiston. Artificial Intelligence. Addison-Wesley, Reading MA, 1984.

15. G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimiza-
tion. Wiley, 1988.

16. D. R. Anderson, D. J. Sweeney, and T. A. Willians. Introduction to
Managment Science: Quantitative Approaches to Decision Making. West
Publishing, 1997.

17. G. B. Dantzig. Maximization of a linear function of variables subject
to linear inequalities. In T. C. Koopmans, editor, Activity Analysis of
Production and Allocation. Wiley, 1951.

18. N. Karmakar. A new polynomial-time algorithm for linear programming.
Combinatorica, 4:373–395, 1984.

19. W. E. Hart and R. K. Belew. Optimizing an arbitrary function is hard
for the genetic algorithm. In R. K. Belew and L. B. Booker, editors, Pro-
ceedings of the Fourth International Conference on Genetic Algorithms,
pages 190–195, San Mateo CA, 1991. Morgan Kaufmann.

20. W. E. Hart, N. Krasnogor, and J. E. Smith. Recent Advances in Memetic
Algorithms, volume 166 of Studies in Fuzziness and Soft Computing.
Springer-Verlag, Berlin Heidelberg, 2005.

21. R. Dawkins. The Selfish Gene. Clarendon Press, Oxford, 1976.

22. P. C. Chu and J. E. Beasley. A genetic algorithm for the multidimensional
knapsack problem. Journal of Heuristics, 4:63–86, 1998.

23. P. Moscato and C. Cotta. Memetic algorithms. In T. F. Gonzalez, editor,
Handbook of Approximation Algorithms and Metaheuristics. Chapman &
Hall/CRC, 2007. Chapter 27.

24. H. Salkin and K. Mathur. Foundations of Integer Programming. North
Holland, 1989.

25. O. H. Ibarra and C. E. Kim. Fast approximation for the knapsack and
sum of subset problems. Journal of the ACM, 22(4):463–468, 1975.

26. B. Korte and R. Schrader. On the existence of fast approximation
schemes. In O. L. Mangasarian, R. R. Meyer, and S. Robinson, editors,
Nonlinear Programming 4, pages 415–437. Academic Press, 1981.



REFERENCES xix

27. A. Caprara, H. Kellerer, U. Pferschy, and D. Pisinger. Approximation
algorithms for knapsack problems with cardinality constraints. European
Journal of Operational Research, 123:333–345, 2000.

28. D. Lichtenberger. An extended local branching framework and its appli-
cation to the multidimensional knapsack problem. Diploma thesis, Insti-
tut für Computergrafik und Algorithmen, Technischen Universität Wien,
2005.

29. E. Balas and H. Martin. Pivot and Complement - a heuristic for 0-1
programming. Management Science, 26(1):86–96, 1980.

30. C. Cotta and J. M. Troya. A hybrid genetic algorithm for the 0-1 multiple
knapsack problem. In G.D. Smith, N.C. Steele, and R.F. Albrecht, editors,
Artificial Neural Nets and Genetic Algorithms 3, pages 251–255, Wien
New York, 1998. Springer-Verlag.

31. J. Gottlieb. Permutation-based evolutionary algorithms for multidimen-
sional knapsack problems. In J. Carroll, E. Damiani, H. Haddad, and
D. Oppenheim, editors, ACM Symposium on Applied Computing 2000,
pages 408–414. ACM Press, 2000.

32. S. Khuri, T. Bäck, and J. Heitkötter. The zero/one multiple knapsack
problem and genetic algorithms. In E. Deaton, D. Oppenheim, J. Urban,
and H. Berghel, editors, Proceedings of the 1994 ACM Symposium on
Applied Computation, pages 188–193. ACM Press, 1994.

33. G. R. Raidl. An improved genetic algorithm for the multiconstraint knap-
sack problem. In Proceedings of the 5th IEEE International Conference
on Evolutionary Computation, pages 207–211, 1998.

34. G. R. Raidl and J. Gottlieb. Empirical analysis of locality, heritabil-
ity and heuristic bias in evolutionary algorithms: A case study for the
multidimensional knapsack problem. Technical Report TR 186–1–04–05,
Institute of Computer Graphics and Algorithms, Vienna University of
Technology, 2004.

35. H. Ishibuchi, S. Kaige, and K. Narukawa. Comparison between Lamar-
ckian and Baldwinian repair on multiobjective 0/1 knapsack problems.
In C. Coello Coello, A. Hernández Aguirre, and E. Zitzler, editors, Evo-
lutionary Multi-Criterion Optimization, Third International Conference,
EMO 2005, volume 3410 of Lecture Notes in Computer Science, pages
370–385, Berlin Heidelberg, 2005.

36. I. Dumitrescu and T. Stutzle. Combinations of local search and exact al-
gorithms. In G.L. Raidl et al, editor, Applications of evolutionary compu-
tation, volume 2611 of Lecture Notes in Computer Science, pages 211–223.
Springer-Verlag, Berlin, 2003.



xx REFERENCES

37. S. Fernandes and H. Lourenço. Hybrid combining local search heuristics
with exact algorithms. In F. Almeida et al, editor, V Congreso Español
sobre Metaheuŕısticas, Algoritmos Evolutivos y Bioinspirados, pages 269–
274, 2007.

38. J. Puchinger and G. R. Raidl. Combining metaheuristics and exact al-
gorithms in combinatorial optimization: a survey and classification. In
J. Mira and J. R. Álvarez, editors, Artificial Intelligence and Knowledge
Engineering Applications: a Bioinspired Approach, volume 3562 of Lec-
ture Notes in Computer Science, pages 41–53, Berlin Heidelberg, 2005.
Springer-Verlag.

39. M. Vasquez and J. K. Hao. A hybrid approach for the 0–1 multidimen-
sional knapsack problem. In Proceedings of the International Joint Con-
ference on Artificial Intelligence, pages 328–333, 2001.

40. J. Denzinger and T. Offermann. On cooperation between evolutionary
algorithms and other search paradigms. In Proceedings of the 6th IEEE
International Conference on Evolutionary Computation, pages 2317–2324.
IEEE Press, 1999.

41. C. Cotta and J. M. Troya. Embedding branch and bound within evolu-
tionary algorithms. Applied Intelligence, 18(2):137–153, 2003.

42. C. Cotta, J. F. Aldana, A. J. Nebro, and J. M. Troya. Hybridizing genetic
algorithms with branch and bound techniques for the resolution of the
TSP. In D.W. Pearson, N.C. Steele, and R.F. Albrecht, editors, Artificial
Neural Nets and Genetic Algorithms 2, pages 277–280, Wien New York,
1995. Springer-Verlag.

43. J. Puchinger, G. R. Raidl, and G. Koller. Solving a real-world glass
cutting problem. In J. Gottlieb and G. R. Raidl, editors, 4th European
Conference on Evolutionary Computation in Combinatorial Optimization,
volume 3004 of Lecture Notes in Computer Science, pages 165–176, 2004.

44. A. P. French, A. C. Robinson, and J. M. Wilson. Using a hybrid genetic-
algorithm/branch and bound approach to solve feasibility and optimiza-
tion integer programming problems. Journal of Heuristics, 7(6):551–564,
2001.

45. K. Kostikas and C. Fragakis. Genetic programming applied to mixed inte-
ger programming. In M. Keijzer, U. O’Reilly, S. M. Lucas, E. Costa, and
T. Soule, editors, 7th European Conference on Genetic Programming, vol-
ume 3003 of Lecture Notes in Computer Science, pages 113–124, Coimbra,
Portugal, 2004. Springer-Verlag.

46. A. Volgenant and R. Jonker. A branch and bound algorithm for the
symmetric traveling salesman problem based on the 1-tree relaxation.
European Journal of Operational Research, 9:83–88, 1982.



REFERENCES xxi

47. J. E. Gallardo, C. Cotta, and A. J. Fernández. Solving the multidimen-
sional knapsack problem using an evolutionary algorithm hybridized with
branch and bound. In J. Mira and J. R. Álvarez, editors, Proceedings of
the 1st International Work-conference on the Interplay between Natural
and Artificial Computation, volume 3562 of Lecture Notes in Computer
Science, Berlin Heidelberg, 2005. Springer-Verlag.

48. J. E. Gallardo, C. Cotta, and A. J. Fernández. A hybrid model of evolu-
tionary algorithms and branch-and-bound for combinatorial optimization
problems. In 2005 Congress on Evolutionary Computation, pages 2248–
2254, Edinburgh, UK, 2005. IEEE Press.

49. J. E. Gallardo, C. Cotta, and A. J. Fernández. On the hybridization of
memetic algorithms with branch-and-bound techniques. IEEE Transac-
tions on Systems, Man and Cybernetics, part B, 37(1):77–83, 2007.

50. J. E. Beasley. Or-library: distributing test problems by electronic mail.
Journal of the Operational Research Society, 41(11):1069–1072, 1990.


