
1 Solving Constrained Optimization
Problems with Hybrid
Evolutionary Algorithms

CARLOS COTTA AND ANTONIO J. FERNÁNDEZ
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1.1 INTRODUCTION

The foundations for evolutionary algorithms (EAs) were established in the end of the
60’s [1, 2] (EAs) and strengthened in the beginning of the 70’s [3, 4]. EAs appeared
as an alternative to the exact or approximate optimization methods whose application
to many real problems were not acceptable in terms of performance. When applied
to real problems, EAs provide a valuable relation between quality of the solution
and efficiency to obtain it; for this reason these techniques attracted immediately
the attention of many researchers and became what they nowadays represent: the
cutting-edge approach to real-world optimization. Certainly, this has also been the
case for other related techniques, such as simulated annealing [5] (SA), tabu search
[6] (TS), etc. The term metaheuristics has been coined to denote them.

The term hybrid evolutionary algorithm (HEAs) (resp. hybrid metaheuristics)
refers to the combination of an evolutionary technique (resp. metaheuristics) with
another (perhaps exact or approximate) technique for optimization. The aim is to
combine the best of both worlds with the objective of producing better results than
each of the involved components working alone. HEAs have been proved to be
very successful in the optimization of many practical problems (e.g., [7, 8]) and,
as a consequence, currently there exist an increasing interest in the optimization
community for this kind of techniques.

One crucial point in the the development of HEAs (and hybrid metaheuristics in
general) is the need of exploiting problem knowledge as was clearly exposed in the
formulation of the No Free Lunch Theorem (NFL) by Wolpert and Macready [9] (a
search algorithm performs in strict accordance with the amount and quality of the
problem knowledge they incorporate). Quite interestingly, this line of thinking had
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already been advocated by several researchers in the late 1980s and early 1990s, e.g.,
Hart and Belew [10], Davis [11], and Moscato [12]. Precisely this is the foundation
of one of the most known instances of HEAs, the memetic algorithms, term firstly
used in the work of Moscato [13, 14, 15] (MAs). Basically a MA is a search strategy
in which a population of optimizing agents synergistically cooperate and compete
[12]. These agents are explicitly concerned with using knowledge from the problem
being solved, as suggested by both theory and practice [16]. The success of MA is
evident and one of the consequence is that currently the term “memetic algorithm” is
used as synonym of “hybrid evolutionary algorithm", although in essence MAs are a
particular case of HEAs.

As already mentioned, HEAs were born to tackle many problems that are very dif-
ficult to solve using evolutionary techniques or classical approaches working alone.
This is precisely the case of constrained problems. Generally speaking, a constrained
problem consists of a set of constraints involving a number of variables restricted to
have values in a set of (possibly different) finite domains; basically a constraint is
a relation maintained between the entities (e.g., objects or variables) of a problem,
and constraints are used to model the behavior of systems in the real world by cap-
turing an idealized view of the interaction between the variables involved. Solving
a constrained problem means the finding of a possible assignment (of values in the
computation domains) for the constrained variables that satisfies all the constraints.
Solving this kind of problem can be done by using different techniques ranging
from traditional techniques to modern ones. For example, some approaches to solve
a problem are in the area of operational research (OR), genetic algorithms, artifi-
cial intelligence (AI) techniques, rule-based computations, conventional programs
and constraint-based approaches. Usually, the solving is understood as the task of
searching for a single solution to the problem, although sometimes it is required to
find the set of all solutions. Also, in certain cases, because of the cost of finding
all solutions, the aim is just to find the best solution or an approximate solution
within fixed resource bounds (e.g., in a reasonable time). Such kinds of constrained
problems are called partial constrained problems (PCPs). An example of a PCP
is a constrained combinatorial optimization problem (CCOP) that assigns a cost to
each solution and tries to find an optimal solution within a given time frame [17].
Precisely, this chapter focuses on CCOPs.

Not surprisingly, HEAs have been extensively used to solve this kind of problems.
This chapter represents our particular share in this sense. In this work, we shall
analyze the deployment of HEAs on this domain. Initially, we shall provide a generic
definition for this kind of problems, and an overview of general design guidelines to
tackle CCOPs. Further, we will discuss a number of interesting and not well-known1

CCOPs that the authors have recently attacked via HEAs. The chapter will end with
a summary of lessons learned, and some current and emerging research trends in
HEAs for managing CCOPs.

1At least, in the EA community.
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1.2 STRATEGIES FOR SOLVING CCOPS WITH HEAS

In general terms, an unconstrained COP is defined as a tuple 〈S, f〉, where S ,
D1 ×D2 × · · ·DN is the search space, and f : S −→ Z is the objective function.
Each Di is a discrete set containing the values that a certain variable xi can take.
Therefore, any solution ~x ∈ S is a list 〈x1, · · · , xn〉, and we are interested in finding
the value ~x minimizing (wlog) the objective function f .

A constrained COP arises when we are just interested in optimizing the objective
function within a subset Sval ⊂ S. This subset Sval represents the so-called valid
or feasible solutions, and it may be even the case that f is a partial function defined
only on these feasible solutions. The incidence vector of Sval on S defines a Boolean
function φ : S −→ B, i.e., φ(~x) = 1 iff ~x is a valid solution. In practice, constrained
COPs include a well-structured function φ, such that it can be computed efficiently.
Typically this is achieved via the conjunction of several simpler Boolean functions
φi : S −→ B, i.e., φ(~x) =

∏
i φi(~x). Each of these functions is a constraint.

As an example, consider the Vertex Cover problem: given a graph G(V, E)
find a subset V ′ ⊆ V of minimal size such that for any (u, v) ∈ E it holds that
{u, v}∩V ′ 6= ∅. In this case, S = {0, 1}|V |, the objective function (to be minimized)
is f(~x) =

∑|V |
i=1 xi, and there is a collection of binary constraints φuv = min(1, xu+

xv), (u, v) ∈ E.
The previous definition can be easily generalized to weighted CCOPs, where we do

not simply have to know whether a solution satisfies a particular constraint or not, but
we also have an indication on how far that solution is from satisfying that constraint
(in case it does not satisfy it at all). For this purpose, it is more convenient to denote
each constraint as a function δi : S −→ N, where δ(~x) = 0 indicates fulfilment of
the corresponding constraint, and any strictly positive value indicates an increasingly
higher degree of violation of that constraint. Note that φi(~x) = max(0, 1− δi(~x)).

The above formulation of weighted CCOPs allows a rather straightforward ap-
proach for tackling such a problem with HEAs, namely incorporating the constraint
functions within the objective function. This can be done in different ways [18], but
the simplest method is aggregating all constraint functions within a penalty term that
is added to the objective function, e.g.,

f ′(~x) = f(~x) +
∑

i

δi(~x) (1.1)

Different variants can be defined here, such as raising each δi term to a cer-
tain power (thus avoiding linear compensation among constraints and/or biasing the
search towards low violation degrees), or adding an offset value in case of infeasibil-
ity to ensure that any feasible solution is preferable to any non-feasible solution. This
penalty approach can obviously be used only in those cases in which the objective
function is defined on non-feasible solutions. A typical example is the Multidi-
mensional 0-1 Knapsack problem (MKP). This problem is defined via a row
vector of profits ~p, a column vector of capacity constraints ~c, and a constraint matrix
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M . Solutions are binary column vectors ~x, the objective function is f(~x) = ~p ·~x, and
the feasibility constraint is M · ~x 6 ~c. Let ~d = ~c−M · ~x. Then δi = −min(0, di).

This approach has the advantage of being very simple, and allowing the use of
rather standard EAs. Nevertheless, a HEA can provide notably better solution if it
is aware of these penalty terms, and focuses on their optimization (see for example
the Maximum Density Still Life Problem described in Section 1.3.2, or the
Social Golfer Problem described in Section 1.3.3). An alternative approach
is trying to enforce the search being carried within the feasible region of the search
space. This can be done in two ways:

• Allowing the algorithm to temporarily traverse the infeasible region during
the reproduction phase, but using a repairing procedure to turn non-feasible
solutions to feasible ones before evaluation.

• Restricting the search to the feasible region at all times. This can in turn be
done in two ways:

– Defining appropriate initialization, recombination, and mutation opera-
tors that take and produce feasible solutions.

– Defining an unconstrained auxiliary search space Saux and an adequate
mapping dec : Saux −→ Sval.

The repair approach is possibly the simplest option after the penalty approach,
although it must be noted that not always a straightforward repair procedure is
available. In any case, it is interesting to note that in some sense (and depending on
the particular procedure chosen for repairing), this stage can be regarded as a local
search phase, and therefore some repair-based EAs can qualify as memetic algorithms.
An example of repairing can be found in the GA defined by Chu and Beasley for the
MKP[19]. They define a heuristic order for traversing the variables, and keep setting
them to zero as long as the solution is non-feasible (this procedure is complemented
by a subsequent improvement phase, in which variables are set to one in inverse order,
as long as the solution remains feasible). Another example of repairing can be found
in the Protein Structure Prediction Problem [20], in which the search
space is composed of all embeddings of a given string in a certain fixed lattice, and
solutions are only feasible if they are self-avoiding. The repairing procedure is in
this case more complex, and requires the use of a backtracking algorithm to produce
a feasible embedding. Nevertheless, even accounting this additional cost the HEA
performs better than a simpler penalty-based approach.

Restricting the search to the feasible space via appropriate operators is in general
much more complex, although it is the natural approach in certain problems, most
notably in permutational problems. Feasible initialization and mutation are rather
straightforward in this case, and there exists an extensive literature dealing with the
definition of adequate operators for recombination, e.g., see [21]. Fixed-size subset
problems are also easily dealt via this method. As to the use of decoders, it is an
arguably simpler and more popular approach. A common example -again on the
MKP- is to define an auxiliary search space composed of all permutations of objects,
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and decoding a particular permutation using a procedure that traverses the list of
objects in the order indicated, and includes objects in the solution if doing so does
not result in a non-feasible solution. Also in the MKP problem, a different approach
was defined in [22] via the use of lists of integers representing perturbations of the
original instance data, and utilizing a greedy algorithm to obtain a solution from
the modified instance. Note that contrarily to some suggestions that can be found
in the literature, it is not necessary (and often not even recommended) to have a
decoder capable of producing any feasible solution, or producing them with the same
frequency: it is perfectly admissible to ignore sub-optimal solutions, and/or biasing
the search to promising regions via over-representation of certain solutions (this is
precisely the case of the previous example). Another example of a general approach
can be found in a GRASP-like decoding procedure [23], in which solutions are
encoded via a list of natural numbers that are used to control the level of greediness o
a constructive heuristic. This approach has been used with success in the Golomb
Ruler Problem (see Section 1.3.1).

A particular problem of this decoder approach is the fact that locality is easily lost,
that is, a small change in the genotype can result in a large change of the phenotype
[24, 25]. This was observed for example in the indirect encoding of trees via Prüfer
numbers [26].

1.3 STUDY CASES

This section reviews our recent work on solving CCOPs applying hybrid collabo-
rative techniques involving evolutionary techniques. In particular we focus on four
constrained problems that are not very well-known in the evolutionary programming
community and that we have tackled with certain success in the recent years.

1.3.1 Optimal Golomb Rulers (OGR)

The concept of was first introduced by W.C. Babcock in 1953 [27], and further
described by S.W. Golomb [28]. Golomb Rulers are a class of undirected graphs
that, unlike usual rulers, measure more discrete lengths than the number of marks
they carry. The particularity of Golomb Rulers that on any given ruler, all differences
between pairs of marks are unique makes them really interesting in many practical
applications (cf. [29, 30]).

Traditionally, researchers are interested in discovering Optimal Golomb Ruler
(OGR), that is, the shortest Golomb ruler for a number of marks. The task of finding
optimal or near-optimal Golomb rulers is computationally very hard and results in
an extremely challenging combinatorial problem. Proof of it is the fact that the
search for an optimal 19-marks Golomb ruler took approximately 36,200 CPU hours
on a Sun Sparc workstation using a very specialized algorithm [31]. Also, optimal
solutions for 20 up to 24 marks were obtained by massive parallelism projects, taking
from several months up to four years (for the 24 marks instance) for each of those
instances [30, 32, 33, 34].
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The OGR problem can be classified as a fixed-size subset selection problem, such
as e.g., the p−median problem [35], although exhibits some very distinctive features.

1.3.1.1 Formal definition A n-mark Golomb ruler is an ordered set of n distinct
non-negative integers, called marks, a1 < ... < an, such that all the differences
ai − aj (i > j) are distinct. We have thus a number of constraints of the form
ai−aj 6= ak−am (i > j, k > m, (i, j) 6= (k, m)). Clearly we may assume a1 = 0.
By convention, an is the length of the Golomb ruler. A Golomb ruler with n marks
is an optimal Golomb ruler if, and only if,

• there exists no other n-mark Golomb rulers having smaller length, and

• the ruler is canonically “smaller” with respect to the the equivalent rulers. This
means that the first differing entry is less than the corresponding entry in the
other ruler.

Figure 1.1 shows an OGR with 4-marks. Observe that all distances between any
two marks are different.

6
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1 3 2
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5

Fig. 1.1 A Golomb Ruler with 4 marks

Typically, Golomb Rulers are represented by the values of the marks on the ruler,
i.e., in a n-mark Golomb ruler, ai = x (1 ≤ i ≤ n) means that x is the mark value
in position i. The sequence (0, 1, 4, 6) would then represent the ruler in Figure 1.1.
However, this representation turns out to be inappropriate for EAs (for example,
it is problematic with respect to developing good crossover operators [36]). An
alternative representation consists of representing the Golomb ruler via the lengths
of its segments, where the length of a segment of a ruler is defined as the distance
between two consecutive marks. Therefore, a Golomb Ruler can be represented with
n − 1 marks specifying the lengths of the n − 1 segments that compose it. In the
previous example, the sequence (1, 3, 2) would encode the ruler depicted in Figure
1.1.

1.3.1.2 Solving OGRs In addition to already commented related work, here we
discuss a variety of techniques that have been applied for finding OGRs. For instance,
systematic (exact) methods, such as the method proposed by Shearer to compute
OGRs up to 16 marks [37]; basically this method was based on the utilization
of branch-and-bound algorithms combined with a depth first search strategy (i.e.,
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backtracking algorithms), making use in the experiments of upper-bounds set equal
to length of the best known solution. Also constraint programming (CP) techniques
have also been used, although with limited success [38, 39]. The main drawback of
these complete methods is that they are costly computationally (i.e., time consuming).
A very interesting hybridization of local search (LS) and CP to tackle the problem
was presented in [40]; up to size 13, the algorithm is run until the optimum is found,
and for higher instances the quality of the solutions deteriorates.

Also (hybrid) evolutionary algorithms were applied to this problem In this case,
two main approaches can be essentially considered for tackling the OGR problem
with EAs. The first one is the direct approach, in which the EA conducts the search in
the space SG of all possible Golomb rulers. The second one is the indirect approach,
in which an auxiliary Saux space is used by the EA. In this latter case, a decoder [41]
must be utilized in order to perform the Saux −→ SG mapping. Examples of the
former (direct) approach are the works of Soliday et al. [36], and Feeney [29]. As to
the latter (indirect) approach, we can cite the work by Pereira et al. [42] (based on the
notion of random-keys [43]); also Cotta and Fernández [23] used a problem-aware
procedure (inspired in GRASP [44]) to perform the genotype-to-phenotype mapping
wiht the aim of ensuring the generation of feasible solutions; this method was shown
to outperform other previous approaches.

A HEA incorporating a tabu search algorithm for mutation was proposed in [45].
The basic idea was to optimize the length of the rulers indirectly by solving a sequence
of feasibility problems (starting from an upper bound l and producing a sequence of
rulers of length l1 > l2 > . . . > li > . . .). This algorithm performed very efficiently
and was able to find OGRs for up to 14 marks; in any case we make note that this
method requires an estimated initial upper bound, something that clearly favored its
efficiency. At the same time, we conducted a theoretical analysis on the problem
trying to shed some light on the question of what makes a problem hard for a certain
search algorithm for the OGR problem. This study, published in [46], consisted of
an analysis of the fitness landscape of the problem. Our analysis indicated that the
high irregularity of the neighborhood structure for the direct formulation introduces a
drift force towards low-fitness regions of the search space. The indirect formulation
that we had previously considered in [23] does not have this drawback, and hence
would be in principle more amenable for conducting local search in it. Then in [47]
we presented a MA in which our indirect approach (i.e., that GRASP-based EA) was
used in the phases of initialization and restarting of the population whereas a direct
approach, in form of a local improvement method based on the tabu search (TS)
algorithm described in [45], was considered in the stages of recombination and local
improvement; Experimental results showed that this algorithm could solve OGRs up
to 15 marks, and produced Golomb rulers for 16 marks that are very close to the
optimal value (i.e., 1.1% far), thus significantly improving the results reported in the
EA literature.

Recently, in [48] we have combined ideas from greedy randomized adaptive search
procedures (GRASP) [49], scatter search (SS) [50, 51], tabu search (TS) [52, 53],
clustering [54], and constraint programming (CP), and the resulting algorithm was
able of solving the OGR problem for up to 16 marks, a notorious improvement with
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regard to previous approaches reported in the literature in all those mentioned areas
(i.e., EAs, LS, and CP). This algorithm yields a metaheuristic approach which is
currently a state-of-the-art method compared to other metaheuristic approaches.

1.3.2 The Maximum Density Still Life Problem (MDSLP)

Conway’s game of life [55] consists of an infinite checkerboard in which the only
player places checkers on some of its squares. Each square has eight neighbors: the
eight cells that share one or two corners with it. A cell is alive if there is a checker on
it, and dead otherwise. The state of the board evolves iteratively according to three
rules: (i) if a cell has exactly two living neighbors then its state remains the same
in the next iteration, (ii) if a cell has exactly three living neighbors then it is alive
in the next iteration, and (iii) if a cell has fewer than two or more than three living
neighbors, then it is dead in the next iteration.

One challenging constraint optimization problem based on the game of life is the
maximum density still life problem (MDSLP). In order to introduce this problem, let
us define a stable pattern (also called a still life) as a board configuration that does not
change through time, and let the density of a region be its percentage of living cells.
The MDSLP in an n × n grid consists of finding a still life of maximum density.
This problem is very hard to solve, and though it has not been proven to be NP-hard
to the best of our knowledge, no polynomial-time algorithm for it is known. The
problem has a number of interesting applications [56, 57, 58], and a dedicated web
page2 maintains up-to-date results. Figure 1.2 shows some maximum density still
lifes for small values of n.

 
 

Fig. 1.2 Maximum density still lifes for n ∈ {3, 4, 5}.

1.3.2.1 Formal definition The constraints and objectives of the MDSLP are for-
malized in this section in which we follow a similar notation to the one used in
[59, 60]. To state the problem formally, let r be an n × n binary matrix, such that
rij ∈ {0, 1}, 1 ≤ i, j ≤ n (rij = 0 if cell (i, j) is dead, and 1 otherwise). In addition,
let N (r, i, j) be the set comprising the neighborhood of cell rij :

2http://www.ai.sri.com/ nysmith/life
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N (r, i, j) = { r(i+x)(j+y) |x, y ∈ {−1, 0, 1} ∧ x2 + y2 6= 0 (1.2)
∧ 1 ≤ (i + x), (j + y) ≤ ‖r‖ }

where ‖r‖ denotes the number of rows (or columns) of square matrix r, and let the
number of living neighbors for cell rij be noted as η(r, i, j):

η(r, i, j) =
∑

c∈N (r,i,j)

c (1.3)

According to the rules of the game, let us also define the following predicate that
checks whether cell rij is stable:

S(r, i, j)=
{

2 ≤ η(r, i, j) ≤ 3, rij = 1
η(r, i, j) 6= 3, rij = 0.

(1.4)

In order to check boundary conditions, we will further denote by r̃ the (n + 2)×
(n + 2) matrix obtained by embedding r in a frame of dead cells:

r̃ij =
{

r(i−1)(j−1), 2 ≤ i, j ≤ n + 1
0, otherwise. (1.5)

The maximum density still life problem for an n×n board, MDSLP(n), can now
be stated as finding an n× n binary matrix r, such that

∑

1≤i,j≤n

(1− rij) is minimal, (1.6)

subject to
∧

1≤i,j≤n+2

S(r̃, i, j). (1.7)

1.3.2.2 Solving MDSLPs The MDSLP has been tackled using different ap-
proaches. Bosch and Trick [61] compared different formulations for the MDSLP
using integer programming (IP) and constraint programming (CP). Their best results
were obtained with a hybrid algorithm mixing the two approaches. They were able
to solve the cases for n = 14 and n = 15 in about 6 and 8 days of CPU time
respectively. Smith [62] used a pure constraint programming approach to undertake
the problem and proposed a formulation of the problem as a constraint satisfaction
problem with 0-1 variables and non-binary constraints; only instances up to n = 10
could be solved. The best results for this problem were reported by Larrosa et al. in
[59, 60], that showed the usefulness of an exact technique based on variable elimi-
nation and commonly used for solving constraint satisfaction problems: the bucket
elimination (BE) [63]. Their basic approach could solve the problem for n = 14 in
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about 105 seconds. Further improvements pushed the solvability boundary forward
to n = 20 in about twice as much time. Recently, Cheng and Yap [64, 65] have
tackled the problem via the use of ad-hoc global case constraints, but their results
are are far from the ones obtained previously by Larrosa et al.

Note that all the previously discussed techniques are exact approaches inherently
limited for increasing problem sizes, and whose capabilities as anytime algorithms
are unclear. To avoid this limitation, we recently proposed the use of HEAs to
tackle this problem. Particularly, in [66] we considered a MA consisting of an EA
endowed with tabu search, and where BE is used as a mechanism for recombining
solutions, providing the best possible child from the parental set. Experimental
tests indicated that the algorithm provided optimal or near-optimal results at an
acceptable computational cost. A subsequent paper [67] dealt with expanded multi-
level models in which our previous exact/metaheuristic hybrid was further hybridized
with a branch-and-bound derivative, namely Beam Search (BS). The experimental
results shown that our hybrid evolutionary proposals were a practical and an efficient
alternative to the exact techniques employed so far to obtain still life patterns

Recently, in [48] we proposed a new hybrid algorithm that uses the technique of
Mini-Buckets (MB) [68] to further improve the lower bounds of the partial solutions
that are considered in the BS part of the hybrid algorithm. This new algorithm is
obtained from the hybridization, at different levels, of complete solving techniques
(BE), incomplete deterministic methods (BS and MB) and stochastic algorithms
(MAs). An experimental analysis showed that this new proposal consistently finds
optimal solutions for MDSLP instances up to n = 20 in considerably less time than
all the previous approaches reported in the literature. Moreover, this HEA performed
at the state-of-the-art, providing solutions that are equal or better to the best ones
reported to date in the literature.

1.3.3 The Social Golfer Problem (SGP)

The social golfer problem (SGP) was first posted on sci.op-research in May
1998, and it consists of scheduling n = g · s golfers into g groups of s players
every week for w weeks so that no two golfers play in the same group more than
once. The problem can be regarded as an optimization problem if for two given
values for g and s, we ask for the maximum number of weeks w the golfers can
play together. SGP is a combinatorial constrained problem that raises interesting
issues in symmetry breaking (e.g., players can be permuted within groups, groups
can be ordered arbitrarily within every week, and even the weeks themselves can be
permuted). Note that symmetry is also present in both the OGR problem and the
MDSLP. Notice however that problem symmetry is beyond the scope of this paper
and thus symmetry issues will not be explicitly discussed here.

1.3.3.1 Formal definition As mentioned above, the Social Golfer Problem (SGP)
consists of scheduling n = g · s golfers into g groups of s players every week for w
weeks, so that no two golfers play in the same group more than once. An instance
of the social golfer is thus specified by a triplet 〈g, s, w〉. A (potentially infeasible)
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solution for such an instance is given by a schedule σ : Ng × Nw −→ 2Nn , where
Ni = {1, 2, · · · , i}, and |σ(i, j)| = s for all i ∈ Ng, j ∈ Nw, that is, a function
that on input (i, j) returns the set of s players that constitute the i-th group of the
j-th week. There are many possible modelings for the social golfer problem, which
is one of the reasons why it is so interesting. In a generalized way, this problem
can be modelled as a constraint satisfaction problem (CSP) defined by the following
constraints:

• A golfer plays exactly once a week, i.e.,

∀p ∈ Nn : ∀j ∈ Nw : ∃!i ∈ Ng : p ∈ σ(i, j). (1.8)

This constraint can be also formalized by claiming that no two groups in the
same week intersect, i.e.,

∀j ∈ Nw : ∀i, i′ ∈ Ng, i 6= i′ : σ(i, j) ∩ σ(i′, j) = ∅. (1.9)

• No two golfers play together more than once, i.e.,

∀j, j′ ∈ Nw : ∀i, i′ ∈ Ng, i 6= i′ : |σ(i, j) ∩ σ(i′, j′)| 6 1. (1.10)

This constraint can also be formulated as a weighted constraint: let #σ(a, b)
be the number of times golfers a and b play together in schedule σ, i.e.,

#σ(a, b) =
∑

i∈Ng

∑

j∈Nw

[{a, b} ⊆ σ(i, j)] , (1.11)

where [·] is the Iverson bracket, namely [true]= 1 and [false]= 0. Then,
we can define the degree of violation of a constraint a-and-b-play-together-at-
most-once as max(0, #σ(a, b)− 1).

As already commented symmetries can appear in (and can be removed from) this
problem in several forms; see [69, 70, 71] for more details.

1.3.3.2 Solving the SGP The SGP was firstly attacked by CP techniques that
mainly addressed the SGP by detecting and breaking symmetries (e.g., [72, 73, 74,
75, 76, 77, 78, 70]), Due to the interesting properties of the problem, it also attracted
the attention in another optimization areas, and has been extensively tackled via
different techniques. Here, we mention just some of the most recent advances in
solving the SGP. For instance, Harvey and Winterer [69] have proposed to construct
solutions to the SGP by using sets of mutually orthogonal latin squares. Also, Gent
and Lynce [79] have recently introduced a satisfiability (SAT) encoding for the SGP.
Barnier and Brisset [70] have presented a combination of techniques to efficiently
find solutions to a specific instance of SGP, the Kirkman’s schoolgirl problem. Global
constraints for lexicographic ordering have been proposed by Frisch et al. [80], being
used for breaking symmetries in the SGP. Also, a tabu-based local search algorithm
for the SGP is described by Dotú and Van Hentenryck [81].
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In [71], we presented, to the best of our knowledge, the first attempt of tackling
the SGP by evolutionary techniques; it consisted of a memetic algorithm (MA) that
is based on the hybridization of evolutionary programming and tabu search. The
flexibility of MAs eased the handling of the problem symmetries. Our MA, based
on selection, mutation and local search performed at a state-of-the-art level for this
problem.

1.3.4 The Consensus Tree Problem (CTP)

The inference (or reconstruction) of phylogenetic trees is a problem from the bioin-
formatics domain that has direct implications in areas such as multiple sequence
alignment[82], protein structure prediction[83] or molecular epidemiological studies
of viruses[84], just to cite a few. This (optimization) problem seeks the best tree
representing the evolutionary history of a collection of species, providing therefore, a
hierarchical representation of the degree of closeness among a set of organisms. This
is typically done on the basis of molecular information –e.g., DNA sequences– from
these species, and can be approached in a number of ways: maximum likelihood, par-
simony, distance matrices, etc. [85]. A number of different high-quality trees (with
quality measured in different ways) can then be found, each possibly telling some-
thing about the true solution. Furthermore, the fact that data come from biological
experiments, which are not exact, makes near-optimal solutions (even near-optimal
with respect to different criteria) be almost as relevant as the actual optimum. It is in
this situation where the consensus tree (often called supertree) problem comes into
play [86]. Essentially, a consensus method tries to summarize a collection of trees
provided as input, returning a single tree [87]. This implies identifying common
substructures in the input trees and representing these in the output tree.

1.3.4.1 Formal definition Let T be a strictly binary rooted tree; a LISP-like
notation will be used to denote the structure of the tree. Thus, (sLR) is the tree
with root s, and with L and R as subtrees, and () is an empty tree. The notation
(a) is a shortcut for (a()()). Let L(T ) be the set of leaves of T . Each edge e in T
defines a bipartition πT (e) = 〈S1, S2〉, where S1 are the leaves in L(T ) that can be
reached from the root passing through e, and S2 are the remaining leaves. We define
Π(T ) = {πT (e) | e ∈ T}.

The consensus tree problem consists of representing a collection of trees
{T1, · · · , Tm} as a single tree that should be optima with respect to certain model.
This model can be approached in several ways [87]; for instance, the models described
in [88] (i.e., tree compatibility problem) and in [89] (i.e., strict consensus) focus on
finding a tree such that Π(T ) = ∪m

i=1Π(Ti) and Π(T ) = ∩m
i=1Π(Ti) respectively;

also the model presented in [90] (i.e.,the median tree) tries to minimize the sum of
differences between T and the input trees, i.e., min

∑m
i=1 d(T, Ti).

As a consequence, the meaning of global optimum is different from typical CCOPs
since it is very dependant on the selected model as well as another metrics such as
the way of evaluating the differences between the trees (i.e., the distance between
trees). This is so because the distance d(T, T ′) between trees is not standard, and
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different alternatives can be considered. Perhaps the most typical distance is defined
as the number of non-common bipartitions in Π(T ) and Π(T ′): this is also termed the
partition metric. In any case, alternative metrics can be considered. For example, one
can cite edit distance (measured in terms of some edition operations, such as nearest
neighbor interchange (NNI), subtree prune and regraft (SPR), or tree bisection and
reconnection (TBR) among others – see [91]), or the TreeRank measure [92]. All of
these metrics have advantages and drawbacks so that is not always easy to determine
which is the best election.

The fact that the problem admits different formulations is an additional reason
making it so interesting. For instance, recently, the problem was formulated as a con-
straint satisfaction problem in [93]: Gent et al. presented a constraint encoding based
on the observation that any rooted tree can be considered as being min-ultrametric
[94] when we label interior nodes with their depth in that tree. This guarantees that
any path from the root to a leaf corresponds to a strictly increasing sequence. See
[93] and [95] for more details about this encoding.

1.3.4.2 Solving the CTP Regarding the inference of phylogenetic trees, the use of
classical exact techniques can be considered generally inappropriate in this context.
Indeed, the use of heuristic techniques in this domain seems much more adequate.
These can range from simple constructive heuristics (e.g., greedy agglomerative
techniques such as UPGMA[96]) to complex metaheuristics [97] (e.g., evolution-
ary algorithms[98, 99] or local search [100]). At any rate, it is well-known that
any heuristic method is going to perform in strict accordance with the amount of
problem-knowledge it incorporates[16, 9]. In [101] we precisely explored this pos-
sibility, and presented a model for the integration of branch-and bound techniques
(BnB)[102] and memetic algorithms (MAs)[13, 14, 15]. This model resulted in a
synergistic combination yielding better results (experimentally speaking) than each
of its constituent techniques, as well as classical agglomerative algorithms and other
efficient tree-construction methods.

Regarding the consensus tree problem, very different methods have been applied
(e.g., polynomial time algorithms [103], constraint programming (CP) [93, 95, 104],
and evolutionary algorithms (EA) [99] among others). With the aim of improving the
so-far-obtained results we are now experimenting with hybrid methods that combine
the best of the CP and EA proposals. More specifically, we are evaluating two
algorithms: the first one is an MA [15] in which we use a CP method for supertree
construction based in the method published in [93] as recombination operator. The
results should be reported soon [105].

1.4 CONCLUSIONS

Constrained COPs are ubiquitous, and are representative of a plethora of relevant
real-world problems. As such, they are also typically hard to solve, and demand
the use of flexible cutting-edge optimization technologies for achieving competitive
results. As we have shown in this work, the framework of evolutionary computation
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offers a solid ground upon which powerful optimizations algorithms for CCOPs can
be built via hybridization.

HEAs provide different options for dealing with CCOPs, ranging from the inclu-
sion of constraints as side objectives to the definition of ad hoc operators working
within the feasible region, including the use of repairing mechanisms or complex
genotype-phenotype mappings. Each of these approaches is suited to different –not
necessarily disjoint– optimization scenarios. Hence, they can avail the practitioner
in different ways, providing her with alternative methods for solving the problem at
hand.

It is difficult to provide general design guidelines, since there are many problem
specificities to be accounted. The availability of other heuristics (either classical or
not) may suggest the usefulness of performing a direct search in the space of solutions,
so that these heuristics can be exploited by the HEA. The particulars of the objective
function or the sparseness of valid solutions may dictate whether a penalty-based
approach is feasible or not (e.g., non-feasible solutions could not be evaluated at all,
the search algorithm could spend most of the time outside the feasible region, etc.).
The availability of construction heuristics can in turn suggest the utilization of indirect
approaches, e.g., via decoder functions. This approach is sometimes overestimated,
in the sense that one has to be careful to provide the HEA with a search landscape
which is easy to navigate. Otherwise, the benefits of the heuristic mapping can be
counteracted by the erratic search dynamics.

From a global perspective, the record of success of HEAs on CCOPs suggests
that these techniques will be increasingly used to solve problems in this domain.
It is then expected that the corpus of theoretical knowledge on the deployment of
HEAs on CCOPs will grow alongside with the applications of these techniques to
new problems in the area.

Acknowledgments

The authors are partially supported by the Ministry of Science and Technology
and FEDER under contract TIN2005-08818-C04-01 (the OPLINK project). Second
author is also supported under contract TIN-2007-67134.



References

1. L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial Intelligence through Simulated
Evolution. John Wiley & Sons, New York, 1966.

2. H.-P. Schwefel. Kybernetische Evolution als Strategie der experimentellen
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