
Scheduling and Production & Control: MA

27. Scheduling and Production & Control: MA

Pablo Moscato, Alexandre Mendes and Carlos Cotta

27.1 Introduction

This chapter addresses three main problems of the production planning area:
Single Machine Scheduling (SMS), Parallel Machine Scheduling (PMS) and
Flowshop Scheduling (FS). Many situations in production environments found in
industries around the world can be modelled as one or a set of them (Baker 1974).
It is easy to find dozens of problem variants in the literature due to different pro-
duction constraints and objective functions. Due to the overwhelming number of
combinations, we focused our discussion on only one of each problem class. They
are:

• SMS with sequence-dependent setup times and with the objective of minimiz-
ing of the total tardiness.

• PMS with sequence-dependent setup times and minimization of the makespan.
• FS with families of jobs, sequence-dependent setup times and minimization of

the makespan.

The three problems are NP-hard. That means finding that under the current con-
jecture that the computational complexity classes P and NP are not equal, it is
widely conjectured that the optimal solution of an arbitrary instance of these prob-
lems cannot be found in polynomial time (Lawler et al. 1993). They also share se-
quence-dependent setup times, which are common in industrial environments and
dramatically increase the complexity of the problem. These times come from the
fact that the machinery usually requires some kind of maintenance (cleaning,
alignment, tooling change, etc.) before starting the production of a given job, or
sets of jobs. The objective functions treated are the total tardiness and the
makespan.

The total tardiness obliges the scheduling to respect production due dates, de-
fined by the clients that make the orders. They are utilized when the industry
wants to deliver the customers’ orders on time, or with the least delay. Moreover,
no penalty is applied if products are completed before their due dates. In other
words, no after-production inventory costs are considered.

The makespan measures the total time of production, marked by the time span
between the production start and the time when the last job leaves the shop floor.
When no setup times are considered, the makespan is constant, but with setup
times, the minimization of this value becomes a challenge. Other important con-
siderations of the problems addressed are as follows:

2 Pablo Moscato, Alexandre Mendes and Carlos Cotta

• A set on independent, single-operation, non-preemptive jobs is available with
ready-time1 zero.

• The machines are continuously available and have no limitation of resources.
• Tooling availability is not a production-limitation factor.
• No machine breakdowns or other contingencies are considered.
• All parameters defining the production environment – processing times, setup

times and due dates – are previously known.

27.2 The single machine scheduling problem

The Single Machine Scheduling is one of the first studied class of problems in
the scheduling area (Graham et al. 1979; Graves 1981). There are many different
types of SMS problems (generally due to different input data and objective func-
tions). One of the simplest to state, but not easy to solve at all, is the problem of
sequencing n jobs, given its processing times and due dates (distinct for each job),
and with the objective function being to minimize the total tardiness. Tardiness is
a regular performance measure, which means that an optimal schedule cannot
have idle times between jobs. Moreover, the tardiness increases only if at least one
of the completion times2 in the schedule also increases. Under these circum-
stances, a valid solution of the problem can be defined as a simple permutation of
the jobs. Using the permutation space representation, the solution space has n!
configurations, all of them representing valid solutions of the problem.

The SMS problem addressed can be extended by the inclusion of precedence
constraints for the jobs, ready-times, resources limitations, etc. From an objective
function’s point-of-view, we may want to minimize the makespan, the total tardi-
ness, the mean tardiness, the number of tardy jobs, or even a combination of these
objectives, which would characterize a multi-criteria3 problem.

It is easy to see the large variety of problems that we may face in practice (Gen
and Cheng 1997). Even looking at very complex industrial manufacturing sys-
tems, it is not hard to find situations in which a simple SMS should be solved (Ow
and Morton 1989). In multiple-operation processes, a single part usually goes
through several machines, where each machine performs a specific job at the part.
Depending on the processes involved, there might be bottlenecks in this sequence,
which can be modelled as SMS problems. Intricate jobs, performed by dedicated
machines fit in that category. These machines are usually very expensive and
probably there will be only one of them in the production environment, being used
continuously. This situation represents a bottleneck and the schedule determina-

1 Ready-time is the time that the job becomes ready to start being processed.
2 Completion time is the time when a given job finishes its processing.
3 In multi-criteria problems, two or more performance criteria, sometimes confronting ones,

shall be optimised. These problems are harder to solve, mainly because of the difficulty
to compare the solutions’ quality. In such cases, Pareto’s optimality criteria should be
employed.

27. Scheduling and Production & Control: MA 3

tion for this machine will affect the production as a whole. Next, it is shown the
description of the SMS problem addressed in this chapter:

Input: Let n be the number of jobs to be processed in one machine. Let P = {p0,
p2, ..., pn} be the list of processing times, D = {d1, d2, ..., dn} be the list of due
dates for each job and S0 = {s01, s02, ..., s0n} be the list of initial setup times. Let
{Si,j} be a matrix of setup times, where si,j is the time required to set up job j after
the machine has just finished processing job i.

Task: Find a permutation that minimizes the total tardiness of the schedule. Sup-
pose that the jobs are scheduled in the order {π(1), π(2), ..., π(n)}. Then the total
tardiness can be calculated using the Eq. 27.1.

[]∑
=

−=
n

k
kktardiness dcTotal

1
)()(,0max ππ (27.1)

Where cπ(k) represents the completion time of job π(k). The cπ(k) values can be cal-
culated using the Eq. 27.2.

() []∑
=

− +++=
k

i
iiik pspsc

2
)()(),1()1()1(0 ππππππ (27.2)

It is well known that the problem of sequencing jobs in one machine without
setup times is already NP-hard (Du and Leung 1990). Despite its application to
real world settings, the SMS problem addressed in this chapter has received little
attention in the scheduling literature. In (Ragatz 1993) a branch-and-bound
(B&B) method is proposed, but only small instances could be solved to optimality.
The papers of (Raman et al. 1989) and (Lee et al. 1997) use dispatch rules based
on the calculation of a priority index to build an approximate schedule, which is
then improved by the application of a local search procedure. The ATCS heuristic
presented in (Lee et al. 1997) had an impressive performance for this problem,
considering its simplicity. Three papers using metaheuristics have been proposed
so far. In (Rubin and Ragatz 1995) a new crossover operator was developed and a
genetic algorithm (GA) was applied to a set of test problems. The results obtained
by the GA approach were compared with the ones from a B&B and with a multi-
ple start (MS) algorithm and they concluded that MS outperformed the B&B and
the GA in many instances, considering running time and quality of solutions as
performance measures. Of course, the instances in which MS outperformed B&B
were the ones where the exact method did not find an optimal solution before a
limit on the number of nodes was reached. The B&B was truncated in such cases,
returning sub-optimal schedules. Given these results, (Tan and Narasimhan 1997)
chose the MS technique as a baseline benchmark for conducting comparisons with
the simulated annealing (SA) approach they proposed. Their conclusion was that
SA outperformed MS in all but three instances, with percentage improvements not
greater than 6%. More recently, (França et al. 2001) proposed a new memetic al-
gorithm (MA) that outperformed the previous approaches. The results presented in
this chapter are an improvement over previously reported results. The BOX cross-

4 Pablo Moscato, Alexandre Mendes and Carlos Cotta

over, together with the multi-population approach (both equal to those described
in Chap. 18) produced a big performance leap.

27.2.1 The test instances

The test set used for the experimental analysis consists of instances that vary
from 17 to 100 jobs. This set was constructed from Asymmetric Travelling Sales-
man Problem (ATSP) instances which optimal solutions are available in the litera-
ture. All ATSP instances used for this purpose in this work, as well as their opti-
mal solutions, are available at the TSPLIB website4.

It is clear that the ATSP and the SMS problems share similarities and they have
been highlighted for decades. The most important relates the SMS’s setup times
with the ATSP’s distance matrix. This correspondence suggests a transformation
procedure to create an “interesting set” of SMS instances starting from an arbitrary
ATSP instance with known optimal solution. We propose a three-step procedure
to generate such SMS instances. Each SMS instance is composed of a matrix of
setup times and three lists of n integers. In the transformation, the setup times ma-
trix will be equal or be a multiple of the ATSP’s distance matrix. Then, a simple
procedure generates the three lists required to complete the SMS instance. Sup-
pose that the permutation {π(1), π(2), ..., π(n)} represents the sequence of cities in
the optimal tour for the ATSP instance.

Step 1 - Generation of the S0 list: Let [π(k), π(k+1)] be the pair of adjacent nodes
of the ATSP optimal tour with the largest distance between cities (named dist). Let
s0,π(k+1) be equal to the cost of this arc, distπ(k),π(k+1). Let all other s0j, j ≠ π(k+1) be
greater than s0,π(k+1). Moreover, the initial job of the optimal SMS solution will be
π(k+1).
Step 2 - Generation of the P list: Initially, re-enumerate the nodes so that π(1) ⇒
π(k+1); π(2) ⇒ π(k+2); ...; π(n) ⇒ π(k). Then, construct the list {pπ(1), pπ(2), ...,
pπ(n)} in such a way that pπ(1) < pπ(2) < ... < pπ(n).
Step 3 - Generation of the D list: Construct the due dates in such a way that dπ(1) <
dπ(2) < ... < dπ(n) and dπ(i) ∈ [cπ(i) - pπ(i), cπ(i)] ∀ π(i): i = 1, ..., n, where cπ(i) is the
completion time of job π(i) following the ATSP optimal sequence.

It is worth emphasizing that we are not stating that the transformation proce-
dure described above preserves the ATSP optimal tour permutation as the SMS
optimal sequence. Consequently, it is an open problem to find the optimal tardi-
ness value of the resulting SMS instances. Nevertheless, in all tests we have exe-
cuted (using the TSPLIB instances as the basis of the transformation) we have
never reached a better tardiness than the one obtained with the jobs in the ATSP
optimal permutation. As a consequence, we will assume that such values can be
considered at least as very high-quality upper bounds.

4 http://www.crpc.rice.edu/softlib/tsplib/

27. Scheduling and Production & Control: MA 5

We will now describe the intuition behind the suggested transformation. The
direct use of the distance matrix as the setup times between jobs is pretty clear.
Suppose that all processing times are zero in the SMS problem. In this case, the
SMS problem is basically a generalization of the ATSP on which we have the ex-
tra constraint of due dates to visit each city.

The idea of starting the sequence with the setup corresponding to the largest
distance belonging to the optimal ATSP tour aims to avoid that a change in the
initial job produces a reduction in the sum of the completion times, what could
make the optimal sequence be lost. Another important point is the requirement
that distπ(k+1),π(k) < distπ(k),π(k+1). However, these rules are not enough. Let us show
an example where the transformation does not preserve optimality (see Fig. 27.1).

Fig. 27.1. An example where the optimal solution of the ATSP instance is not the optimal
permutation of the SMS instance.

In Fig. 27.1, on the left side there is an ATSP instance composed of four cities.
As the internal arcs are valued “infinite”, the only two tours that avoid using one
of these edges are [B C D A] – with a total length of 800 – and [A D C B] – with a
total lenght 1003. Therefore, consider the optimal tour [B C D A]. For the sake of
simplicity, ignore the processing times and due dates of the corresponding SMS
problem as we are interested only in the effect caused by the setup times. On the
upper-right portion of the Fig. 27.1, the presumed optimal sequence is shown, with
a makespan of 800 – equal to the optimal ATSP tour length. Consider the situation
where the initial arc has a very high value in the opposite direction. In this case,
according to the transformation procedure, it could be replaced by a value greater
than s0,π(k+1) but smaller than the original. In the example, it was substituted by
201, what is much smaller that 1000. The consequence is that the real optimum
makespan becomes lower than the presumed one and the transformation fails to
preserve optimality. If in Step 1, the restriction distπ(k+1),π(k) < distπ(k),π(k+1) is not ob-
served, the transformation might not be valid. Thus, a necessary condition is that
the initial arc must always have a larger value when it is considered in the direc-
tion of the presumed optimal solution than when it is considered in the opposite
direction.

The steps 2 and 3 have the same function. When we order the processing times
and the due dates following an increasing sequence, we avoid that any change in a
job position leads to a reduction in total tardiness. The way that the P and D lists

6 Pablo Moscato, Alexandre Mendes and Carlos Cotta

are generated produces instances that are solvable to optimality by the Shortest
Processing Time (SPT) and by the Earliest Due Date (EDD) heuristics. Methods
that use such procedures, or their variants, will solve the instances instantly, con-
sequently producing biased results. Nevertheless, in order to evaluate the memetic
algorithm, which does not employ any such heuristics in its operators, the in-
stances are absolutely adequate.

27.2.2 The memetic algorithm approach

The MA utilized in the SMS problem is very similar to that presented for the
Gate Matrix Layout problem (see Chap. 18). Therefore, we refer the reader to that
chapter and we will focus only on a few minor differences between them.

The representation chosen is quite intuitive, with a solution being represented
as a chromosome with the alleles assuming different integer values in the [1, n] in-
terval. In other words, a solution is a permutation of n integers.

Two crossover operators were tested: BOX and OX. In the first one, after
choosing two parents, several fragments of the chromosome from one of them are
randomly selected and copied into the offspring. In a second phase, the offspring’s
empty positions are sequentially filled with the alleles present in the chromosome
of the other parent, from left to right. The procedure tends to perpetuate the rela-
tive order of the jobs and has a better overall performance over the original OX
crossover (Goldberg 1989), which selects a single block of one of the parents to be
copied into the offspring. In this implementation, the parent that copies its block(s)
into the offspring is the leader of the cluster, and the supporter will complete the
empty positions (see Fig. 27.2).

Fig. 27.2. Crossover operators for the SMS problem – OX and BOX

The number of individuals created in every generation is very high – two times
the number of individuals in the population. This value is consequence of the ac-
ceptance policy for the offspring, which is very restrictive. Therefore in order to
balance the large number of discarded individuals, we must create many of them
every generation.

In this implementation, we employed the all-pairs and the insertion neighbour-
hoods, just like in the VLSI problem. Due to the complexity of each individual
evaluation, a neighbourhood reduction based on the setup times’ values had to be

27. Scheduling and Production & Control: MA 7

developed. It was observed that most good schedules have a common characteris-
tic: the setup times between jobs in these solutions are very small. This is reason-
able, since schedules with small setup times between jobs will be less lengthy,
generating fewer delays. Next, we show two diagrams illustrating how the sched-
ule is modified if jobs i and j swap their positions (see Fig. 27.3) and if job i is in-
serted immediately before job j (see Fig. 27.4).

Fig. 27.3. Diagram of a swap move in an all-pairs neighbourhood and its implications on
the schedule

Fig. 27.4. Diagram of a move in an insertion neighborhood and its implications on the
schedule

Based on the δ variations, it is possible to create rules to determine if a given
move should be evaluated or not. Among the several possibilities of combinations,
the best results came, for the all-pairs neighbourhood, if we evaluate the swap
move only if ‘at least one δ value improves in both modified regions’. For the in-

8 Pablo Moscato, Alexandre Mendes and Carlos Cotta

sertion neighbourhood, the best policy is to test an insertion move only ‘if the sum
of the δ variables in at least one modified region improves’. In mathematical form,
these rules can be written as logical clauses:

• [(δ1a < δ1b) ∨ (δ2a < δ2b)] ∧ [(δ3a < δ3b) ∨ (δ4a < δ4b)], for the all-pairs
neighbourhood.

• (δ1a < δ1b + δ2b) ∨ (δ2a + δ3a < δ3b), for the insertion neighbourhood.

Since each individual evaluation requires a considerable computational effort5
reductions like these save a lot of time. In fact, although the reduction policies are
very strict, reducing the neighbourhoods to less than 10% of their original size,
they maintain the search focused on promising moves. More information on the
several reduction policies tested, as well as performance comparisons, can be
found in (França et al. 2001).

27.2.3 The SMS computational results

As said before, the SMS instances use the ATSP distance matrices. The only
flexible parameters are the processing times and the due dates. By combining
these two components of the input, we classified the instances in four groups. The
parameters are generated according to the rules:

Processing Times:

LOW: pk ∈ [0, ¼.max(sij)] ∀ k: k = 1, ..., n

HIGH: pk ∈ [0, 2.max(sij)] ∀ k: k = 1, ..., n

Due dates:

HARD: dk = ck ∀ k: k = 1, ..., n

SOFT: dk ∈ [ck - pk, ck] ∀ k: k = 1, ..., n

The LOW rule makes the setup times a more critical aspect in the problem, em-

phasizing its “ATSP-like character”. In these instances, the processing times are
small, compared to the setup times. The HIGH policy, on the other hand, makes
the processing times be more relevant in the schedule determination. Their values
can be up to two times larger than the maximum setup time.

The HARD policy generates instances in which the total tardiness of the sched-
ule that corresponds to the optimal ATSP solution equals to zero. This value in
guaranteed because the due dates are placed over the jobs’ completion times,
when the production follows the optimal ATSP tour. Nevertheless, it is a quite dif-
ficult problem, since only one – or perhaps a few – of the n! solutions has a zero
tardiness. The SOFT instances, on the other hand, have greater-than-zero optimal

5 Each individual evaluation is O(n) and the complete neighbourhoods are O(n2).

27. Scheduling and Production & Control: MA 9

total tardiness and are better suited for making relative comparisons, where per-
centage deviations from optimal value are numerically necessary. Next, in Table
27.1, we show some characteristics of the original ATSP instances such as number
of cities and distance between cities – minimum and maximum distij.

Table 27.1. Number of cities (jobs), and distance-between-cities interval (setup times) of
the ATSP instances

Instance name n Minimum distij Maximum distij
br17 17 0 74
ftv33 34 7 332
ftv55 56 6 324
ftv70 71 5 348
kro124p 100 81 4,545

The instances tried to cover a wide range of number of jobs. Moreover, the re-

sulting SMS setup times also cover a wide range. The Tables 27.2 and 27.3 show
all the results obtained for the set of instances created. The name of the instance is
in the first column and is divided in two parts. The initial part refers to the name of
the original ATSP instance. Then, the two capital letters indicate if the instance is
LOW or HIGH, and HARD or SOFT. The second column indicates the presumed
optimal tardiness. Next to it, we have the average total tardiness found using the
OX and the BOX recombination operators, considering 10 runs for each instance.
Written in bold letter, subscript, there is the number of times that the optimal solu-
tion was found, out of 10 trials. Finally, in the columns labeled ‘CPU time’ it is
shown the average CPU time.

Single population tests

The Table 27.2 shows the results for the single population memetic algorithm,
using the OX and BOX crossovers. The maximum CPU time was fixed at four
minutes, but several times the “presumed optimal” (i.e. the permutation corre-
sponding to the optimum ATSP tour) was reached before this limit. The equip-
ment utilized is a 366 MHz Pentium II Celeron with 128 MB RAM.

The results in Table 27.2 show that the memetic algorithm successfully solved
most of the instances. The OX crossover had a worse overall performance, com-
pared to the BOX, failing in many of the 100-job instances. Concerning this crite-
rion, the finding of 167 and 180 optimal solutions – out of 200 possible – for the
OX and BOX crossovers, respectively, can be considered a very reasonable rate of
success. Based on the results, we can also conclude that the 100-job instances are
in the threshold of the search capability of the algorithms, because the number of
optimal solutions decreased considerably. For the kro124pLS, for example, the
“presumed optimal” was found only once in twenty trials. Probably, for instances
with more than 100 jobs, the method might fail to find any optimal solutions and
more features will have to be included in the algorithm in order to increase its
search power. Another important point is the CPU time required by each configu-
ration. In general, the BOX needs less CPU time than the OX to find the optimal

10 Pablo Moscato, Alexandre Mendes and Carlos Cotta

solutions. This characteristic becomes more evident in the ftv70 and kro124p sets
of instances.

Table 27.2. Results for the single population memetic algorithm

Instance
name

Presumed
optimal
tardiness

OX
Average
Tardiness

BOX
average
tardiness

OX CPU
time (sec.)

BOX CPU
time (sec.)

br17LH 0 010 010 0.1 0.1
br17LS 52 5210 5210 0.1 0.1
br17HH 0 010 010 0.1 0.1
br17HS 547 54710 54710 0.1 0.1
ftv33LH 0 010 010 2.1 2.1
ftv33LS 664 66410 66410 2.8 2.6
ftv33HH 0 010 010 1.3 1.3
ftv33HS 5,324 5,32410 5,32410 1.5 1.4
ftv55LH 0 010 010 17.4 13.8
ftv55LS 1,170 1,17010 1,17010 50.9 19.8
ftv55HH 0 010 010 6.9 8.0
ftv55HS 8,515 8,51510 8,51510 12.9 14.5
ftv70LH 0 918.67 010 148.5 46.0
ftv70LS 1,506 1,557.48 1,50610 165.0 70.1
ftv70HH 0 010 010 41.8 23.6
ftv70HS 12,368 12,36810 12,36810 40.3 35.3
kro124pLH 0 23,872.02 22,717.13 229.5 205.5
kro124pLS 26,111 74,636.30 68,618.81 240.0 224.3
kro124pHH 0 4,710.67 010 157.3 107.1
kro124pHS 223,890 238,114.23 231,997.56 220.4 185.5

* Total optimal solutions found *167 *180

Multiple population tests

The multiple population memetic algorithm aims to validate the use of multiple
populations for the SMS problem. Using the results presented in the Chap. 18 –
Gate Matrix Layout Problem – as a guideline, the number of populations was
fixed at four and the migration policy used was the so-called 1-Migrate. The
maximum CPU time remained at four minutes and the results are presented in Ta-
ble 27.3.

The multiple population approach had a better performance than the single
population one. The number of presumed optimal solutions found was greater –
170 and 189 against 167 and 180 in the single population version. With the use of
the BOX crossover, we attained very strong results even for the 100-job instances,
what makes us believe that the method could deal with larger problems. In this
test, the relation between CPU time’s requirements was the same. The BOX is
much more efficient than the OX, reaching the optimal solutions much faster. Still
regarding the CPU time, sometimes the multiple population approach is slower
than the single population, especially for the smaller instances. This was already
expected since the algorithm had to evolve four populations instead of only one.

27. Scheduling and Production & Control: MA 11

The problem must have a sufficient size – and complexity – in order to take ad-
vantage of the genetic drift effect (see Chap. 18) and be noticeable from computer
experiments.

Table 27.3. Results for the multiple population memetic algorithm

Instance
name

Presumed
optimal
tardiness

OX
average
tardiness

BOX
Average
Tardiness

OX CPU
time (sec.)

BOX CPU
time (sec.)

br17LH 0 010 010 0.1 0.1
br17LS 52 5210 5210 0.1 0.1
br17HH 0 010 010 0.1 0.1
br17HS 547 54710 54710 0.1 0.1
ftv33LH 0 010 010 1.7 2.1
ftv33LS 664 66410 66410 3.4 2.6
ftv33HH 0 010 010 1.2 1.6
ftv33HS 5,324 5,32410 5,32410 1.6 2.0
ftv55LH 0 010 010 43.8 13.6
ftv55LS 1,170 1,17010 1,17010 40.1 22.5
ftv55HH 0 010 010 8.4 8.1
ftv55HS 8,515 8,51510 8,51510 12.8 8.7
ftv70LH 0 010 010 122.7 48.3
ftv70LS 1,506 1,684.78 1,50610 172.9 53.6
ftv70HH 0 010 010 39.2 18.0
ftv70HS 12,368 12,36810 12,36810 50.8 35.1
kro124pLH 0 48,536.51 26,175.96 231.7 206.6
kro124pLS 26,111 72,553.70 53,807.44 240.0 227.7
kro124pHH 0 3,337.58 010 159.3 118.9
kro124pHS 223,890 240,213.13 233,074.39 228.1 141.3

* Total optimal solutions found *170 *189

27.3 The parallel machine scheduling problem

The second part of this chapter addresses the PMS problem. It consists of
scheduling a given set of n jobs to m identical parallel machines with the objective
of minimizing the makespan. As in the SMS problem, there are sequence-
dependent setup times between jobs. The PMS can be considered a generalization
of the SMS since it takes into account several machines, instead of only one. In
fact, the solution found to deal with bottleneck situations like those described in
Sect. 27.2 is usually the addition of more machines, transforming the SMS prob-
lem into a PMS one. Of course, sometimes this cannot be done, generally due to
financial limitations. The resulting problem can be faced as two problems. The
first is how to assign the jobs to the several machines and the second is how to
schedule the jobs in each machine. The PMS with setup times is frequently found
in real world settings where the setups are not negligible, especially in the paper,
chemical and textile industries.

12 Pablo Moscato, Alexandre Mendes and Carlos Cotta

Previous PMS-related works are dated back to 1984. In that year, Dearing and
Henderson (1984) developed an integer linear programming model for loom as-
signment in a textile weaving operation. They reported results found through the
rounding of the solutions obtained by the linear relaxation of the integer model. In
1987, Sumichrast and Baker (1987) proposed a heuristic method based on the so-
lution of a series of 0-1 integer subproblems, improving the results obtained in
(Dearing and Henderson 1984). These two articles deal with a slightly different
problem because they assume that a job can be split among several machines. The
case being addressed in this chapter is combinatorially more complex. To the au-
thors’ knowledge, very few papers have reported computational results for this
problem. The work of Frederickson et al. (1978) present approximate algorithms
derived from an equivalence between the PMS and the Travelling Salesman Prob-
lem (TSP). França et al. (1996) used a tabu search-based (TS) heuristic in connec-
tion with a powerful neighborhood scheme that employs the concept of local and
global neighbors. Later, Mendes et al. (2002) proposed a MA approach for the
problem, comparing the results with the ones found in (França et al. 1996).

The PMS problem is a difficult combinatorial problem proved to be NP-hard in
a strong sense because it is equivalent to the TSP when the number of processors
equals one (Baker 1974). Next, it is shown the description of the PMS problem.

Input: Let n be the number of jobs to be processed in m identical machines. Let
P = {p1, p2, ..., pn} be the list of the jobs’ processing times, and S0 = {s01, s02, ...,
s0n} be the list of initial setup times. Let {Si,j} be a matrix of setup times, where si,j
is the time required to set up job j after the machine has just finished processing
job i.

Task: Assign the jobs to the machines and find the permutation in each machine
that minimizes the production makespan. In order to calculate the makespan, ini-
tially consider that π(k,l) represents the k-th job of machine l. The total production
time in machine l, represented by Γl, can be calculated by the Eq. 27.3.

[]∑
=

− +++=Γ
ln

i
lilililll psps

2
),(),(),,1(),1(),1(0 πππππ (27.3)

Where nl is the number of jobs processed by machine l. Thus, the makespan is the
maximum production time among all machines, being represented by the Eq. 27.4.

[]
i

iMakespan Γ= max (27.4)

27.3.1 The test instances

The instances used in the computational experiments were randomly generated.
The number of jobs was fixed at 20, 40, 60 and 80, and the number of machines at
2, 4, 6 and 8. Processing times were generated following a discrete uniform distri-
bution DU(1, 100). Setup times were divided into two categories: small setup
times – with values in the interval [1, 10] – and large setup times – with values in

27. Scheduling and Production & Control: MA 13

the interval [1, 100]. The setup times were also generated according to two possi-
bilities: structured and non-structured. The structured setup times follow the trian-
gular inequality, that is, sij ≤ sik + skj, ∀ i, j, k; k ≠ i, j. The non-structured setup
times do not follow the triangular inequality. We considered 10 replications for
each combination of number of jobs and machines.

27.3.2 The memetic algorithm approach

The MA utilized for the PMS problem is very similar to the GMLP (see Chap.
18, this book) and the SMS. The differences are concentrated on the crossover
type – the BOX was replaced by the OX – and on the use of a single population,
instead of several ones. Now, let us begin by addressing the individual representa-
tion for this problem.

The representation chosen for the PMS is a chromosome with its alleles assum-
ing different integer values in the [1, n] interval. In order to include information
about the m machines, m-1 cut-points (represented by a ‘*’ symbol) were intro-
duced to define the jobs assignment to each machine. For instance, a chromosome
[1 4 6 * 3 7 2 10 * 8 9 5] is a possible solution for a problem with 10 jobs and 3
machines. The cut-points are in positions 4 and 9. Thus, machine 1 executes op-
erations [1 4 6], in this order; machine 2 executes operations [3 7 2 10] and ma-
chine 3 performs operations [8 9 5]. As the machines are identical, no distinction
must be made between the cut-points.

As said before, the crossover operator implemented is the Order Crossover
(OX). Because of the cut-points’ role and their effect in the schedule, the OX in
this case behaves similarly to the BOX. The reason is that any cut-point position
change influences the job/machine assignment of the entire sequence, resembling
the kind of perturbation that would be caused by the BOX. The difference between
the OX implemented and the originally introduced by (Goldberg 1989), is that the
offspring is filled from the beginning of the sequence and not after the piece cop-
ied from the first parent. The Fig. 27.5 shows a diagram of how the crossover
works.

Fig. 27.5. Diagram of the OX crossover used for the PMS problem

In the Fig. 27.5, the initial fragment inherited from the leader parent consists of
the alleles [2 10 * 8], and they are copied to the same positions in the offspring.

14 Pablo Moscato, Alexandre Mendes and Carlos Cotta

The offspring’s empty positions were then filled according to the order that the al-
leles appear in the chromosome of the supporter parent. Repeated alleles are
skipped as well as cut-points, if there are already m-1 cut-points present in the off-
spring.

The local search utilized is based on the all-pairs swap and the insertion
neighbourhoods and is applied to every new individual. No reduction scheme was
employed for this problem, since the largest instance consisted of 80 jobs and 8
machines, which is still a computationally tractable size.

27.3.3 The PMS computational results

The previous best results in the literature on the PMS problem are presented in
(França et al. 1996) and (Mendes et al. 2002). In (França et al. 1996) it was also
introduced a set of instances for which optimal solutions or high quality lower
bounds were calculated. In Table 27.4, we compare the MA against these values
and also against upper bounds obtained by an intensively executed tabu search
(TS) algorithm, named long tabu. The long tabu usually required several hours of
execution, but at the end, high quality upper bounds were found.

The percentage deviation from the lower bound/optimal solution is the per-
formance measure for problems with 2 and 4 machines. The exception is the
4-machine problem with structured instances and sij ∈ [1, 10]. For this problem set
and also for all structured problems with 6 and 8 machines, the deviation is related
to the long tabu upper bounds.

A variant of the long tabu method is also presented in (França et al. 1996). It is
a faster, less complex TS named fast tabu. Although less powerful, the fast tabu
method is very efficient in finding good schedules for the PMS problem. Since the
computational time required by this algorithm was much lower compared to the
long tabu, we concluded it would be a fair opponent for the MA. Thus, the CPU
times utilized by the MA are the same of the fast tabu, which vary from a few sec-
onds up to five minutes, depending on the instance size.

Table 27.4. Results for the PMS instances

 Non-structured problems Structured problems
 sij ∈ [1, 10] sij ∈ [1, 100] sij ∈ [1, 10] sij ∈ [1, 100]

n / m TS MA TS MA TS MA TS MA
20 / 2 1.6 1.8 2.1 3.4 0.5 0.5 0.6 0.3
40 / 2 3.8 3.0 4.6 4.4 0.9 0.6 0.7 0.3
60 / 2 5.1 3.9 5.2 5.2 0.9 0.5 0.5 0.3
80 / 2 5.4 4.3 5.1 4.7 1.1 0.5 0.5 0.2
20 / 4 5.3 4.4 6.0 6.6 0.3 0.0 1.9 1.7
40 / 4 6.5 8.4 6.8 8.9 0.2 -0.1 1.6 1.3
60 / 4 7.0 9.1 7.2 9.9 0.3 -0.1 1.1 0.9
80 / 4 6.7 8.6 6.9 9.5 0.3 -0.1 0.8 0.8
20 / 6 0.8 1.3 1.6 1.1 0.7 -0.2 0.4 -0.8
40 / 6 1.0 4.1 0.8 3.8 0.2 0.3 0.2 0.1

27. Scheduling and Production & Control: MA 15

60 / 6 0.4 4.5 0.7 5.0 0.2 0.2 0.2 0.1
80 / 6 0.7 4.2 0.3 4.5 0.2 0.1 0.3 0.3
20 / 8 1.4 1.7 1.0 0.6 1.0 -0.2 1.4 -0.7
40 / 8 1.0 6.6 1.1 4.1 0.2 0.2 0.7 0.2
60 / 8 0.7 5.3 0.8 5.2 0.1 0.3 0.3 0.4
80 / 8 0.4 4.8 0.9 5.5 0.1 0.2 0.3 0.5

Average 3.0 4.7 3.3 5.1 0.5 0.2 0.7 0.4

The MA was programmed in Java JDK 2.0 and run using a 366 MHz Pentium

II Celeron. The TS were programmed in C and executed in a Sun Sparc 10 Work-
station. The Java JDK 2.0 and the C compiler are very similar in terms of speed,
with some advantage for the C compiler. On the other hand, the Sun Sparc 10 is a
little slower than the Pentium II Celeron. For this reason we believe the speeds of
both systems are somewhat equivalent, although this conclusion might not be ac-
curate.

The Table 27.4 shows a comparison between the fast tabu and the MA ap-
proaches for the PMS problem. Looking at the averages row, it is clear that the
methods had very different behaviours considering the instances structures. The
non-structured instances were easier for the TS than for the MA. The opposite oc-
curred for the non-structured ones. The deviations are very small in terms of per-
centage points, except for a few configurations where some figures are close to
10%. The negative figures in some of the MA columns mean that the makespans
found were better than the upper bounds provided by the long tabu strategy.

There is a clear degradation in the MA as the number of machines increases,
while the TS maintains an average performance, independently of the problem
size. There is a strong probability that this was due to the local search employed in
the MA. The simple all-pairs and insertion neighborhoods could be better suited
for this problem if they utilized information about the cut-points. In fact, both lo-
cal search and crossover operators are dealing with the PMS the same way they
would deal with a SMS problem; all alleles are being treated equally. There is no
distinction between jobs and cut-points from the genetic operators’ point-of-view.
More intelligent operators should use information of the problem’s structure and
the cut-points presence in the chromosome. For instance, the separation of the job-
to-machine assignment and the intra-machine scheduling in the local search seems
to be a reasonable starting point. A neighborhood reduction similar to that em-
ployed in the SMS should also be a good choice. Nevertheless, despite the relative
lack of problem-driven properties, the general-use crossover and local search op-
erators performed quite well against the well-tailored fast tabu. That increases our
belief that the MA’s refined structure is playing an important role in the algo-
rithm’s performance. Furthermore, as there is plenty of space for improvement in
the operators, we believe that future contributions in this issue will probably make
the MA surpass the TS in most instances types.

16 Pablo Moscato, Alexandre Mendes and Carlos Cotta

27.4 The flowshop scheduling problem

The last part of this chapter addresses a flowshop problem (FS), which main
characteristic is to group the jobs in families. This is a quite common real-
manufacturing characteristic since manufacturers want to take advantage of group
technology (GT) environment (Schaller et al. 2000). In the GT scheduling prob-
lem, a part family is composed of several parts (in this work represented by the
jobs) that have similar requirements in terms of tooling, setup costs and operations
sequences. Usually, the families are assigned to a manufacturing cell based on op-
eration sequences so that materials flow and scheduling are simplified. This proc-
ess may result in a situation where each family is processed by a certain set of ma-
chines, and all jobs (parts) are processed following the same technological order.

In this production environment, the manufacturing cells resemble the traditional
flowshops except for the existence of multiple part families. Since the jobs in the
same family share similar tooling and setup requirements, usually a negligible or
minor setup is needed to change from one part to another and thus can be included
in the processing times of the jobs. However, a major sequence-dependent setup is
needed to change the processing environment between two part families.

The FS with families of jobs is a difficult combinatorial problem proved to be
NP-hard. When the number of jobs in each family equals one, the problem be-
comes a traditional FS problem with sequence-dependent setup times. This prob-
lem is proved to be NP-hard when the number of machines is greater than one
(Gupta and Darrow 1986). Next, it is shown the description of the FS problem be-
ing addressed in this section.

Input: Let n be the number of jobs and m be the number of machines. All the jobs
are processed following the same technological order, creating the flowshop struc-
ture. Let f be the number of families. Consider also a setup time to change the pro-
duction from one family to another. Let {Si,j

l} represent these setup times, where
si,j

l is the setup time of family j after family i was processed, in machine l. Finally,
let {Pi,j} be a matrix of processing times, where pi,j is the processing time of job i
in machine j.

Task: Find the permutation of the families, and of the jobs within these families,
which minimizes the production makespan. Calculating the makespan for this
problem is not an easy task. Let us initially suppose that the families are scheduled
in the order {π(1), π(2), ..., π(f)}and the order of the jobs within family f is given
by the sequence {σf(1), σf(2), ..., σf(nf)}, where nf is the number of jobs in family f.
Moreover, let m

if
tt)(σ be the total processing time within family f, until job σf(i), in

machine m; i.e., the time span from when the machine finished its setup and is
ready to process the first job of family f until the job σf(i) is finished. This value
can be calculated as:

∑
=

+=
i

z
mz

m
i

m
i fff

pittt
1

),()()(σσσ (27.5)

27. Scheduling and Production & Control: MA 17

Where m
if

it)(σ is the idle time6 within family f accumulated until job σf(i). In the

first machine, no idle times are allowed, and the production flows without any in-
terruption. That simplifies the equation, making it become the sum of the job’s
processing times within family f. But in the other machines, idle times might oc-
cur, depending on the schedule. The completion time of the i-th job of the f-th
family in machine m, represented by m

if
c)()(πσ

can thus be calculated as:

[]
)(family within timetotal

)(

)(family before timetotal

1

1
)1(),()()()()()()(

f

m
i

f

f

z

m
zz

m
n

m
i fzzf

ttsttc
π

σ

π

ππσσ ππππ
++= ∑

−

=
+ (27.6)

The first part of the Eq. 27.6 calculates the total processing time before the f-th
family, taking into account all the setup times, processing times and idle times be-
fore it. The second part calculates the total processing time within family π(f)
(processing times + idle times) until job)()(ifπσ . Now let us explicit the idle
times calculation. Idle times occur always when a machine finishes processing a
certain job, or completes the family setup, and the next job is still being processed
in the previous machine. That creates a gap in the schedule, forcing the machine to
wait until the next job becomes available. The idle time within family π(f), accu-
mulated until job)()(ifπσ can be calculated as:

()

()
)(job before and jobs within timesidle

1
)1(

1
)(

familyth - theof jobfirst thebeforejust timeidle

)(),1()(
1

)1()(

)(

)()(

)1()1()()(

,0max

,0max

i

i

z

m
z

m
z

f

m
ff

m
n

mm
i

f

ff

ffff

cc

sccit

π

ππ

ππππ

σ

σσ

ππσσσ

∑
=

−
−

−
−

−++

++−=
−−

(27.7)

The first part of the Eq. 27.7 calculates the idle time before the first job of the
f-th family. For doing so, it uses information about the completion time of the pre-
vious family’s last job, plus the setup time between the f-th family and its prede-
cessor. The second part adds up the idle times between every two consecutive jobs
of the f-th family, until job)()(ifπσ . The completion times of the previous job in
the present machine (m) and of the present job in the previous machine (m-1) are
utilized. The makespan is then calculated iteratively, job by job, machine by ma-
chine, being represented by the last job’s completion time in the last machine.

In view of the NP-hard nature of the general FS problem, most researchers have
focused on developing heuristic procedures that provide good permutation sched-
ules (in which the order of job processing is the same on all machines) within a
reasonable amount of computational time. However, there is no guarantee that a
permutation schedule will be optimal when the shop contains several machines. In
fact, it is very likely that the optimal schedule will have different job-permutations

6 Idle times are periods when the machine is not operating because it is waiting for the next

job to become available.

18 Pablo Moscato, Alexandre Mendes and Carlos Cotta

in each machine. However, considering different job-permutations increases the
resulting computational complexity so much that the problem becomes intractable
even for very small instances. The usual approach is then to assume the same job-
permutation for all machines, reducing the problem’s complexity.

Recent reviews (Allahverdi et al. 1999; Cheng et al. 2000) showed that most
prior research on manufacturing cell scheduling has assumed sequence-
independent setup times. For the flowshop manufacturing cell scheduling problem
involving sequence-dependent setup times, (Hitomi et al. 1977) described a simu-
lation model and showed that the scheduling rules considering explicitly se-
quence-dependent setups outperformed rules which did not explicitly do so. Real-
izing this, (Schaller et al. 2000) developed and tested several heuristic algorithms
for minimizing the makespan in a FS with sequence-dependent family setup times.

27.4.1 The test instances

The instances utilized in this paper are the same presented in (Schaller et al.
2000) and are divided into three classes. In each class, processing times are ran-
dom integers following a discrete uniform distribution DU(1, 10). As in the previ-
ously presented scheduling problems, the hardness depends on the balance be-
tween average processing times and the average setup times. Due to this
processing times/setup times relation, three different classes of problems were
used in the computational experiments. The setup times follow discrete uniform
distributions in the ranges:

• Small setup times (SSU): DU(1, 20)
• Medium setup times (MSU): DU(1, 50)
• Large setup times (LSU): DU(1, 100)

According to these definitions, in the SSU-class instances, the ratio defined by
average family setup time/average job processing time is approximately 2:1; in the
MSU class, the ratio is 5:1, and in the LSU the ratio jumps to 10:1.

Moreover, problems were generated with the number of families varying be-
tween 3 and 10, and the number of jobs per family between 1 and 10. The number
of machines varied between 3 and 10. For each combination of problem parame-
ters, there are 30 problem instances. As an example of the notation, consider the
LSU108 set of problems: it consists of 30 instances with setup times in the [1, 100]
interval, 10 families of jobs, 10 jobs per family at maximum and 8 machines. Con-
sidering all configurations tested, we obtain a total of 900 problem instances.

27.4.2 The memetic algorithm approach

The MA utilized for the FS problem follows the same structure of the PMS one.
In order to describe the peculiarities of the algorithm for this specific problem, we
will begin with the individual representation.

27. Scheduling and Production & Control: MA 19

The FS scheduling problem has a structure that allows its division into two
parts: the schedule of the families and the schedule of the jobs within the families.
The representation adopted takes this division into account and is illustrated in
Fig. 27.6. It consists of an arbitrary solution for a problem with twelve jobs and
four families. Family 1 consists of jobs [1, 2, 3]; family 2 consists of jobs [4, 5, 6,
7]; family 3 of jobs [8, 9] and family 4 consists of jobs [10, 11, 12]. The process-
ing sequence of the families is [1, 4, 2, 3]. Moreover, the jobs in family 1 are
processed in the sequence [2, 1, 3]; family 2 in the order [7, 4, 6, 5], family 3 in
the sequence [8, 9] and finally family 4 in the order [11, 12, 10].

Fig. 27.6. Diagram of the individual representation utilized in the FS problem

The representation divides the solution into f+1 independent parts making the
local search, crossover, mutation and other chromosome-level operators be exe-
cuted separately within each part, without affecting the rest of the solution – which
is reminiscent to divide-and-conquer strategies. The computational effort required
by the local search is especially reduced due to this chromosome division.

The crossover utilized was the OX, already described in previous sections. The
difference is that the OX is applied within each part of the chromosome, sepa-
rately (see Fig. 27.7).

Fig. 27.7. Diagram of the OX crossover utilized in the FS problem

In Fig. 27.7, the OX crossover starts by selecting parts of the leader’s genetic
material to be copied into the offspring. In the example, these parts are circled.
This information is copied into the chromosome labeled as ‘Initial phase’. Note
that only one piece is copied from each part of the chromosome. In the final

20 Pablo Moscato, Alexandre Mendes and Carlos Cotta

phase, the supporter parent completes the offspring with its genetic information,
with each part being filled from left to right, following the sequence of non-
repeated alleles.

The local search scheme adopted is the same utilized in the PMS problem: all-
pairs plus insertion neighborhoods, without neighborhood reduction. In this prob-
lem, the separation of the chromosome into parts has reduced the local search
computational effort and no neighborhood reductions were necessary. Just to illus-
trate the effort-reduction effect when applying local search in an individual with
five families and 10 jobs per family, the algorithm had in fact to apply the local
search in six 10-allele sized individuals. A much easier task than applying a single
local search in an individual with 60 alleles.

27.4.3 The flowshop computational results

The previous best results for the FS problem available in the literature were
present in (Schaller et al. 2000). In that work, high quality lower bounds are pro-
vided, and the best heuristic for the problem is named CMD. It employs a dispatch
rule together with a local search-based method.

The MA was programmed in Java JDK 2.0 and run using a Pentium II 266
MHz. Since the CMD is a constructive heuristic with a local search phase, it runs
very quickly. The CPU times are below three seconds. For the MA, after a few
considerations, we concluded that a 30-second limit was sufficient, given the in-
stances’ sizes. Therefore, the algorithm stops only if the lower bound is reached -
i.e., the optimal solution is found – or after 30 seconds of CPU time. The Tables
27.5, 27.6 and 27.7 show the results for the MA and the CMD algorithm consider-
ing the LSU, MSU and SSU-type instances, respectively.

Table 27.5. Results for the LSU-type flowshop instances

 Memetic algorithm CMD heuristic
Instance Min. Ave. Max. CPU Min. Ave. Max. CPU
LSU33 0.0027 0.07 1.12 3.1 0.0021 0.91 8.41 0.04
LSU34 0.0020 0.32 2.43 10.1 0.0012 1.08 16.39 0.06
LSU44 0.0020 0.20 1.09 10.1 0.008 1.95 10.27 0.12
LSU55 0.0018 0.28 1.86 12.1 0.004 2.49 9.57 0.21
LSU56 0.009 0.51 2.42 21.1 0.004 3.37 17.07 0.26
LSU65 0.0015 0.31 2.42 15.1 0.003 3.29 10.02 0.30
LSU66 0.0015 0.19 1.36 15.3 0.003 3.03 10.47 0.44
LSU88 0.006 0.58 1.86 24.7 0.280 6.25 18.17 0.95
LSU108 0.001 0.47 1.19 29.8 0.120 6.22 11.25 1.82
LSU1010 0.001 0.77 2.27 29.5 0.530 6.30 11.42 2.37
Average 0.00132 0.37 1.80 17.1 0.0955 3.49 12.30 0.66

27. Scheduling and Production & Control: MA 21

The results in Table 27.5 reveal an impressive performance for the MA. The
figures represent percentage deviations from the lower bounds. In the ‘Min’-
labeled columns, the subscript figure is the number of times that the algorithm
reached the lower bound, finding the optimal solution. In the ‘Average’ row, the
subscript marks the sum of all optimal solutions found. The MA surpassed the
CMD performance in all instance configurations. The large number of optimal so-
lutions found is an indicative of the high quality of the lower bounds presented in
(Schaller et al. 2000). We must emphasize that each instance configuration set was
composed of 30 different instances. The total number of instances tested in each
table is 300. Analyzing the MA against the CMD, the MA found 132 (44% of the
entire set) optimal instances, more than twice the number found by the CMD. All
the averages were better, except the CPU time, as expected. These results do not
cause surprise, since the MA employs much more problem-driven features than
the CMD algorithm.

An interesting characteristic is present in the results and is worth to be empha-
sized. The average percentage deviation from the lower bounds remains at low
levels for all instances’ sizes. Usually, the search methods lose performance for
the larger instances, in an indication that they are gradually getting beyond the al-
gorithm’s search capabilities. This has occurred with the CMD algorithm, which
began with an average deviation of 0.91% and ended with a 6.30% deviation.
However, this was not observed for the MA, leading to the conclusion that proba-
bly the algorithm is still very far from its limit and would be able to deal with in-
stances larger than the ones utilized. Although there is a slight increase in the
MA’s averages as the instances become larger, this is probably due to the declin-
ing lower bounds’ quality.

Table 27.6. Results for the MSU-type flowshop instances

 Memetic algorithm CMD heuristic
Instance Min. Ave. Max. CPU Min. Ave. Max. CPU
MSU33 0.0023 0.37 3.37 7.1 0.0021 0.92 11.46 0.04
MSU34 0.0017 0.56 2.29 13.1 0.0011 2.00 16.28 0.05
MSU44 0.0011 0.50 2.32 19.1 0.004 1.96 11.11 0.13
MSU55 0.0015 0.45 2.09 15.1 0.004 3.10 8.48 0.19
MSU56 0.006 0.87 3.12 24.1 0.001 3.58 13.13 0.27
MSU65 0.0014 0.36 1.22 16.2 0.003 3.68 8.88 0.30
MSU66 0.008 0.50 1.63 22.7 0.001 4.59 15.77 0.40
MSU88 0.003 0.99 2.98 27.3 0.630 5.68 12.68 0.97
MSU108 0.001 0.86 1.80 30.1 2.890 6.11 10.83 1.84
MSU1010 0.150 1.15 2.53 30.8 2.290 5.73 9.92 2.37
Average 0.0198 0.66 2.33 20.6 0.5845 3.73 11.85 0.65

The Table 27.6 shows a similar performance, with the MA surpassing the CMD

in all criteria but the CPU time. The MA has reached fewer optimal solutions (98

22 Pablo Moscato, Alexandre Mendes and Carlos Cotta

in total, almost 33% of the total), but that is a number still two times larger than
the one obtained by the CMD algorithm. The averages are a little worse than the
ones for the LSU-type instances, but we believe this is due to the decreasing qual-
ity of the lower bounds. Both instance sets (LSU and MSU) have similar charac-
teristics, such as number of machines and families. Moreover, the MA does not
employ any procedure, like local search reduction policies, which could be af-
fected by a change in the setup time’s interval. Therefore, no reduction in the
number of optimal solutions found should be observed at all. The lower bounds
might in fact work better with larger setup times. This vision is reinforced by a re-
duction in the number of optimal solutions found by the CMD algorithm, too.

Table 27.7. Results for the SSU-type flowshop instances

 Memetic algorithm CMD heuristic
Instance Min. Ave. Max. CPU Min. Ave. Max. CPU
SSU33 0.0023 0.31 2.47 7.1 0.0018 0.67 4.13 0.04
SSU34 0.0015 0.83 2.94 15.1 0.008 1.85 8.46 0.05
SSU44 0.0015 0.57 2.90 15.0 0.008 1.94 8.33 0.12
SSU55 0.004 0.92 2.34 26.0 0.001 3.15 6.61 0.20
SSU56 0.003 1.56 3.08 27.4 0.001 4.02 8.93 0.25
SSU65 0.006 0.99 3.44 24.0 0.002 3.00 6.90 0.32
SSU66 0.001 1.28 2.72 29.1 1.240 4.06 9.16 0.44
SSU88 0.280 1.85 3.31 30.3 3.200 5.62 8.59 0.91
SSU108 0.720 1.77 2.90 30.7 2.580 5.63 8.96 1.82
SSU1010 0.590 2.33 3.65 30.6 4.070 6.86 9.11 2.21
Average 0.1667 1.24 2.98 23.5 1.1138 3.68 7.92 0.64

In Table 27.7, one can see that the MA maintained its behaviour, obtaining

good general average performance followed by a decrease in the number of opti-
mal solutions found. The number dropped to 22% of all instances. The loss of per-
formance with the increasing instances’ size is now clear, with the MA being un-
able to reach the lower bounds for instances with eight or more families of jobs.

Given previous experiences with local searches and how they behave with dif-
ferent sizes of solution spaces, it is likely that the number of optimal solutions
found is much larger than the ones reported. Finding the optimal permutation in
10-allele sequences is an easy task when all-pairs and insertion neighbourhoods
are employed.

27.5 Discussion

This chapter presented three job scheduling problems: Single Machine Schedul-
ing (SMS), Parallel Machine Scheduling (PMS) and Flowshop Scheduling (FS). In
order to deal with these problems a MA was employed. The algorithm was very

27. Scheduling and Production & Control: MA 23

similar to that introduced in Chap. 18 for the Gate Matrix Layout problem. The
MA had an impressive performance for the problems, what reinforces the belief
that the algorithm’s main features are general enough to deal with a much broader
variety of problems.

In the SMS section, a procedure to transform Asymmetrical Travelling Sales-
man Problem’s (ATSP) instances into SMS ones was described. By using it, one
can create a SMS instance with known high-quality solutions if an ATSP instance
with a known optimal tour is utilized as the starting point. Although this procedure
is not yet proved to create optimal SMS instances, during the tests using TSPLIB
instances, no counter-example was ever found. If the procedure is proved to be
correct – or under which circumstances it is correct – it would solve a problem
quite common is SMS tests: The lack of large optimal instances to test algorithms.
In the literature, there are ATSP instances with thousands of cities solved to opti-
mality. Such instances could be used to create SMS ones, also with thousands of
jobs and known optimal solution. The procedure has some drawbacks, like a limi-
tation on how the processing times and the due dates must be generated and the
fact that the resulting instances are EDD/SPT-optimally solvable. Nevertheless,
such instances can be very useful to test the performance of general-use metaheu-
ristics.

The MA was able to find optimal solutions for instances with up to 100 jobs,
with a high rate of success and CPU times no longer than four minutes, in average.
The instances with 71 jobs or less had an impressive 100% rate of success. The
100-job instances also had a high rate of success, but apparently, they mark the
beginning of the MA’s search power exhaustion. For larger instances, new fea-
tures will probably have to be added to the MA in order to sustain the perform-
ance, or more CPU time will have to be given.

In the PMS problem, the MA is compared to a well-tailored tabu search (TS),
named fast tabu. The TS results were the best previously available in the literature
(França et al. 1996) for the problem. Instances with up to 80 jobs and 8 machines
were tested, as well as four setup times configurations. The MA performance was
comparable to the TS especially for the so-called structured instances, which setup
times follow the triangular inequality, and for problems with fewer machines, in-
dependently of the number of jobs. In this problem, the lack of a neighborhood-
reduction policy has weighted against the MA. Although the performance was not
disappointing, it could have been better with a reduction policy being applied.
This is the logical next step for this problem. Both MA and TS were evaluated
against lower bounds and optimal solutions for the smaller instances. For the lar-
ger instances, upper bounds obtained through a high-performance TS, named long
tabu, were the benchmark performance measure. However, it is important to em-
phasize that the long tabu algorithm requires long CPU times, usually hours,
against the few seconds or minutes required by the MA and the fast tabu.

The last problem addressed in the chapter was the flowshop scheduling (FS). In
addition to the ordinary FS problem, this one also considers that the jobs are
grouped in families, with jobs in the same family requiring similar tooling and
machinery. That makes the setup times between jobs within the same family be
very small, so that they can be added to the job’s processing time. However, major

24 Pablo Moscato, Alexandre Mendes and Carlos Cotta

setup times are required to change the production from one family to another. The
most remarkable feature of the MA for this problem was the representation util-
ized. It reduced the search space for the problem so much that even large-size in-
stances, with 10 families of jobs and 10 machines were still below the MA’s
search capability.

Although its importance for the industry, this FS-variant has received little at-
tention in the past, and the previous best method available in the literature was a
constructive rule followed by a local search procedure, named CMD (Schaller et
al. 2000). In this same paper, several lower bounds were calculated and utilized as
benchmarks. The MA presented in this chapter is probably the first metaheuristic
approach for it. The performance of the MA has dramatically surpassed the CMD
algorithm, as was expected. But most impressive was the number of optimal solu-
tions found, a situation resultant from the high quality of the lower bounds and the
superior performance of the MA.

The MA utilized in all problems presented in this chapter is available in the
NP-Opt Framework (Mendes et al. 2001). As said in the Chap. 18, the NP-Opt is
an object-oriented, Java-based software, which is updated and improved continu-
ously by a team of collaborators. For more information, please refer to the NP-Opt
homepage7, where the latest version is always available for download, as well as
the software guide and the instances utilized in this chapter.

References

Allahverdi A, Gupta JND, Aldowaisan T (1999) A survey of scheduling research involving
setup considerations. OMEGA – International Journal of Management Science
27:219–239

Baker KR (1974) Introduction to Sequencing and Scheduling. John Wiley & Sons, New

York

Cheng TCE, Gupta JND, Wang G (2000) A review of flowshop scheduling research with

setup times. Production and Operations Management 9:283–302

Dearing PM, Henderson RA (1984) Assigning looms in a textile weaving operation with

changeover limitations. Production and Inventory Management 25:23–31

Du J, Leung JYT (1990) Minimizing total tardiness on one machine is NP-hard. Mathemat-

ics of Operations Research 15:483–495

7 http://www.densis.fee.unicamp.br/~smendes/NP-Opt.html.

27. Scheduling and Production & Control: MA 25

França PM, Gendreau M, Laport G, Muller F (1996) A tabu search heuristic for the multi-
processor scheduling problem with sequence dependent setup times. International
Journal of Production Economics 43:79–89

França PM, Mendes AS, Moscato P (2001) A Memetic Algorithm for the total tardiness

Single Machine Scheduling Problem. European Journal of Operational Research
132:224–242

Frederickson G, Hecht MS, Kim CE (1978) Approximation algorithm for some routing

problems. SIAM Journal on Computing 7:178–193

Gen M, Cheng R (1997) Genetic Algorithms and Engineering Design. John Wiley & Sons,

New York

Goldberg DE (1989) Genetic Algorithms in Search, Optimization, and Machine Learning.

Addison-Wesley

Graham RL, Lawler EL, Lenstra JK, Rinooy Kan AHG (1979) Optimization and approxi-

mation in deterministic sequencing and scheduling: A survey. Annals of Discrete
Mathematics 5:287–326

Graves SC (1981) A review of production scheduling. Operations Research 29:646–675

Gupta JND, Darrow WP (1986) The two-machine sequence dependent flowshop scheduling

problem. European Journal of Operational Research 24:439–446

Hitomi K, Nakamura N, Yoshida T, Okuda K (1977) An Experimental Investigation of

Group Production Scheduling. Proceedings of the 4th International Conference on Pro-
duction Research, pp 608–617

Lawler EL, Lenstra JK, Rinooy Kan AHG, Shmoys DB (1993) Sequencing and Scheduling:

Algorithms and Complexity. In: Handbooks in Operations Research and Management
Science Vol. 4. North-Holland, pp 445–522

Lee YH, Bhaskaran K, Pinedo M (1997) A heuristic to minimize the total weighted tardi-

ness with sequence-dependent setups. IIE Transactions 29:45–52

Mendes AS, França PM, Moscato P (2001) NP-Opt: An Optimization Framework for NP

Problems. Proceedings of the POM2001 – International Conference of the Production
and Operations Management Society, pp 82–89

Mendes AS, Muller F, França PM, Moscato P (2002) Comparing Meta-Heuristic Ap-

proaches for Parallel Machine Scheduling Problems. Production Planning and Control
13:143–154

Ow PS, Morton TE (1989) The single machine early/tardy problem. Management Science

35:177–191

26 Pablo Moscato, Alexandre Mendes and Carlos Cotta

Ragatz GL (1993) A branch-and-bound method for minimum tardiness sequencing on a
single processor with sequence dependent setup times. Proceedings of the 24th Annual
Meeting of the Decision Sciences Institute, pp 1375–1377

Raman N, Rachamadugu RV, Talbot FB (1989) Real time scheduling of an automated

manufacturing center. European Journal of Operational Research 40:222–242

Rubin PA, Ragatz GL (1995) Scheduling in a sequence dependent setup environment with

genetic search. Computers & Operations Research 22:85–99

Schaller JE, Gupta JND, Vakharia AJ (2000) Scheduling a Flowline Manufacturing Cell

with Sequence Dependent Family Setup Times. European Journal of Operational Re-
search 125:324–339

Sumichrast R, Baker JR (1987) Scheduling parallel processors: an integer linear program-

ming based heuristic for minimizing setup time. International Journal of Production
Research 25:761–771

Tan KC, Narasimhan R (1997) Minimizing tardiness on a single processor with sequence-

dependent setup times: a simulated annealing approach. OMEGA – International Jour-
nal of Management Science 25:619–634

