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Abstract— A MasterMind player must find out a secret
combination (set by another player) by playing others of the
same kind and using the hints obtained as a response (which
reveal how close the played combination is to the secret one)
to produce new combinations. Despite having been researched
for a number of years, there are still many open issues: finding
a strategy to select the next combination to play that is able to
consistently obtain good results at any problem size, and also
doing so in as little time as possible. In this paper we cast the
solution of MasterMind as a constrained optimization problem,
introducing a new fitness function for evolutionary algorithms
that takes that fact into account, and compare it to other
approaches (exhaustive/heuristic and evolutionary), finding that
it is able to obtain consistently good solutions, and in as little
as 30% less time than previous evolutionary algorithms.

I. INTRODUCTION

In its current version, MasterMind [1] is a board game that
was designed by the telecommunications expert Mordecai
Merowitz [2] and sold to the company Invicta Plastics, who
renamed it to its current name to commercialize it in the early
70s, when it enjoyed a wide popularity. However, this current
game is a version of a traditional puzzle called bulls and cows
[3], and apparently AB in Asia [4], that dates back to the
Middle Ages. In any case, MasterMind can be considered
a puzzle (rather than a game) in which two persons, the
codemaker and codebreaker try to outsmart each other in
the following way:

• The codemaker sets a length � combination of κ sym-
bols. In the classical version, � = 4 and κ = 6 (with
the space of secret combinations having, then, 1296
combinations), and color pegs are used as symbols over
a board with rows of � = 4 holes; however, in this paper
we will use uppercase letters starting with A instead of
colours. Versions with different values of � and κ receive
different names: � = 5 and κ = 8 is called Logik [5],
Challenge or Super-MasterMind.

• The codebreaker then tries to guess this secret code by
producing a combination with the same length and using
the same set of symbols as the secret code.

• The codemaker gives a response consisting on the
number of symbols guessed in the right position (usually
represented as black pegs) and the number of symbols
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in an incorrect position (usually represented as white
pegs).

• The codebreaker then, using that information as a hint,
produces a new combination.

• This process is repeated until the secret code is found.

For instance, a game could go like this: The codemaker
sets the secret code ABBC, the codebreaker plays AABB,
getting 2 black pegs (for A-B-) and a white peg (for - - -
B). And the rest of the game proceeds as shown in Table
I, needing a total of five combinations to find the correct
answer (although, in this case, it could have needed many
more).

Combination Response
AABB 2 black, 1 white
ABFE 2 black
ABBD 3 black
BBBE 2 black
ABBC 4 black

TABLE I

PROGRESS IN A MASTERMIND GAME THAT TRIES TO GUESS THE

SECRET COMBINATION ABBC. 2ND AND 4TH COMBINATIONS ARE NOT

consistent WITH THE FIRST ONE, NOT COINCIDING IN TWO POSITIONS

AND ONE COLOR WITH IT.

Different variations of the game include, for instance,
giving information on which position has been guessed
correctly, avoiding repeated symbols in the secret combina-
tion (bulls and cows is actually this way), or allowing the
codemaker to change the code during the game (but only if
this does not make responses made so far false), or even try to
find out what is the minimum number of combinations whose
answer would allow to determine the secret code uniquely;
this version is called static MasterMind [6].

In any case, the codebreaker is allowed to make a maxi-
mum number of combinations (usually fifteen, or more for
larger values of κ and �), and its score corresponds to the
number of combinations needed to find the secret code; after
repeating the game a number of times with codemaker and
codebreaker changing sides, the one with the lower score
wins.

Since MasterMind is asymmetric, in the sense that the
position of one of the players after setting the secret code
is almost completely passive, and limited to give hints as
a response to the guesses of the codebreaker, it is rather a
puzzle than a game: the codebreaker is not really matching
her skills against the codemaker, but facing a problem that
must be solved with the help of hints, the implication being
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that playing MasterMind is more similar to solving a Sudoku
than to a game of chess. Thus, the solution to MasterMind,
unless in a very particular situation (always playing with an
opponent who has a particular bias for choosing codes, or
maybe playing the dynamic code version), is a constrained
combinatorial search, and not a learning problem.

Solving MasterMind is interesting by itself; historically
has been applied a good amount of strategies, and that is
why, specifically, the solution of MasterMind using evo-
lutionary algorithms is used in some artificial intelligence
classes or even as part of computer-supported cooperative
learning experiments [7]. However, it is also interesting for
its relationship to other generally called oracle problems
such as circuit and program testing, differential cryptanalysis,
uniquely identifying a person from queries to a genetic
database [8] and other puzzle-like games and problems (the
interested reader is referred to [9] for a more complete,
although currently outdated, review), the fact that it has been
proved to be NP-complete [10], [11] and that there are several
open issues, namely, what is the lowest average number
of guesses you can achieve (solved only for the smallest
sizes), how to minimize the number of evaluations needed
to find them (and thus the run-time of the algorithm), and
obviously, how it scales when increasing κ and �. This paper
will concentrate on the second issue, namely, minimizing the
number of evaluations needed to find a good solution, but
without forgetting the fact that the objective of the game
is to find the secret combination in a minimum number of
guesses.

That is why, within our ultimate target of providing an
evolutionary algorithm for solving MasterMind with a good
scaling behavior with problem size, in this paper, after
reviewing how the state of the art in solving this puzzle
has evolved in the last years and showing how different
evolutionary algorithms fare against each other, we build on
previous work [12] by introducing a new fitness function de-
signed to minimize the number of evaluations (and guesses),
thus making the method faster, and compare results obtained
with EAs using other fitness functions (and other methods,
evolutionary and heuristics based on exhaustive search, found
in the literature). At the same time, our target is to explore
the EA parameter space in order to find a set that minimizes
the number of evaluations, making then the algorithm as fast
as possible. Finally, we try to explain the reasons for the
different results found with the current and former fitness
functions by looking at several features in the evolutionary
run.

The rest of the paper is organized as follows: next we
establish the terminology and examine the state of the art
in algorithms that solve MasterMind (including evolutionary
algorithms); then the new version of the evolutionary algo-
rithms that we introduce in this paper are presented in Section
III and the experimental results in IV; finally, conclusions are
drawn in the closing Section V.

II. DEFINITIONS AND STATE OF THE ART

Before presenting the state of the art, some definitions
are needed. We will use the term response for the codes
returned by the codemaker to a played combination, cplayed.
A response is therefore a function of the combination, cplayed

and the secret combination csecret. Let the response be
denoted by h(cplayed, csecret). A combination c is consistent
with cplayed if, and only if,

h(cplayed, csecret) = h(cplayed, c) (1)

that is, if the combination has as many black and white pegs
with respect to the played combination as the played combi-
nation with respect to the secret combination. Furthermore,
a combination c is consistent if, and only if,

h(ci, c) = h(ci, csecret) ∀ i = 1..n (2)

where n is the number of combinations, ci, played so far; that
is, c is consistent with all guesses made so far. A combination
that is consistent is a candidate solution.

The concept of consistent combination will be important
for characterizing different approaches to the game of Mas-
terMind. The naive approach is to play a combination as
soon as it is found, in which case the object is to find a
consistent guess as fast as possible. For example, in [9] an
evolutionary algorithm is described for this purpose. These
strategies are fast and do not need to examine a big part
of the space. Playing consistent combinations eventually
produces a number of guesses that uniquely determine the
secret code. However, both the maximum and mean number
of combinations that need to be examined are usually high,
even as large as the search space itself (when there is a
single consistent combination left –last draw– on average the
whole search space will have to be tested to find it). Hence,
some bias must be introduced in the way how combinations
are searched; if not, the guesses will be no better than a
purely random approach, as solutions found (and played) are
a random sample of the space of consistent guesses.

However, this strategy is not optimal from the point of
view of game playing since, after each combination is played,
every consistent combination in the set will yield a different
result, and a different reduction in search space size, once
played. That is why most algorithms rely on finding out
which combination outside the consistent set is expected
to maximally reduce the set of remaining combinations.
For this a number of heuristics have been developed over
the years; typically they require all consistent guesses to
be found first, and then use some kind of search over the
space of consistent combinations, so that only the guess that
(in expected value) extracts the most information from the
secret code is issued, or else the one that reduces as much
as possible the set of remaining consistent combinations.
However, this is obviously not known in advance, so a
strategy must be devised to find this out, and this strategy is
based on the concept of partitions (also called Hash Collision
Groups, HCG [4]), which are created in the following way:
to each combination corresponds a partition of the rest of
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Combination Number of combinations in the partition with response
0b-2w 0b-3w 0b-4w 1b-1w 1b-2w 1b-3w 2b-0w 2b-1w 2b-2w 3b-0w

AABA 0 0 0 14 8 0 13 1 0 3
AACC 8 0 0 10 5 0 8 4 1 3
AACD 6 2 0 11 6 1 4 5 1 3
AACE 6 2 0 11 6 1 4 5 1 3
AACF 6 2 0 11 6 1 4 5 1 3
ABAB 8 0 0 10 5 0 8 4 1 3
ABAD 6 2 0 11 6 1 4 5 1 3
ABAE 6 2 0 11 6 1 4 5 1 3
ABAF 6 2 0 11 6 1 4 5 1 3
ABBC 4 4 0 10 8 0 8 1 1 3
ABDC 3 4 1 11 9 1 4 2 1 3
ABEC 3 4 1 11 9 1 4 2 1 3
ABFC 3 4 1 11 9 1 4 2 1 3
ACAA 0 0 0 14 8 0 13 1 0 3
ACCB 4 4 0 10 8 0 8 1 1 3
ACDA 0 0 0 16 10 2 5 3 0 3
BBAA 8 0 0 10 5 0 8 4 1 3
BCCA 4 4 0 10 8 0 8 1 1 3
BDCA 3 4 1 11 9 1 4 2 1 3
BECA 3 4 1 11 9 1 4 2 1 3
BFCA 3 4 1 11 9 1 4 2 1 3
CACA 8 0 0 10 5 0 8 4 1 3
CBBA 4 4 0 10 8 0 8 1 1 3
CBDA 3 4 1 11 9 1 4 2 1 3
CBEA 3 4 1 11 9 1 4 2 1 3
CBFA 3 4 1 11 9 1 4 2 1 3
DACA 6 2 0 11 6 1 4 5 1 3
EBAA 6 2 0 11 6 1 4 5 1 3
FACA 6 2 0 11 6 1 4 5 1 3
FBAA 6 2 0 11 6 1 4 5 1 3

TABLE II

TABLE OF PARTITIONS AFTER TWO COMBINATIONS HAVE BEEN PLAYED; THIS TABLE IS THE RESULT OF COMPARING EACH COMBINATION AGAINST

ALL THE REST OF THE SET, WHICH IS THE SET OF CONSISTENT COMBINATIONS IN A GAME AFTER TWO COMBINATIONS HAVE ALREADY BEEN

PLAYED. IN BOLDFACE, THE COMBINATIONS WHICH HAVE THE MINIMAL WORST SET SIZE (WHICH HAPPEN TO BE IN THE 1B-1W COLUMN, BUT IT

COULD BE ANY ONE); IN THIS CASE, EQUAL TO TEN. A STRATEGY THAT TRIES TO MINIMIZE WORST CASE WOULD PLAY ONE OF THOSE

COMBINATIONS. THE COLUMN 0B-1W WITH ALL VALUES EQUAL TO 0 HAS BEEN SUPPRESSED; COLUMN FOR COMBINATION 3B-1W, BEING

IMPOSSIBLE, IS NOT SHOWN EITHER. SOME ROWS HAVE ALSO BEEN ELIMINATED FOR LACK OF SPACE.

the space, according to their match (the number of blacks
and white pegs that would be the response when matched
with each other). Let us consider the first combination in
Table I: if the combination considered is AABB, there will
be 256 combinations whose response will be 0b, 0w (those
with other colors), 256 with 0b, 1w (those with either an A
or a B), and so on. Some partitions may also be empty, or
contain a single element (4b, 0w will contain just AABB,
obviously). For a more exhaustive explanation see [13]; the
whole partition set for an advanced stage of the game is
shown in Table II. Each combination is thus characterized
by the features of these partitions: the number of non-empty
ones, the average number of combinations in them, the
maximum, and other characteristics one may think of. For
instance, in Table II combination ABDC (and others) would
have a maximum of non-zero partitions (none of them has
zero elements), while AACC (and others, shown in boldface)
have a minimum worst-case partition size (equal to ten).

Most heuristic strategies rely on this concept, which was
introduced by Knuth [14]. Knuth’s algorithm tries to mini-

mize the worst case by following the strategy of minimizing
the worst expected set size; for instance, in the set in Table II
this algorithm would play one of the combinations shown in
boldface (the first one in lexicographical order, since it is a
deterministic algorithm). Using a complete minimax search
Knuth shows that a maximum of 5 guesses are needed to
solve the game using this strategy.

The path leading to the most successful heuristic strategies
to date include the minimization of the worst case [14] or
expected case [15], or maximization of entropy [16], [17]
or number pf partitions [13]. Among these, the entropy
strategy selects the guess with the highest entropy, computed
as follows: for each possible response i for a particular
consistent guess, the number of remaining consistent guesses
is found. The ratio of reduction in the number of guesses is
also the a priori probability, pi, of the secret code being in
the corresponding partition. The entropy is then computed
as

∑n
i=1 pi log2(1/pi), where log2(1/pi) is the information

in bit(s) per partition, and can be used to select the next
combination to play in MasterMind [16]. The worst case
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is a one-ply version of Knuth’s approach, but Irving [15]
suggested using the expected case rather than the worst case.
Kooi [13] noted, however, that the size of the partitions is
irrelevant and that rather the number of non empty partitions
created, n, was important. This strategy is called most parts.
The strategies above require one-ply look-ahead and either
determining the size of resulting partitions and/or its number.
Computing its number is, however, faster than determining
their expected size or entropy. For this reason the most parts
strategy has a computational advantage, and has been used
by us in our previous work [12].

The evolutionary algorithms that try to solve this problem
have also historically proceeded roughly in the same way.
After using naive strategies that played the first combination
found, [18], using suboptimal strategies with the objective of
avoiding the search from getting stuck [19], or even playing
the best guess each generation in a policy that resulted in
a fast and very bad solution to the puzzle [20], [21], better
solutions were found, either from the point of view of the
evolutionary search or from the game-playing one [9].

However, it was not until recently when Berghman et
al. [22] adopted the method of partitions to an evolution-
ary algorithm. The strategy which they apply is similar
to the expected size strategy. However, it differs in some
fundamental ways. In their approach each consistent guess
is assumed to be the secret in turn, and each guess is
played against every different secret. The return codes are
then used to compute the size of the subset of remaining
consistent guesses in the set, assuming that either similarity
or dissimilarity (represented by the average number of black
plus white pegs) will be indicative of that size; eventually
the number is maximized after proving that using the most
similar (highest number of pegs) obtains the lowest average
number of guesses. An average is then taken over the size
of these sets. Here, the key difference between the expected
size method is that only a subset of all possible consistent
guesses is used and some return codes may not be considered
(or considered more frequently than once), which might
lead to a bias in the result. Indeed they remark that their
approach is computationally intensive which leads them to
reduce the size of this subset further (by taking only a small
sample); but their results, either for the basic game or for
higher-dimensional varieties, are quite good and comparable
with those obtained considering heuristic strategies, with the
main difference that they are not using an exhaustive search
algorithm which can then scale better than them.

The heuristic strategies described above use some kind of
look-ahead, which is computationally expensive. If no look-
ahead is used to guide the search, a guess is selected purely
at random, and any other way of ranking solutions might find
a solution that is slightly better than this approach, but no
more. However, it has been shown in [23] that in order to get
the benefit of using look-ahead methods, an exhaustive set of
all consistent combinations is not needed; a 10% fraction is
enough to find solutions that are statistically indistinguishable
from the best solutions found. This amount was statistically

established, and then tested in an evolutionary algorithm in
[12], where the most-partitions strategy was used over a set
of consistent guesses whose size was computed statistically,
and which had been found using evolutionary algorithms
(estimation of distribution and canonical genetic algorithms),
to obtain solutions that were quite competitive, for the basic
case, with the exhaustive search strategies, and significantly
better than random search; they were also similar to the
results obtained by Berghman et al., but using a smaller set
size and a computationally simpler strategy.

What we will do in this paper is try and improve on
those results above, by using a new fitness function that
takes into account the partitioning of search space by each
consistent solution, and by trying to find a set of parameters
that combine good results in game play and a low number
of evaluations to find the solution.

III. DESCRIPTION OF THE METHOD

Essentially, the method used in this paper is an hybrid be-
tween an evolutionary algorithm and the exhaustive partition-
based methods described above, as has been mentioned.
Instead of using exhaustive search to find a set of consistent
combinations, which are then compared on how they divide
that set (in partitions), we use evolutionary algorithms to
find a set of consistent combinations and compute then
the partitions they yield. The size of the set is established
according to our previous results [23], which show that a set
of size 20 is enough to obtain results that are statistically
indistinguishable from using the whole set of consistent
combinations.

In a previous paper [12] we used as fitness function one
similar to the one used by previous evolutionary algorithms
[22], [9], except for the term proportional to the number of
positions, that is:

f(cguess) = −
n∑

i=1

|h(ci, cguess) − h(ci, csecret)| (3)

which is the number of black and white peg changes needed
to make the current combination cguess consistent; this
number is computed via the absolute difference between the
number of black and white pegs h the combination ci has
had with respect to the secret code csecret (which we know,
since we have already played it) and what cguess obtains
when matched with ci; being h a vectorial function, || is then
equivalent to the taxicab distance or L1. For instance, if the
played combination ABBB has obtained as result 2w, 1b
and our cguess CCBA gets 1w, 1b with respect to it, this
difference will be |2− 1|w + |1− 1|b = 1. This operation is
repeated over all the combinations ci that have been played.
There was a problem with this fitness: if a combination is
consistent, its fitness was equal to zero, and also equal to all
the other consistent partitions, creating a neutral evolution
landscape which impeded the progress of evolution for them.
Please note that this is only one possible distance; instead of
L1 another distance such as the Chebyshev distance or L∞
could be used; this distance takes the maximum distance
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of any dimension; in this case, the maximum difference
either in black or white pegs. In preliminary tests done using
this distance as fitness, we have found that there was no
significative difference with the one we have used. In fact,
other distances (L2 or Euclidean, for instance) could also be
considered; although they will have an impact in the fitness
landscape, they will probably have little, if any, influence in
the solution.

However, this distance is not the only factor: as we have
seen in the previous section, not all combinations have the
same ability to solve the puzzle, so it is sensible to include
whatever score we are using to rank them also within the
fitness function. That is what we introduce in this paper:
initially, the fitness of non-consistent solutions is computed
as f(cguess). Let us call this score g, which is then defined
as:

g(cguess) =

{
f(cguess) f(cguess) > 0
P (cguess) f(cguess) = 0

(4)

That is, for a consistent solution fitness is the number
of non-empty partitions (noted with P ), resulting in neg-
ative fitness for non-consistent and positive for consistent-
solutions. This fitness g is then lineally transformed (for
using it in fitness-proportional selection methods) by adding
1−(Minf(cguess)), so that the worst non-consistent solution
will have fitness 1 and the best consistent solution its initial
number of partitions plus one plus the minimum negative
distance to consistency, ensuring also that consistent solu-
tions are always better than non-consistent ones, and also
different depending on their score, which can then be used
by evolution to improve the population.

The rest of the algorithm is also a canonical genetic
algorithm with 1-point crossover, single-character mutation
and fitness-proportional selection, the same as the one we
have used as a baseline. The first combination has fixed to
ABCA (as used in most papers; in any case, the selection
of the first combination does not have a big impact in the
result), same as before, working as follows:
• Continue evolutionary search until at least 20 consistent

solutions are found.
• If a set of 20 solutions is not found, continue until

the number of consistent solutions does not change for
three generations. This low number was chosen to avoid
stagnation of the population.

• If at least a single consistent solution is not found
after 50 (in previous papers we used 15) generations,
reset the population substituting it by a random one.
Again, this was a number considered high enough to
imply stagnation of search, giving at the same time the
algorithm a chance to find solutions.

This means that, when the evolutionary loop exits, we
always have a non-zero set of consistent solutions; if it
contains a single individual, it is played; if it contains several,
one is randomly chosen among those with the highest number
of non-zero partitions.

In principle, any kind of evolutionary algorithm can be
used internally to evolve new solutions; however, we used

Parameter EvoRank CGA
Population 128, 256, 400 400
Replacement Rate 0.25, 0.4, 0.5, 0.75, 0.4
Generations to reset 50 15

TABLE III

PARAMETER VALUES IN THE EVOLUTIONARY ALGORITHMS USED IN

THIS PAPER.

a canonical evolutionary algorithm (CGA) with one-point
crossover and single-character mutation. Solutions were rep-
resented directly, without binary codification, with crossover
and mutation taking thus place over the characters. Evo-
lutionary parameters are shown in Table III in the column
labelled EvoRank (the name of our approach).

Together with this algorithm, we tested the one that
obtained the best results in our previous paper [12], a
canonical evolutionary algorithm; the main difference is
that it considers as fitness only the distance to consistency
(1/(1+f(cguess))), using the partition method to select, from
all the consistent solutions, the combination that is going to
be played. Parameters are also shown in Table III, in the
column labelled CGA 1.

We will compare these two algorithms from the dual point
of view of average combinations played and number of
combinations evaluated; that is why we will also include in
the comparison a random naive algorithm that plays as soon
as a consistent solution is found. All experiments have been
made by applying the algorithm 10 times over the whole set
of 1296 combinations.

IV. EXPERIMENTAL RESULTS

The results for the experiments performed over several
variants of the method are shown in Table IV. When Evo-
Rank (the method introduced in this paper) uses a population
of 400 and a default replacement rate of 40%, its results
are statistically indistinguishable from the exhaustive search
strategy that uses the same method to select the consistent
combination to play (which is labelled with Most Parts).
Besides, these results are better than a virtually identical
algorithm (but for the new fitness function) that uses a
canonical GA to find a set of consistent solutions, but not
the score of its partitions in the fitness (CGA). Besides, these
results are comparable to those published by Berghman et
al.’s [22]. It must be stressed that just three runs of the whole
combination space were made in [22], and not ten, as we
have done in this case, and therefore it is difficult to assess
the significance of those results. In fact, [22] does not even
include data on standard deviations.

Let us look at the second objective of this paper: to find
out if the number of evaluations needed to find those results
is also better in the case of the algorithm with the new
fitness function. Several parameter settings for the canonical
GA with partitions have been tested, along with several

1source code and all parameter files used for these experiments are
available as GPL’ed code from http://sl.ugr.es/alg_mm/
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Fig. 1. Boxplot of the number of evaluations for several settings of the canonical CGA algorithm, and the new EvoRank algorithm, proposed here. The
points indicate the average, which is joined by a line for comparison purposes. The results for EvoRank with population=400 are, in fact, very similar to
those obtained by CGA with other settings, but there are less outliers; the minimum average number of evaluations corresponds to CGA with p = 128,
but with too many outliers.

population sizes and replacement rates, always running 10
times over every combination in the space; results are plotted
in Figure 1. In general, it has been observed that the number
of evaluations grows with population size, at the same time
that the average number of combinations decreases. However,
the number of evaluations for EvoRank grows less fast than
for the CGA; and, in fact the number of evaluations yielded
for a particular population size (for instance, 400), is less for
EvoRank than for CGA, around 1/3rd less; as can be seen
in Figure 1. The number of evaluations for EvoRank and
p = 400 is on average, similar to the number of evaluations
for the CGA with p = 256. In fact, if, for all experiments
made, we plot the number of evaluations vs. the average
number of combinations played, we obtain what we see in
Figure 2, that is, the CGA method is able to achieve a good
game-playing score, but only at the expense of using a higher
average number of evaluations, and for a comparable number
of evaluations, EvoRank is able to find the solution with
a lower average number of combinations; see for instance
the row with 4000 and 6000 evaluations. This difference
accounts for a lower running time, obviously; all in all, the
complete simulation takes a few hours in a dual-core AMD
Phenom II, with less than one second for each game.

Once it has been established that the new fitness function
obtains better results, it remains to try and find out why it
does so. In principle, the fact that it needs less evaluations

Fig. 2. Number of evaluations plotted against the average number of
combinations to solution for different parameter settings in the EvoRank
method (triangles) and a CGA (squares). The best non-dominated solution
indicated with both, a square and a triangle, and corresponds to EvoRank
with p = 400, but please note that the Evorank solution at 4.43 and the
CGA solution at 4.46 are also non dominated; however, they are worse in
the most important objective, the number of draws.

implies that it is better at finding the best combinations,
and if it, besides, plays better, it means that the sampling
of the space of consistent combinations is biased towards
finding better solutions. In part, it should be expected since
the fitness function is designed to behave that way, but, does
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Strategy min mean median max st.dev.
Berghman (60) - 4.390 - - -
Entropy 4.383 4.408 4.408 4.424 0.012
Most parts 4.383 4.410 4.412 4.430 0.013
evorank-p400 4.392 4.414 4.413 4.448 0.018
evorank-p256-r05 4.408 4.430 4.433 4.444 0.013
Berghman (30) - 4.430 - - -
CGA 4.402 4.434 4.433 4.471 0.018
Expected size 4.447 4.470 4.468 4.490 0.015
Worst case 4.461 4.479 4.473 4.506 0.016
evorank-p128 4.414 4.457 4.460 4.498 0.023
evorank-p128-r025 4.443 4.476 4.483 4.502 0.020
evorank-p128-r075 4.478 4.498 4.497 4.522 0.017
Random 4.566 4.608 4.608 4.646 0.026

TABLE IV

COMPARISON OF RESULTS FOR DIFFERENT MASTERMIND-SOLVING

STRATEGIES, INCLUDING THE ONES INTRODUCED IN THIS PAPER AND

LABELLED evorank AND SHOWN IN serif FONT. THE p SUFFIX

CORRESPONDS TO POPULATION, AND r TO REPLACEMENT RATE;

DEFAULT REPLACEMENT RATE IS 0.4. HORIZONTAL LINES SEPARATE

RESULTS THAT ARE STATISTICALLY DIFFERENT, BUT FOR BERGHMAN ET

AL.’S RESULTS, ON WHICH NOT ENOUGH INFORMATION IS AVAILABLE.

BERGHMAN’S RESULTS ARE TAKEN FROM [22]; ENTROPY, MOST PARTS,

EXPECTED SIZE AND WORST CASE ARE HEURISTIC, EXHAUSTIVE

SEARCH METHODS, AND VALUES WERE COMPUTED IN [23]. RESULTS

FOR THE CANONICAL GENETIC ALGORITHM ARE TAKEN FROM [12].

it have any other effect on the evolutionary algorithm? For
instance, does it find better solutions because it creates bigger
sets of consistent combinations? Or because, since it creates
a rougher fitness landscape, it is able to maintain diversity
better?

In order to check this, we have performed an independent
experiment: we have run the algorithm 100 times, with
the same setup (population = 400, replacement rate=0.4 ),
and, as mentioned above, the same underlying evolutionary
algorithm, and measured the cardinality of the set of consis-
tent combinations and genotypic entropy after playing each
combination. The results are shown in Figures 3 and 4, the
first of which shows that the cardinality of the sets is virtually
the same; in fact, the cardinality of the first moves is entirely
determined by the random creation of the population, and
later on by the cutoff size, which is equal to twenty and
the same for both. From this it can be concluded that the
better solutions found by EvoRank is due to the selection of
better consistent solutions, because the sample used has got
the same size.

However, are these better solutions found because the
fitness function introduces more diversity, since it has got
many more different values? In CGA, all consistent solutions
have got the same fitness (equal to one, as explained above);
in EvoRank, its fitness will depend to its score. Well, in
fact this does not happen, as shown in Figure 4. Entropy
is indeed different for both methods, but there is no clear
trend: it seems higher after the second and fourth move
(remember that this is an average of 100 games) for the

Fig. 3. Cardinality of the set of consistent combinations after each move
(or draw) for EvoRank (black, solid boxes) and CGA (red, dashed boxes).
Except for the slightly different situation after the third move, the values
are virtually the same, as shown by the overlap of boxplot notches.

Fig. 4. Entropy of the set of consistent combinations after each move (or
draw) for EvoRank (black, solid boxes) and CGA (red, dashed boxes).

canonical GA, but worse after the third move. This might
imply that the exploration/exploitation balance behave in
different ways in the two methods: exploration seems to
be better in the determinant third move for EvoRank, but it
switches to exploitation in the fourth move, thus being able
to find the solution faster; but, in fact, this higher diversity in
the CGA case (at least for the last move) can be explained by
the creation of a neutral fitness landscape by all combinations
with the same fitness value, something that is not so frequent
in EvoRank.

From these experiments we can then conclude that Evo-
Rank, a Canonical Genetic Algorithm with a fitness that
includes the partition score (in this case, the number of
partitions) is a better choice for solving MasterMind, and
that this result is due to the better sampling of the solution
space that is done by this fitness function.
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V. CONCLUSION AND FUTURE WORK

In this paper we have introduced a new fitness function
for solving the game of MasterMind using evolutionary
algorithms, and found that not only it finds better solutions,
but it does so in less evaluations (and thus time). Besides,
its results are comparable to those found using exhaustive
search algorithms, which holds some promise when solving
problems with higher dimensions. This new fitness function
is a result of seeing the problem from a different and
novel point of view: what we are seeking are the best
consistent solutions; the fact that they are consistent or not
is actually a constraint, which, incidentally, takes us back to
the first papers on the subject, which considered MasterMind
a constrained optimization problem [18]. This result can also
be generalized to any type of evolutionary algorithm: always
take into account heuristics when either designing the fitness
function or creating operators.

It remains to be seen also how this strategy scales to higher
sizes; the first move would be, similarly to what was done
in [23], to compute the size of the set whose results are
statistically indistinguishable from using the whole set of
consistent combinations for bigger sizes, and maybe get an
estimate of how it scales with problem size; then use that set
size in evolutionary algorithms to obtain performance, and
once again see how the solutions scale with problem size,
to check whether they scale in the same way as exhaustive
search algorithms or have a better behavior. There is an
additional problem with bigger sizes: it becomes impossible
to test exhaustively the whole search space, so finding a
complete set of combinations on which to obtain accurate
results is also a challenge. For the time being, besides, we
have only used standard evolutionary operators. Using string
permutation, and maybe other specially designed operators
will reduce even further the amount of evaluations needed to
find the solution.

Finally, as was done in previous approaches [9] to Mas-
terMind with good results, it would be interesting to test
whether heuristics tricks, such as using endgames, that is,
deterministic or exhaustive search methods, when certain
situations arise (a combination gets all blacks but one, or all
whites, or zero blacks/whites) would enhance the algorithms,
and in which way (number of evaluations and average
number of combinations played).
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