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1 Introduction

J. Craig Venter declared in 1998: “We are now starting the Century of Biology”. This is undoubtedly true

and has been recognized before. Gregory Benford was already pointing this fact in 1995 when he also noted

that Physics has dominated the 20th century, as Chemistry had probably dominated the 19th century. In

his own words:

“And yet, far from the physics departments of the great campuses, a clarion call is sounding

through our time, one that responds to hot-button environmental problems and that incorporates

rapid advances in other laboratories: Biology has turned aggressively useful.”

Among the novel and revolutionary biotechnologies, microarrays have been evolving fast in the past ten

years and are reshaping our understanding of biological systems as well as shaking the grounds of biomedical

research. Microarrays allow to monitor the expression of thousands of genes at once. A single experiment

allows to text for billions of individual hypotheses. A query using the PubMed website 1 shows that more than

11,010 entries have already either the word ”microarray” or ”DNA array”. Almost all of these publications

appeared in less than 10 years, approximately 70 percent of them appeared in print in the last two years.

These high-throughput molecular assays generate immense datasets. These datasets have the potential to

help us to understand biological systems in ways that are completely new. While huge promises are ritually

proclaimed (personalized medicine, targeted therapies, genetic engineering for more efficient crops, etc.) [31],

the challenges are equally enormous [42].

Not only biotechnologies are evolving fast, interestingly enough, combinatorial optimization has also

turned to be an “aggressively useful” discipline. Many advances in exact algorithms, though worst-case

exponential, are allowing increasingly larger instances to be solved to optimality. The development of fixed-

parameter algorithms as a recognized subdiscipline of computational complexity, is aiming at a systematic

development of data reduction methods that bound the search of optimal solutions. The development of

metaheuristics starting with Simulated Annealing in 1983, followed by Tabu Search [33, 54] and Memetic

Algorithms a few years later [45, 50], has allowed researchers to adapt ad hoc heuristics, and to develop very

powerful stochastic algorithms for large-scale optimization problems.
1http://www.ncbi.nlm.nih.gov/entrez/query.fcgi
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In spite of all the progress, sometimes combinatorial optimization methods have been naively applied in

Bioinformatics, missing “the users real needs”. For a number of problems, the ultimate goal is not to find an

optimal solution (minimum cardinality is naively sought after many times in the literature), but to uncover

the underlying interaction genetic networks and the conserved aspects of biosystems (conserved by evolution,

in different disease states or under different perturbations). Recognition of this strategic issue has led the

authors of this manuscript to work on a number of NP-hard problems that provide a good mathematical

formulations of the basic questions of biological interest.

In general, these research questions have a natural representation as combinatorial optimization problems

on graphs. However, it is sometimes the case that a variant or a generalization, of a known combinatorial

optimization problem, is better suited. In this chapter, we will present three illustrative examples of this

research methdology drawn from the authors’ own experience in the analysis of microarray datasets. We

aim at illustrating the benefits of combinatorial approaches by unifying the presentation with the underlying

theme of three types of subgraph identification problems: cliques, bicliques and hamiltonian paths. In

addition, another unifying theme is that the associated decision problems are all NP-complete. Another

unifying theme is the power of data reduction in two of them, specially in the case of clique, where a fixed-

parameter algorithm is of extreme importance and help us to calculate a particular clique interaction graph,

of interest to uncover the active genetic pathways.

1.0.1 Fixed-Parameter Tractability.

The origins fixed-parameter tractability can be traced at least as far back as in 1988, to the works of Fel-

lows and Langston. These authors have shown that, thanks to the Graph Minor Theorem, a variety of

parameterized versions of NP-complete problems are tractable when a relevant input parameter is assumed

to be fixed, i.e. independent of the instance size [29, 30]. A computational complexity class (FPT) was

introduced (FPT) encompasses those parameterized problems for which there exists an algorithm that runs

in O(f(k)nc), where n is the size of the instance, k is the input parameter, and c is a constant independent

of both n and k [24].

A number of problems of interest in bioinformatics belong to this class. One of the most emblematic ones
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in the FPT class is Vertex Cover. In Vertex Cover the input is an undirected graph G with n vertices,

and a parameter k ≤ n. The decision problem is whether G contains a set C of k vertices that covers every

edge in G (an edge is said to be covered if either one or both of its endpoints are in C).

Informally, “parameterized complexity is a deal with the Devil of Intractability” as it aims to confine the

combinatorial explosion, often associated to NP-hard problems, to the parameter (which is assumed to be

fixed). In practice, a certain “dialogue” develops between the computer scientist and the problem domain,

where the aim is to find parameters that, if assumed to be fixed, render the basic problem tractable.

These parameterized problems seem to appear naturally in problems in the area of the Life Sciences.

It is often the case that a certain parameter can be assumed to be fixed (or bounded by some constant

independent of n for all the instances of interest). There are cases in which these parameters represent a

structural property, or a property of the solutions sought.

2 Genetic Networks: a case for clique finding algorithms

It is clear that the structure of biological networks has a natural representation as a graph. As a consequence,

algorithms for a number of problems that involve optimal subgraph detection become powerful tools for the

investigation of biological function. In genetic networks any given gene may have different functions as its

activity influences, and is influenced by a number of other genes [59]. A gene in one species may be very

similar, at the sequence level, to another gene in some other species. As a consequence, the existence of some

subgraphs among the different graphs that represent biological networks help to infer evolutionarily conserved

modules of co-expressed genes [4, 7, 52]. This has recently led to approaches that aim to derive phylogenetic

trees based on the detection of common subgraphs of metabolic pathways between taxa [38]. Biology,

helped by graph-theoretic formulations, is moving from the study of single genes/proteins to “biosystem

identification” of the basic common blocks of life.

At the core of this quest is the identification of sets of commonly existing putatively co-regulated genes.

For the computer scientist, this basic problem can be formalized as a search for cliques on undirected weighted

graphs (see [13] for an excellent review of this topic). For instance, we can make a one-to-one correspondence

between genes and vertices, and a co-expression value between two genes is represented by the weight placed
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on an edge joining a pair of vertices. The inputs to clique are an undirected graph G with n vertices,

and a parameter k ≤ n. The decision problem is whether G contains a clique of size k, that is, a subgraph

isomorphic to Kk, the complete graph on k vertices. Since clique is NP-complete there is no known algorithm

for deciding clique that runs in time polynomial in the size of the input. Clique can be decided by generating

and checking all
(
n
k

)
of vertices selections. But this brute force approach requires O(nk) time, and is thus

prohibitively slow, even for problem instances of only modest size.

There is an strategic advantage in formulating the problem of biological interest as a clique-finding

quest. A vertex can be part of any number of maximum or maximal cliques. This also naturally matches

that the gene product can be involved in more than one biological pathway. The problem of generating

all maximal cliques is also a problem of biological relevance which, in turn, is sometimes related to the

maximum clique size. In the context of microarray analysis, the approach here reported can be viewed as

“fuzzy clustering” method, as a gene could be a member of different groups. Note that with the denomination

of “clustering” several researchers encompass different problems which naturally lead to different approaches

(see [8, 9, 10, 35, 37] for some of them). In general, there is always the “one gene to one cluster” relationship.

The aim is to partition the gene set into disjoint subsets, so that the genes that correspond to the vertices

within each subset have in common some chosen measure of similarity. The method here is novel in that

respect.

There are exceptions, however. New clustering techniques, for example those employing factor analysis

that not require exclusive cluster membership for single genes [5]. Unfortunately, these tend to produce bio-

logically uninterpretable factors without the incorporation of prior biological information [32]. The approach

centered in clique finding does not have this requirement; a decomposition of a graph in a set of maximal

cliques could be very informative, since cliques need not be vertex-disjoint.

2.1 Classical and parameterized complexity

Clique is not in class FPT unless a certain conjecture is not true and the W hierarchy collapses [24]

(The W hierarchy, whose lowest level is FPT, can be viewed as a fixed-parameter analog of the polynomial

hierarchy, whose lowest level is P). However, Clique has as complementary dual problem, the Vertex
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Cover problem which, although being NP-complete, is in FPT. This fact can be exploited to develop an

alternative algorithmic approach for Clique.

We first define what we understand with “complementary dual”. If we denote G, the complement of

G. (by definition G has the same vertex set as G and all the edges present in G are absent in G and vice

versa), then a vertex cover of size k in G turns out to be exactly the complement of a clique of size n− k in

G. If we regard these problems in their optimization versions, the search for a minimum vertex cover in G

corresponds to the search of a desired maximum clique in G. This fact is very important since there have

been great improvements in the fixed-parameter algorithmics for Vertex Cover in the past decade; the

fastest known vertex cover algorithm runs in O(1.2852k + kn) time [16].

2.1.1 Kernelization and Branching

The approach to solve the vertex cover problem is separated in kernelization and branching . We start

reducing an arbitrary input instance of Vertex Cover to a, hopefully, much smaller instance of the same

problem (the kernel). Buss and Goldsmith [15] have shown that the size of the kernel is in O(k2). Kernel sizes

in O(k) can also be obtained at the expense of methods that rely on linear programming relaxation [40, 51],

which tend to be slower in practice.

More recenlty, a new technique, termed crown reduction, was introduced for kernelization. A crown is

an ordered pair (I, H) of subsets of vertices from G that satisfies the following criteria: (1) I 6= ∅ is an

independent set of G, (2) H = N(I), and (3) there exists a matching M on the edges connecting I and H

such that all elements of H are matched. H is called the head of the crown. The width of the crown is |H|.

The following theorem is then central to this algorithmic approach:

Theorem[1] Any graph G can be decomposed into a crown (I, H) for which H contains a minimum-size

vertex cover of G and so that |H| ≤ 3k. Moreover, the decomposition can be accomplished in O(n
5
2 ) time.

Branching is applied after the kernel was obtained, in general using a binary tree search. Subtree searches

can be spawned off at each level and can be concurrently explored [2]. Up to 64 processors have been used for

an application in motif discovery [6]. Contrary to the current folkloric belief in combinatorial optimization,

the method allows to solve to optimality large instances [3]. This has allowed to solve huge problems in
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genomics and proteomics. For large problems, and for particularly difficult subtrees, hardware accelerators

have delivered average speedups in the neighborhood of 125 over software-only implementations [23].

2.2 Our final objective: the clique intersection graph

Our final objective is relatively close, but we need first to enumerate all maximal cliques of the graph we

are studying. Note that, for a general graph, we can have up to 3n/3 maximal cliques. However, we expect

that in this application the maximum clique size (kmax) is not too large. As a consequence, knowing the

maximum clique size (which we obtain with the methodology we have just described), allows us to use other

data reduction techniques which reduce the size of the graph. Assume that initially this value is k = kmax.

The reduction step basically consists of removing all low-degree vertices with degree less than k − 1. This

is safe, as these vertices can not be part of any k-clique. We iterate on the application of these rules, as

vertices with degree more than k − 1 may now have a degree lower than k. When we can not reduce the

graph any longer, all k-sets can be checked (to see if they are a k-clique or not) and we ennumerate them

all. The whole process is repeated, but now with k = k − 1. We keep enumerating all maximal cliques until

a specified minimum value, in this study it was k = 3.

To give some illustrative figures, for this study we analyzed a dataset with 6,830 genes. A threshold of

0.85 was chosen for the correlation between pairs and as a result we had to process a graph having only 2,281

vertices and 2,619 edges. The enumeration algorithm listed 355 cliques of size between 15 and 3 vertices.

With this information, we computed the clique interaction graph defined as follows in this study. Vertices in

the clique interaction graph have a one to one correspondence with cliques in the original graph (so we will

have a total of 355 vertices). Two vertices in the clique interaction graph are connected with an edge if the

two corresponding cliques share at least one vertex. The clique interaction graph is presented in Fig.1.4. In

the next sections we will introduce the details of the computational experiment to which it corresponds.

3 A biclique-oriented approach

We have mentioned before how an approach based on clique finding and new techniques based on fixed-

parameter tractability have been useful to identify highly correlated groups of genes. In some cases, however,
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the different samples belong to particular classes of interest to the biologist or the medical researcher. The

samples can correspond to either particular clearly separated clinical conditions [57], or to different cellular

processes [56, 26], to different parts of an organ (voxelization techniques) [47], different cancer types [34],

prediction of tumor outcome [53], different cell lines [11], etc. Now the question is: ”Given that such a

labelling on the samples is available, can we identify which is the set of genes that most likely explain the

existence of these classes”? .

As such, this is a generic problem that needs a precise formalization. Since in a typical microarray

experiment the number of samples is usually much smaller than the number of genes, its is often the case

that several high correlations exist between some genes and the labelling. As a consequence, minimization of

the number of genes that can “explain” the labelling should be taken with some caution. It would be possible

that we can find a small number of genes for which the following holds. For any two pairs of samples that

have different labellings it is always true that there exist at least one gene which has a significantly different

expression value. As a consequence, we need to find some new formalization of this problem that would give

“robust genetic signatures”. With “robust”, we mean that the explanation should rely in the co-expression

of many genes, as a way of avoiding individual spurious correlations that may dramatically influence the

gene selection task. Towards this end, a very useful mathematical formalization has been introduced by

Cotta, Sloper and Moscato, the ((α, β)− k−Feature Set problem). With this, it has been possible to find

genetic signatures for Alzheimer disease [47], the molecular classification of cancer [11], and the prediction

of US presidential election results [49].

We will see that the (α, β) − k−Feature Set Problem can be formalized as a problem of finding a

certain type of subgraph in a bipartite graph. In addition, such a subgraph contains a biclique Kk′,k where

k′ is the minimum of the values α and β.

3.1 The (α, β)− k−Feature Set Problem

We use the (α, β)− k−Feature Set Problem as our mathematical formalization of the problem of interest

since we aim to obtain robust genetic signatures of the different types of cancer. Robustness is obtained

via some redundance in the genes/features that allow the discrimination. As a consequence, our genetic
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signatures guarantee that, if a feasible solution exist for the dataset of interest, at least α genes will help

discriminate between any two samples of different classes. In addition, the genetic signature will have at

least β genes with similar values between any two samples of the same class.

Cotta, Sloper and Moscato have introduced the (α, β) − k−Feature Set Problem as a generalization

of the k−Feature Set [21]. The problem is trivially NP−complete as Davies and Russell proved in 1994

that k−Feature Set is NP−complete [22] (k−Feature Set problem corresponds to an α = 1, β = 0

(α, β)− k−Feature Set. Formally:

(α, β)− k−Feature Set

• Instance: A set of m examples X = {x(1), . . . , x(m)}, such that for all i, x(i) = {x(i)
1 , x

(i)
2 , . . . , x

(i)
n , t(i)} ∈

{0, 1}n+1, and three integers k > 0, and α, β ≥ 0.

• Question: Does there exist an (α, β)− k-feature set S, S ⊆ {1, · · · , n}, with |S| ≤ k and such that:

– for all pairs of examples i 6= j, if t(i) 6= t(j) there exists S′ = S′(i, j) ⊆ S such that |S′| ≥ α and

for all l ∈ S′, x
(i)
l 6= x

(j)
l ?

– for all pairs of examples i 6= j, if t(i) = t(j) there exists S′ ⊆ S such that |S′| ≥ β and for all

l ∈ S′, x
(i)
l = x

(j)
l ?

where the set S′ is not the same for all pairs of examples so we have written S′ = S′(i, j).

3.2 Parameterized intractability

We have seen that the the NP−completeness result for k-Feature Set implies that there currently exists

no polynomial-time algorithm for this problem. We have seen before what happens with Clique that is not

in FPT but its parametric dual is. The first natural parameter to consider is the cardinality of the feature

subset. Cotta and Moscato have proved the following result:

Theorem 1.1 Unless FPT = W [2], the (α, β)− k−Feature Set problem is not fixed-parameter tractable

for parameter k.

The proof follows from the main result of [20] where it was proved that the k−Feature Set problem is W [2]-

complete (W [2] is a parameterized class comprising substantially harder problems than FPT ). There exist a
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current widely believed conjecture in parameterized complexity, that FPT 6= W [1]. Also, since W [1] ⊆ W [2]

we do not expect that a fixed-parameter algorithm can easily be found for the (α, β) − k−Feature Set

problem. Unlike Clique, in this case we can not rely on an FPT algorithm, so heuristic algorithms are

a resonable alternative for this problem. However, even if the problem is not FPT, it may have powerful

instance reduction rules that would shrink its size. These rules reduce the size of the problem instance

and any solution of the original instance can be obtained from the solutions of the simplified instance, and

vice versa. The application of reduction rules may turn large instances of NP−hard problems into trivial

instances or small instances solvable by hand or by enumeration [58]. Next, we will present greedy heuristic

coupled with reduction rules for this purpose.

3.3 Reduction rules for the (α, β)− k−Feature Set Problem

We will explain these rules with the help of the Red-Blue Dominating Set problem. We start considering

the case of the (1, 0)− k−Feature Set problem. If I is an instance of this problem we can transform it to

an instance of the Red-Blue Dominating Set using the following procedure: we denote with G(V1∪V2, E)

a bipartite graph such that:

• there is a red vertex gi ∈ V2 for each feature/gene in I, i.e., |V2| = n.

• there is a blue vertex pjk ∈ V1 for each pair of examples x(j) and x(k) such that t(j) 6= t(k).

• there is an edge (gi, pjk) whenever x
(j)
i 6= x

(k)
i .

The reader can easily verify that I is a yes-instance if, and only if, there exists a red dominating set

D ⊆ V2 such that |D| ≤ k and it can be generalized to the (α, 0)− k−Feature Set (requesting that D be

α−dominating, i.e., that at least α vertices in D dominate each vertex in V1 [36]). The final generalization to

the (α, β)−k−Feature Set problem is easy from here: a tripartite graph G(V1∪V2∪V3, E) is constructed

such that V1, V2, and the edges among vertices in them are as described before, and

• there is a blue vertex cjk ∈ V3 for each pair of examples x(j) and x(k) such that t(j) = t(k).

• there is an edge (gi, cjk) whenever x
(j)
i = x

(k)
i .
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then an instance I would be a yes-instance if, and only if, D ⊆ V2 α−dominates V1, β−dominates V3, and

|D| ≤ k.

We associate an auxiliary integer variable rv with each vertex v ∈ V1 ∪ V3; such that, initially, rp = α

for each p ∈ V1, and rc = β for each c ∈ V3; let G(v) = {g ∈ V2 | (g, v) ∈ E} be the set of vertices (genes)

dominating vertex v ∈ V1 ∪ V3; conversely, let N(g) = {v ∈ V1 ∪ V3 | (g, v) ∈ E} be the vertices in V1 ∪ V3

dominated by gene g ∈ V2. We apply then three basic rules for this problem following:

R1. For each v ∈ V1 ∪ V3 such that rv = |G(v)| do

i. For each g ∈ G(v), mark g as belonging to the solution.

ii. Delete v from G.

R2. For each v ∈ V1 ∪ V3 such that rv ≤ 0 delete v from G.

R3. For each v1, v2 ∈ V1 ∪ V3, v1 6= v2 such that rv1 ≥ rv2 and G(v1) ⊆ G(v2), delete v2 from G.

If a gene is marked, or a vertex is deleted, the following actions are taken:

Gene marking [g]: For each v ∈ N(g) do

i. rv ← rv − 1.

ii. G(v) ← G(v) \ {g}.

Vertex deleting [v]: For each g ∈ G(v) do N(g) ← N(g) \ {v}

These rules greatly simplify the original instance by marking genes that are bound to appear in the final

solution, and removing subsumed vertices, i.e., vertices that will be dominated for sure upon domination of

another vertex. The application of these rules is interleaved until the the graph cannot be further simplified.

3.4 Discretization of numeric values

In data mining, an important problem is to determine, given numeric value information, a reasonable dis-

cretization. We note that the (α, β) − k−Feature Set Problem was defined as having a boolean input

matrix. This said, we need to find, for each gene a threshold value that dicotomizes the expression. For
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this study, we have used to methods, one proposed by Fayyad and Irani [28] and another one in which an

Evolutionary Search strategy is applied to find a large biclique and employs the reduction rules described

above [21]. The methods give similar, but different results, and we currently use them as complementary

approaches to retrieve many relevant genes [47].

4 A hamiltonian path-motivated approach for gene ordering

The genetic signatures found required to be presented in a meaningful way. A number of approaches for

the problem of ordering gene expression patterns have been based on combinatorial optimization. Most of

the time, since the number of genes to be ordered can be large (several thousands), the researchers have

resorted to some heuristic, as the basic problem of finding a hamiltonian path of minimum weight is NP-

hard. As a consequence, a number of heuristic and metaheuristic algorithms have been developed, possibly

Self Organizing Maps (SOMs) is one of the most used. Implementations of SOMs have found their way

into some commercial packages for microarray data analysis. In addition, some software packages (both

commercial and on the public domain) use some form of hierarchical clustering and ad hoc heuristics for the

final ordering of the leaves of the dendogram that represents the final clustering. Under some special, but

still quite practical conditions, the optimal arrangement can be solved in polynomial time [12].

However, it has been recently recognized that this type of approach may lead, in some cases, to results

that do not entirely satisfy the Life Sciences researchers. Gene members of the same functional group are

scattered in those orderings. In [19], we have introduced an alternative objective function to optimize. If a

hierarchical clustering is not given as extra constraint, this leads to a problem that is NP-hard, as it contains

the minimum weight hamiltonian path problem as a special case.

The input is an integer matrix of gene expression values G = gij , 1 ≤ i ≤ n, 1 ≤ j ≤ m, where n is

the number of genes, m is the number of samples, and gij represents the level of activity of gene i under

condition j. We are also given a function that allows us, given any two patterns, to compute the degree of

dissimilarity between them. We need to find a permutation of the genes’ names π = (π1, π2, ..., πn), such

that the genes with the most similar expression patterns are close to each other in the sought permutation.
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Now, the task is to find the permutation that minimizes the following objective function

TotalCost(π) =
n∑

l=1

min(l+ws,n)∑

i=max(l−ws,1)

(ws − |l − i|+ 1).D[πl, πi] (1.1)

where the window size is 2ws + 1 (the number of genes involved in each partial distance calculation) and

D[πl, πi] represents the measure of dissimilarity between πl and πi. For this chapter, the parameter ws was

fixed to b0.01nc (see Ref. [18] for the influence of that this parameter in the final solution). This objective

function was also recently adopted by T. Conrad in his award-winning paper on the visualization and analysis

of metabolic pathways [17].

During the last decade, several combinatorial optimization problems for finding an optimal permutation

have been addressed with memetic algorithms [46, 44, 14]. We also use this metaheuristic to address this

problem. In addition, memetic algorithms have been introduced with the motivation of obtaining an almost

linear speed-up when parallelized [43] due to its inherent asychnronism and low inter-processor communi-

cation requirements. In Ref. [48], it has been shown that this algorithm is very robust to individual noise

measurements and was used to order genetic signatures of Alzheimer’s disease [47]. They have also been

applied to cancer’s genetic signatures [11]. The next section shows an illustrative example (Fig. 1.1) of its

performance and a comparison with some of the most used methods available on the public domain.

5 Computational experiments and results

We present results on the application of these three techniques using a microarray dataset of a number of

cell-lines originating from different cancers. To ensure the reproducibility of our techniques, we have chosen

to work with cell-lines and a public domain dataset called NCI60. The original dataset and a clustering

analysis was introduced by Ross et al. [55]. In addition, we will show how a memetic algorithm, using a

similarity measure between pairs of genes (or pairs of samples), is able to obtain permutations of the rows

and colums such that the final layout is highly correlated and highlights the major common groups.

In Fig. 1.1, we present the results of three different algorithms for ordering microarray data. We have

used an image to illustrate their main characteristics and the memetic algorithm is later used to order the

genetic signatures of Figs. 1.2 and 1.3. Fig. 1.1.a. shows the original image that contains 489 rows and
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971 colums of grey-scale pixel values. The rows and colums are randomly permuted to obtain Fig. 1.1.b.,

illustrating the task we have on real data. We present results of two of the best algorithms for analysing

microarray datasets that are available on the public domain. Fig. 1.1.c., shows the results of a hierarchical

clustering algorithm European Bioinformatics Initiative (EBI) as part of the Expression Profiler software

tool 2. Fig. 1.1.d., proposed by Eisen et al. [25], a hierarchical clustering algorithm that also performs the

ordering of the genes 3. Finally Fig. 1.1.e. shows the result of our memetic algorithm [19], and in the three

cases we have used the same algorithms to order both the rows and columns. In the rest of the chapter, we

will only use the memetic algorithm to order the genetic signatures shown in all the other figures.

The original NCI60 dataset has 64 samples from 60 cell lines (i.e. two cell lines have three samples

each in the set). A total of 9,703 human cDNAs have been spotted on glass microscope slides; the cDNAs

thus included around 8,000 different genes. We have worked with the dataset that corresponds to Fig. 2

of Ref. [55], which helps to illustrate the power of our combinatorial approach. Again, for the purpose of

illustration of the technique, we have selected only a subset of the samples that corresponds to four types

of cancer: Melanoma (SK-MEL-5, M-14, SK-MEL-28, UACC-257, MALME-3M, UACC-62, SK-MEL-2A),

Leukaemia (RPMI-8226, K562, K562, K562, HL-60, MOLT-4, CCRF-CEM, SR), Colon (HCT-116, SW-620,

HCT-15, KM12, HCC-2998, COLO205, HT-29) and Renal (A498, RXF-393, a786-0, CAKI-1, ACHN, UO-31,

TK-10). This means that we have excluded for the purpose of this study cell lines LOXIMVI (Melanoma),

as well as SN12C and SNB-75 (both Renal). The reason is that they seem to have, overall, a very different

gene expression pattern than the others from the same class. While the reason of removing for consideration

was only done to help illustrate better the power of the basic technique (providing very distinctive genetic

signatures), other issues should be considered. For instance, have these cell lines remained with molecular

characteristic of their parent tumours ? Again, for the purpose of the illustration case, we would not include

them in this study.

The first question that we would like to address could be informally phrased as: Which are the genes that

are a genetic signature of colon cancer ? . An analogous question can be asked for the three other different

types. We realize that this basic question is implicit in the analysis of [55] and is also implicit in several

2http://ep.ebi.ac.uk/EP/EPCLUST/

3http://rana.lbl.gov/EisenSoftware.htm
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other analysis. In [55], an attempt has been made to identify “clusters” of genes that are related to a given

type of cancer. Unfortunately, the authors only used the information given by the clustering algorithm. This

has lead them to identify genetic signatures containing only the highly-expressed genes.

Fig.1.2 shows the genetic signatures of the Renal, Melanoma, Colon and Leukaemia [55] cell lines listed

above. Figs.1.2.a-d, correspond to an different (α, β)− k-feature sets obtained. All these genetic signatures

have been obtained using a methdology first employed in [11]. Initially, an (αmax, β = 0) − k-feature set

is obtained, where αmax is the maximum obtainable discrimination that can be guaranteed for all pairs of

samples. This means that there exist at least a pair of samples that belong to different classes (Renal vs.

non-Renal) such that we can only find αmax differentially expressed genes. For the Renal vs. non-Renal

case, we have found αmax = 768. The parameter β is set to zero, thus not considering the within-class

similarity. We have then found a (768, β = 0) − k-feature set with the objective of minimizing the number

of genes in the signature (k). We found it and requires only 1,073 genes. We then proceed trying to increase

the within-class similarity of our genetic signatures without incrementing the number of genes. We stop

when we obtain a maximum value of β such that if we increase it by at least one unit, we can not obtain a

genetic signatures with the optimal value of 1,073 (obtained when we aimed to find the minimum cardinality

(768, β = 0) − k-feature set). Fig.1.2.a shows the result: a genetic signature for Renal cancer (relative

to the other three types), that corresponds to a (αmax = 768, β = 655), kopt = 1, 073) feature set (where

the genes are the features in this case). Analogously, Figs.1.2.b-d correspond to the genetic signatures of

Melanoma (αmax = 714, β = 673, kopt = 985), Colon (αmax = 358, β = 277, kopt = 521), and Leukaemia

(αmax = 814, β = 743, kopt = 1, 253), respectively.

In total, the union of the four genetic signatures has 3,832 genes, but only 2,998 are different. Fig.1.2.e

finally displays those 2,998 genes. In all cases, the order of the genes was found with the memetic algorithm

allowing to identify different groups of up and down regulated genes. When the union of the four signatures

is displayed as a whole, the within-class differences of the different tumors start to become evident. A

clear example is given by Leukaemia’s cell lines RPMI-8226 and SR, Colon’s HCT-116, and Melanoma’s

SK-MEL-5.
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6 Conclusions

We have shown how a combinatorial optimization approach for the problem of pattern recognition in mi-

croarray data helps to provide useful solutions to classify hundreds of genes involved in a disease. These

approaches are complementary to statistical methdologies which, in turn, can benefit from the extraordinary

performance of these methods to organize the data and extract interesting hypothesis for further testing and

validation.

We have used publicly available data, to ensure reproducibility and for illustrative purposes. We have

selected the NCI60 dataset, since it has been available since 2000 and some researchers have regarded it as

“uninformative” in the past. Our results seem to indicate that this label may be related to the inadequacy of

previous methodologies rather than something intrinsic to this dataset. We have shown how a combination

of powerful metaheuristics and exact algorithms allow to find genetic signatures for some of the major cancer

groups in the dataset.

If the genetic signatures that we have found correspond to characteristic of the tumour types in vivo, they

may have several uses. At the very least, they can help in determining the true origin of a metastases without

obvious primary. However, possibly the most important role of this type of analysis is to provide a molecular

classification of cancer which is novel and independent from traditional clinical taxonomies. Finally, if this

classification correlated well with the characteristics in vivo, they may have a central role in personalized

medicine. It could then be possible to link patients with the most appropriate tumour chemotherapy, a

dreamed scenario which may be closer than we imagine.
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a. Original image b. Randomized image 

c. EBI solution d. Eisen solution 

e. Memetic Algorithm solution 

Figure 1.1: Opera House based images. (a) The original image, containing 489 rows and 971 columns and

no noise; (b) a random permutation of rows and columns; (c) the solution from EBI hierarchical clustering;

(d) the solution from Eisen’s hierarchical clustering; (e) the memetic algorithm solution.
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Figure 1.2: Signatures of the four types of cancer: (a) Renal, (b) Melanoma, (c) Colon and (d) Leukaemia.

The image on the right (e) is the union of the four sets on the left and contains the profiles of 2,998 genes

in 29 cell lines.
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Figure 1.3: The genetic signatures of the four types of cancer found with the Evolutionary Search (ES)

heuristic introduced in [21]. They discriminate Renal (a), Melanoma (b), Colon (c), and Leukaemia (d).

Their union (2,259 genes) is shown in (e). The signatures have 1,120, 1,035, 556 and 1,255 genes respectively.

The ES has an advantage for particular values of (α, β) where exact searches are too time consuming. In

this case it shows comparatively similar results to the exact algorithm used for Fig. 1.2.
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Figure 1.4: The Clique Intersection Graph obtained in this study. A graph is first constructed with 6,830

vertices (in a one to one corespondence with all the different genes in the original microarray). Edges in

this graph links pairs of genes that have a correlation greater than 0.85 or smaller than -0.85. We then

calculated its clique intersection graph, shown in this figure. This graph, in conjunction with the genetic

signatures found with the (α, β)−k-feature set method allows to identificate differential pathways associated

with the disease. For instance, the K5 at the bottom-left corner represents a set of cliques entirely composed

of genes present in the Colon genetic signature shown in Fig. 1.2.c. The RPS16 gene (Ribosomal Protein

S16) is present in all five cliques in the original graph, it is highly expresed in five cell lines, significantly

less but still expressed in HCT-116 and underexpressed in HCT-15, matching recent reports [41]). Another

gene common to all cliques is IL20RA, which encodes for receptor for interleukin 20 (IL20), a cytokine that

may be involved in epidermal function. IL20RA is higly expressed in skin, upregualted in Psoriasis, and may

have an important role in local mechanisms of mucosal and cutaneous immunity [39]. Our combinatorial

methods allow a systematic investigation of what can be “master genes” as being key players in a variety of

pathways implicated in the disease and allow for high-throughput bioinformatic analysis.


