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Abstract

We consider the problem of inferring a genetic network from noisy data. This is done
under the Temporal Boolean Network Model. Due to the hardness of the problem,
we propose an heuristic approach based on the combined utilization of evolutionary
algorithms (EAs) and other existing algorithms. The main features of this approach
are the heuristic seeding of the initial population, the utilization of a specialized
recombination operator, and the use of a majority-voting procedure in order to
build a consensus solution. Experimental results provide support for the potential
usefulness of this approach.
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1 Introduction

Nearly all the information needed to set up and control the different processes
that take place in a living cell is contained in its genes. According to the so-
called Central Dogma of Biology, the information stored in DNA molecules is
transcribed into RNA molecules that will in turn direct the production of pro-
teins. When considered at cell scale, this is a complex dynamical process, since
the activity of particular genes (i.e., whether they are expressed or not at a
certain time) is regulated by the activity of other genes and their byproducts.
It has been only recently that we have had the means for obtaining experimen-
tal data regarding these interactions: by using the DNA microarray technology
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[17] we can monitor the activity of a whole genome in a single experiment.
Huge amounts of data are becoming available thanks to the utilization of this
technique. The challenge is now unraveling the complex interactions behind
these data.

Genetic Networks are tools for modeling gene interactions that can be used to
explain a certain observed behavior. In a genetic network, the functionality of
a gene is described by the global effect it has on the cell, as a result of its inter-
action with other genes. Such interactions must be inferred from experimental
data in order to construct an adequate genetic network for modeling the biolog-
ical process under scrutiny. The way this inference is done depends on the par-
ticular genetic-network model used. For example, one can consider Bayesian
Networks [20], Boolean Networks [1–4,22–24,36], Petri Nets [26], Qualitative
Networks [4], and Weight Matrices [39] among others (see also [38]). Each of
these approaches can be useful under different circumstances (available com-
putational resources, properties of the experimental data, properties of the
model sought, etc.). In this work we will focus on Temporal Boolean Networks
(TBNs) [34], a generalization of the Boolean Network model that takes into
account the time-series nature of the data, and tries to incorporate into the
model the possible existence of delayed regulatory interactions among genes.
The basic notions about this model of genetic networks will be presented in
Section 2.

Several exact algorithms have been proposed for the inference of TBNs from
experimental data. A brief outline of these algorithms will be provided in
Section 2 as well. It turns out that the inference problem is very hard, and some
of these algorithms can become impractical up from a certain problem size.
This is specifically true if the data contains noise due to, e.g., measurement
errors during acquisition. For this reason, the use of heuristic approaches is in
order. In this sense, we will study the utilization of evolutionary algorithms
(EAs) [9] for this purpose.

EAs are optimization techniques inspired on the principles of natural evolu-
tion, namely adaptation and survival of the fittest. They are based on the
iterative generation of tentative solutions for the problem under considera-
tion, and constitute a very appealing option for dealing with otherwise-hard-
to-solve problems. In this work we consider the use of EAs for TBN inference
from noisy data. The details of the application of EAs to this problem will be
provided in Section 3.

It is important to notice that we consider the utilization of EAs not substi-
tuting but complementing other existing algorithms. In effect, EAs can suc-
cessfully use information provided by the latter in order to build improved
solutions. Section 4 will provide empirical evidence of this fact. This work will
close with some discussion and prospects for future research in Section 5.
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2 Background

In this section we will introduce the essentials of the TBN model considered
in this work. Firstly, some basic definitions and notation will be presented
in Subsection 2.1. Subsequently, we will provide some highlights on existing
algorithms for the inference of TBNs in Subsection 2.2.

2.1 Temporal Boolean Networks

As mentioned in the previous section, TBNs are a generalization of Boolean
Networks. It would be then appropriate to start defining the latter.

A Boolean Network is a tuple BN(G,F ), where G(V, E) is a directed graph,
and F = {fv | v ∈ V } is a set of Boolean functions, such that fv is attached
to vertex v. Let KG(v) be the in-degree of vertex v in graph G. Then, the
signature of the Boolean function attached to v is fv : BKG(v) −→ B, where
B = {0, 1}. Each vertex v represents a different gene, and can be labeled with
a binary value –0(OFF) or 1(ON)– that indicates its expression level. The
existence of an edge (v′, v) in G indicates that the value of gene v′ exerts
some influence on the value of gene v, i.e., v′ is a regulatory factor of v. The
precise way in which this regulation works, and how it is combined with other
regulatory factors that bind to v is captured by means of the corresponding
Boolean function fv.

Having defined these concepts, the dynamics of the genetic network is modeled
as follows: first of all, time is divided in discrete time steps. In each step, the
values of all genes are synchronously updated using the attached Boolean func-
tions. More precisely, the value of gene v at time t + 1 is computed by having
function fv being fed with the values at time t of all genes v′, v′′, · · · , v(KG(v))

for which incoming edges to v exist. The output of fv for this particular input
is the expression level of v at time t + 1.

Let ψ : V −→ B be a labeling of vertices in V , and let Ψ be the set of all such
labelings. Now, we define an example as a pair (I, O) ∈ Ψ2. A Boolean network
BN is said to be consistent with this example if it holds for each v ∈ V that
fv

(
I(v′), · · · , I(v(KG(v)))

)
= O(v). In the context of time-series data, we will

have a sequence Λ = 〈λ1, · · · , λm〉 ∈ Ψm, and we will be interested in checking
the consistency of the network with examples (λi, λi+1), 1 ≤ i < m. Plainly,
this represents the capability of the network for reproducing the observed data.
In case the network were not consistent with the whole time series, it would
make sense to measure the degree of agreement with it. This is done using
the accuracy measure. First, let the error εΛ

BN(v) for gene v be defined as the
fraction of states of v that were incorrectly predicted by the network across
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Fig. 1. A Temporal Boolean Network, and the equivalent truth table defining its
behavior. Notice that the edge (v3, v2) has a 1-step delay.

the time series Λ. Now the accuracy of the network for a time series Λ is

accuracyBN(Λ) = 1− 1

|V |
∑

v∈V

εΛ
BN(v). (1)

It can be easily seen that the accuracy of a network is 1.0 if, and only if, it is
fully consistent with the time series Λ. In case more than one time series were
available, i.e., Λ1, · · · , Λq, a combined accuracy measure can be computed by
averaging the accuracy values for all time series Λi, 1 ≤ i ≤ q.

Some of the assumptions behind the Boolean network model are clearly unre-
alistic [37], e.g., transcription processes are known to work asynchronously and
at different rates, in contrast to the synchronous functioning of this model.
Despite this, Boolean networks exhibit very interesting properties, such as
simplicity and explanatory power. While idealized, they can constitute a valid
starting point for gaining insights into the dynamics of genetic networks. Fur-
thermore, the model can be extended to cope with its limitations to some
extent. Temporal Boolean networks are one of such extensions.

Unlike the case of plain Boolean networks, in TBNs the state of a gene at a
certain time step is not only relevant for the next time step; on the contrary,
its regulatory influence can span across several time steps. The rationale for
allowing this is twofold [34]: firstly, there may exist a latency period between
the expression of a gene and the observation of its effect (e.g., because this
effect depends on the prior binding with a certain inducer). Secondly, a gene g
may exert an indirect regulatory influence on another gene g′ through a third
gene g′′, i.e., g′ regulates g′′ and g′′ regulates g; if g′′ were not observable, this
would appear as a delayed influence of g on g′.

In order to formally define a TBN we only need to specify a labeling of edges
in the graph. Thus, a TBN is a tuple TBN(Ḡ, F ), where F has the same
interpretation as above, and G is a graph G(V, E, ϕ) with ϕ being defined as a
function ϕ : E −→ N. Were a certain edge (v′, v) be labeled with l, this would
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mean that the state of v′ at time t is relevant for computing the new state of
v at time t + (l + 1). Then, it can be seen that a plain Boolean network is a
particular case of TBN in which all edges are labeled with 0. We will denote
by T the maximum size of the time window in which the state of a gene can
have regulatory effects, i.e., T = 1 + maxe∈E ϕ(e) (hence T = 1 for a plain
Boolean network). An example of TBN is shown in Fig. 1.

2.2 Inference of TBNs

A number of algorithms have been proposed for the inference of TBNs from
data. Actually most of them correspond to the simpler Boolean network model,
but they can be readily extended to deal with TBNs. We will briefly overview
some of them.

After the seminal work of Somogyi et al. [35], one of the first algorithms
that were proposed is REVEAL (REVerse Engineering ALgorithm) [24]. This
algorithm combines Information-Theory tools and exhaustive search in order
to find a network consistent with the data (full consistency is not possible in
general in the case of noisy data though; we will return to this point below).
More precisely, the algorithm tries to identify an adequate set of inputs for
each gene g by considering all possible k-tuples of genes for increasing values
of k (1 up to n, the total number of genes). A k-tuple Γ is considered a
valid input if the mutual information [31] between gene g and genes in Γ
is equal to the entropy of g, i.e., Γ is enough to explain all state variations
for g. If the underlying model behind the data is known to have in-degree
bounded by K, then the complexity of this algorithm can be shown to be
O(mn (n

K)) = O(mnK+1), where m is the size of the data set.

Another algorithm was proposed by Akutsu et al. [2]. This algorithm was
termed BOOL-1 in a later work [4], and consists of examining all possible K-
tuples of inputs, testing all Boolean functions of each K-tuple until a consistent
set of inputs is found. As it is the case for REVEAL, this algorithm has
O(mnK+1) worst-case complexity. Quite interestingly, the authors also showed
that the size of the data set suffices to be O(22K(2K + α) log n)) in order to
uniquely identify the underlying Boolean network with probability at least
1−n−α, as long as the expression patterns are given uniformly randomly. This
is not the case in general: expression data exhibits some correlation due to its
time-series nature, and the existence of attractors in the network dynamics
[42]. This fact notwithstanding, this result still suggests that relatively small
sets of data can be enough for identifying the underlying Boolean network.
The same authors have developed another version of this algorithm –BOOL-2–
to deal with noisy data [4]. The functioning of BOOL-2 is very similar to that
of BOOL-1, but with an important difference: rather than discarding a certain
Boolean function as soon as it reveals itself as inconsistent with the data, a
certain number of mismatches θ is allowed (θ = m

22K+1 in their theoretical
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analysis). The computational complexity of BOOL-2 is the same as BOOL-1,
i.e., O(mnK+1).

Although both REVEAL, BOOL-1 and BOOL-2 run in polynomial time for
any fixed K, the inference problem cannot be considered fixed parameter
tractable (FPT) [18]. The notion of FPT emanates from the Parameterized
Complexity paradigm [19], and tries to capture the fact that the problem
hardness is concentrated on a certain parameter that when extracted from
the problem input and kept fixed allows for an efficient resolution of the prob-
lem, i.e., in O(f(k)nc), where k is the parameter, f is an arbitrary function
of k, and c is a constant independent of n and k1. Problems not in FPT have
algorithms whose complexity is O(ng(k)) –much harder in general– as it is
the case of the algorithms mentioned above, and other approaches proposed
for this purpose such as the predictor-chooser algorithm [22], or the Best-Fit
Extension Problem [32].

This problem has been recognized in the literature, and more efficient algo-
rithms have been sought. In this sense, Akutsu et al. designed an improved
version of BOOL-1 that runs in O(mnK) [1], and a Monte-Carlo type ran-
domized algorithm running in O(mω−2nK + mnK+ω−3), where ω < 2.376 is
the exponent of matrix multiplication [3]. Still, these improvements do not
lead to FPT algorithms. As a matter of fact, it is now known that such FPT
algorithms are theoretically impossible. This has been shown by Cotta and
Moscato [13] by establishing the completeness for W [2] (a parameterized com-
plexity class substantially harder than FPT) of the k-Feature Set Problem,
i.e., the problem of determining a subset of k out of n Boolean variables such
that a certain target variable can be expressed as a function of the former.

A hard complexity barrier is thus being faced here. The fact that when dealing
with TBNs an additional TK factor must be considered in the complexity ex-
pressions above (to account for the T possible labels every edge in a K-tuple
can have) only strengthens this barrier. Whenever the size of the problem in-
stance allows it, any of the algorithms mentioned above would be a good choice
for they guarantee finding the best solution. However, heuristic approaches are
clearly required in general for larger problem instances.

One of these possible heuristic approaches is the ID3 algorithm [27], a well
known algorithm in Machine Learning. This algorithm is based on the incre-
mental construction of the input set for each variable using a greedy search.
This search is guided by the information gain criterion, and thus exhibits some
similitude with the REVEAL algorithm mentioned above. More precisely, a
decision tree modeling the evolution of the target variable is generated, trying
to select at each step the variable that provides the largest entropy reduction.
This approach has been used in the context of TBN inference by Silvescu and
Honavar [34] with encouraging results. In this work we propose an approach
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based on the synergistic utilization of evolutionary algorithms and existing
heuristics such as ID3. This approach will be presented in next section.

3 An EA-based Approach for Inferring TBNs

Evolutionary algorithms are heuristic search techniques based on the iterative
generation of tentative solutions for a target problem [9]. Starting from a pool
–population– of initial solutions –individuals– (generated at random, or by
some other procedure), an EA repeatedly performs a process consisting of
selection (promising solutions are picked form the pool), reproduction (new
solutions are created by modifying selected solutions), and replacement (the
pool is updated by replacing some existing solutions by the newly created
ones). A fitness function measuring the goodness of solutions is used to drive
the whole process, specially during the selection stage.

The generic template sketched above must be adequately instantiated in order
to be deployed on a specific problem. This instantiation must be carefully done,
trying to use and incorporate available problem-dependent knowledge in the
algorithm. Despite some voices objecting to such a specialization of EAs in the
past, it is nowadays accepted that it constitutes a recipe for success, as it has
been shown both in theory [15,41] and in practice [11,16]. In this section we
will show how to adapt the EA for the inference problem we are considering.

3.1 Representation and Evaluation

Choosing a representation of solution for the problem being considered is a
crucial decision in any EA application. Binary representations were very com-
mon in the past, to the point of being considered predetermined, specially
by part of the genetic-algorithm [21] community. This attitude has been ju-
diciously criticized by many researchers (e.g., [7,16]), and now binary repre-
sentations are not considered globally superior to other representations nor
even preferable by default any longer. On the contrary, nowadays it is sought
to use “natural” representations for the problem at hand, i.e., representations
in which the relevant properties of solutions for the problem considered are
explicitly shown [28].

In the problem of inferring TBNs from data, the relevant properties of solutions
are the edges among genes, and their labels. The chosen representation is then
based on these units. More precisely, we have considered solutions as a list of
triplets (v′, v, l), v, v′ ∈ V , l ∈ {0, · · · , T − 1}, each one corresponding to
an edge present in the TBN. It turns out that such lists can be efficiently
stored and manipulated in terms of an (n× n)-matrix M of natural numbers
in the range [0, T ]; having Mij > 0 implies that an edge exists from vi to
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vj, and its label is Mij − 1 (conversely, the edge list can be viewed as a
sparse encoding of this matrix; notice that in case we were considering plain
Boolean networks, the natural representation of solutions would be binary).
This matrix is not allowed to have more than K non-zero entries per column,
i.e., K is the maximum in-degree of any node. Repairing by pruning the input
set of a node is performed whenever its size is greater than allowed, e.g., after
applying mutation.

EA individuals thus specify the wiring of the TBN. When submitted to eval-
uation, the Boolean functions attached to each vertex must be firstly learned.
This is done by scanning the data set Λ and assigning the most common out-
put to each input combination found in Λ. This is similar to the maximum
likelihood estimation of parameters done in, e.g., Bayesian networks, and can
be done in linear time in the number of patterns in Λ. Once these functions
have been determined, the TBN is effectively evaluated using accuracy –recall
Equation (1)– as the fitness function to be maximized.

3.2 Reproductive Operators

The construction of new individuals during reproduction is done in an EA via
the application of two major mechanisms: recombination and mutation. The
former consists of creating a new solution by picking information from a pair of
selected solutions (commonly termed parents), as well as possibly using some
exogenous information. The main goal of recombination is combining valuable
parts of solutions that have been independently discovered, and hence can
be seen as a somewhat exploitative procedure. As to mutation, it consists of
cloning a single solution, subsequently performing some modifications on it.
The purpose of mutation is introducing exploring capabilities in the EA by
injecting new information in the solution pool. Precisely, the final performance
of the algorithm will crucially depend on the adequate balance between explo-
ration and exploitation during reproduction. This balance has been achieved
in this work by using a heuristic recombination operator for boosting the ex-
ploitative capabilities of the EA, and a blind mutation operator for providing
unbiased exploration.

Unlike classical recombination operators, the recombination operator used by
the EA does not blindly mix edges from the parents, but tries to select the
most relevant edges. Clearly, it is then necessary to firstly define a measure
of relevance. Pairwise mutual information (MI) between the edge endpoints
could serve as a first approximation. This measure has the advantage of being
pre-computable, but it is inadequate for several reasons. First of all, it is a
peer-to-peer measure that would induce a total order in the set of edges, i.e.,
some edges would be always preferable to some other edges. The recombination
operator would thus turn into a näıve greedy selection that would make the
EA quickly converge to the upper portion of the ordered list of edges. For

8



the same reason, it is a context-unaware measure, incapable of grasping the
possible combined effect that a group of genes may have on another one.

To cope with these drawbacks, a alternative measure is proposed. Let Γ =
{(v′, l1) · · · , (v(s), ls)}, s = KG(v), be the input set of v in one of the parents
being recombined, and let (v(i), li) be a regulatory factor that does not belong
to the input set of v in the other parent. Let Γ̃ = Γ \ (v(i), li), and let 〈Γ̃〉 be
a certain combination of states for regulatory factors in Γ̃. Then, the quality
Q of this edge is:

Q
(
(v(i), v, li)

)
=

∑
P

(
〈Γ̃〉

)
H

(
fv(Γ)|〈Γ̃〉

)
(2)

where the sum ranges across all states 〈Γ̃〉 of regulatory factors in Γ̃, fv is the
Boolean function attached to v in the corresponding parent (available after
having been computed during evaluation), and H(fv(Γ)|〈Γ̃〉) is the entropy
in the output of fv when the states of Γ̃ are kept fixed to 〈Γ̃〉 and the state
of (v(i), li) varies. In the Boolean scenario considered, H(fv(Γ)|〈Γ̃〉) collapses
into one out of two values: 0.0 if fv(Γ) is constant for a certain state of Γ̃ no
matter the state of (v(i), li), and 1.0 if fv(Γ) changes when the state of (v(i), li)
varies. In the former situation, we have that 〈Γ̃〉 determines the value of fv(Γ),
and the state of (v(i), li) is irrelevant, while in the latter situation the state
of (v(i), li) is crucial for determining fv(Γ). By summing these values across
all states of regulatory factors in Γ̃ an indication is obtained on how relevant
(v(i), li) is in the presence of Γ̃. The factor P (〈Γ̃〉) just normalizes this sum,
taking into account the relative importance in the data set of each state 〈Γ̃〉
of Γ̃. This term is the fraction of expression patterns in the data set in which
Γ̃ takes the precise state 〈Γ̃〉. Notice that if (v(i), li) is relevant for determining
v in a MI sense (e.g., if v were a function of (v(i), li) alone), then it will also
appear as relevant using Q. However, the reverse is not true since combined
effects cannot be captured using MI as mentioned above.

Having defined this quality measure, the functioning of the recombination
operator can be described as follows:

(1) Find common edges and copy them to the offspring.
(2) Let L be a list of non-common edges; compute quality values and sort L

in decreasing quality values.
(3) Determine the number of edges the offspring will have (randomly using

a binomial distribution centered in the parents’ mean number of edges).
Pick edges from L in order until the offspring is completed.

Regarding step 1, this property of respecting features shared by both parents
has revealed itself as very positive in closely related domains such as the
induction of Bayesian networks [14]. By doing so, a coarse skeleton of the
TBN is being constructed as the population converges, being steps 2 and
3 responsible for the fine tuning of solutions. According to this template,
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irrelevant edges (those with quality values near 0) will be filtered out. On the
contrary, strong relationships (indicated with quality values near 1) will be
preserved.

Unlike recombination, mutation is performed using a much more simple mech-
anism: a random edge (v′, v, l) is selected and removed from the solution if it
is present, or added to it otherwise (any (v′, v, l′) that existed would then be
removed). The objective here is obtaining an unbiased source of fresh infor-
mation that keep diversity in the population.

3.3 Initialization and Post-Processing

In order to have the EA started, it is necessary to create the initial population
of solutions. This is typically addressed by randomly generating the desired
number of solutions. When the alphabet used for representing solutions has
low cardinality, this random initialization provides a more or less uniform
sample of the solution space. The EA can subsequently start exploring the
wide area covered by the initial population, in search of the most promising
regions.

In this application, the alphabet used to represent solutions has T symbols
(the possible values of each entry Mij). The value of T will be small when
compared to the population size (several tens or even hundreds of individuals
usually) in most situations. Thus, the risk of not having any sample of a
particular regulatory factor in the initial population is rather low, and it is
not necessary to resort to systematic initialization procedures [30].

This random initialization can be complemented with the inclusion of heuristic
solutions in the initial population. The EA can thus benefit from the existence
of other algorithms, using the solutions they provide both for refinement and
as information source. This is termed seeding, and it is known to be very ben-
eficial in terms of convergence speed, and quality of the solutions achieved
[29]. The potential drawback of this technique is having the injected solutions
taking over the whole population in a few iterations, provoking the stagnation
of the algorithm. This problem can be remedied in several ways, e.g., by using
a non-fitness-proportionate selection mechanism such as ranking [40], or tour-
nament [10]. These selection schemes focus on qualitative fitness comparisons
instead of on quantitative comparisons (as for example roulette-wheel selec-
tion does), and hence are less prone to allow these super-individuals spread
without control. This has been the approach we have considered: injecting the
solution provided by the ID3 algorithm in the initial population, and using
binary tournament as selection scheme.

Once the constituents of the algorithm have been fully specified, it can be de-
ployed on particular data sets. EAs are stochastic techniques, and hence mul-
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Fig. 2. Overview of the proposed approach.

tiple runs of the algorithm will provide different results. Quite surprisingly, a
simple strategy such as performing NR independent runs of the algorithm and
keeping the best solution can be shown to provide in some cases superlinear
speed-ups [33] with respect to individual runs. Since the fitness function is in
this case defined as the accuracy of the network being evaluated, this speed-up
would refer to an improved ability for finding high-accuracy networks. Nev-
ertheless, it must be noted that the goal is to extract the underlying genetic
network rather than accurately predicting gene expression levels. This dis-
tinction is important in the case of noisy data: although a correlation between
these two objectives exists, they are not equivalent because the algorithm can
obtain solutions of improved accuracy by fitting them to the noise. In fact,
this is not a specific problem of EAs, but a problem of learning algorithms in
general.

A possible solution to this problem can be found in the stochastic nature of
the algorithm. By running it several times and keeping the best solution of
each run, a set of potential networks is obtained. The ability of the EA for
capturing in each of these networks a precise regulatory relationship depends
on both the strength of such a relationship, and the level of noise. Unless the
latter were too high, the EA will be capable of extracting a coarse skeleton of
the network with the strongest links. Of course, the EA cannot recover very
weak relationships located at the level of noise or under it, but has growing
chances of finding them as their strength increases. Furthermore, when fitting
to noise happens, it is likely that different runs of the EA will produce different
solutions with different spurious relationships (due to the isolated evolution of
different populations in those several runs). Based on this, the proposed strat-
egy consists of performing NR isolated runs, and collecting the best solution
in each of them. Subsequently, a consensus network is produced by majority
voting, i.e., for each pair of genes (v′, v) the majority label lmaj across the NR
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networks is determined; if there are more networks voting for that label than
networks voting for having no edge between v′ and v then (v′, v, lmaj) is added
to the consensus network.

This latter post-processing step completes the description of the approach. An
illustration of the whole process is given in Fig. 2.

4 Experimentation

In this section we will report experimental results of the proposed approach.
Firstly, the parameters of the algorithm, and the characteristics of the bench-
mark will be described in Subsection 4.1. Subsequently, empirical data will be
presented in Subsection 4.2.

4.1 Experimental Setup

The experiments have been conducted in order to test the ability of the pro-
posed approach in recovering specific TBNs using a sample of their output.
To do so, we have randomly generated networks of different sizes, in-degrees,
and temporal delays. More precisely we have considered networks of n = 16
and n = 32 genes, in-degrees of K = 5 and K = 7 edges, and temporal delays
from 0 up to 3 time steps (i.e., 1 ≤ T ≤ 4). For each parameter combination
we have generated 5 different networks. These have been created by firstly
deciding at random a set of K inputs per gene, and subsequently assigning
delays to the corresponding edges. Similarly to [34], the probability that a gene
have a regulatory influence over a window of τ time steps is made proportional
to ζτ . We have chosen ζ such that

∑T
τ=1 ζτ = K/n. Once all networks have

been generated, their output is sampled by randomly setting their states for
T time steps, and then iterating their behavior for 100 time steps. This is
repeated 5 times, so a total of 5 time series of 100 patterns each is obtained
for each network. As a final step, white noise has been added to these time
series. This has been done by randomly flipping entries of each of the time
series with a certain probability p. Three different levels of noise have been
considered: p = 1%, p = 2.5%, and p = 5%. Each of the resulting groups of 5
noisy time-series constitute the input data for the EA.

The evolutionary algorithm used is a (50,1)-EA, i.e., an EA with a popula-
tion size of 50 individuals, generating a single descendant in each step, and
inserting this new individual in the population by substituting the worst one.
Recombination is done with probability pR = 0.9, and mutation of genes with
probability pM = 1/n2. Binary tournament is used for selecting individuals for
reproduction as mentioned in Subsection 3.3. Finally, the EA is run for a total
number of evaluations maxevals = 10, 000 for n = 16, and maxevals = 20, 000
for n = 32. No fine tuning of these parameters has been attempted.
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Using these parameters, the EA is run 20 times on each of these 5 time-series
data sets. Besides considering the accuracy of the solutions obtained, their
similarity to the target network is also measured. This can be done using the
sensitivity and specificity metrics [22]. These are defined as follows: let MEA

be the matrix representing a solution provided by the EA; analogously, let
MTBN be the matrix corresponding to the target TBN. Then,

sensitivityi(M
EA,MTBN) =

∑n
j=1 δ

(
MEA

ji ,MTBN
ji

)

∑
MTBN

ji >0 1
(3)

sensitivity(MEA,MTBN) =
1

n

n∑

i=1

sensitivityi(M
EA,MTBN) (4)

where δ is the Kronecker-delta function. This metric measures the degree to
which real dependencies are captured in the EA solution (many of them for
high –near 1.0– sensitivity, and few of them for low –near 0.0– sensitivity).
Similarly, specificity is defined as sensitivity, but using

∑
MEA

ji >0 1 as the de-

nominator in Eq. (3). By doing so, specificity measures the degree to which the
EA solution postulates spurious dependencies (many of them for low speci-
ficity, and few of them for high specificity).

Notice that both metrics –sensitivity and specificity– will yield the same result
when the original network and the solution provided by the EA indicate the
same number of dependencies for each gene.

4.2 Results

First of all, the accuracy results of the EA are shown in Fig. 3. Notice that in
all cases the EA manages to improve the accuracy of the ID3 solution. This
improvement is generally larger for low values of T . In this case, the EA is
able to find the target network most of the times. This can be corroborated by
taking a look at Fig. 4, where sensitivity values are shown, and Table 1, where
the number of successful runs (i.e., runs in which the target network is found)
is shown. As it can be seen, the performance line is located very close to 1.0 in
this case (specificity values are equivalent in all cases to those for sensitivity,
due to the fact that the networks generated by the EA have exactly K inputs
per gene, as target networks do). Obviously, the search space is smaller for
lower values of T , and this motivates a higher performance of the EA. For
higher T , say T ≤ 2, the EA is capable of improving over the results of ID3,
but would require more iterations in order to increase accuracy.

The performance curve of the EA drops at a slightly higher rate in the case
K = 7. However, this is also the case for ID3, and reflects the higher difficulty
of this set of instances. Actually, this in-degree value can be considered as
rather high since genes are believed to be influenced on average by no more
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Fig. 3. Accuracy of the TBNs generated by the GA (solid line) for different levels
of noise (1%, 2.5%, and 5% from left to right). The results of ID3 are included as a
reference (dotted line).
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Fig. 4. Sensitivity of the TBNs generated by the GA (solid line) for different levels
of noise (1%, 2.5%, and 5% from left to right). The results of ID3 are included as a
reference (dotted line). Specificity values are equivalent in this case.

Table 1
Number of times (out of 100) the EA finds the target TBN for different network
sizes, in-degree bounds, time-window sizes, and levels of noise.

K = 5 K = 7

size noise T = 1 T = 2 T = 3 T = 4 T = 1 T = 2 T = 3 T = 4

1% 92 57 80 60 92 11 0 0

n = 16 2.5% 78 62 58 43 72 20 0 0

5% 45 44 42 20 33 0 0 0

1% 96 56 25 48 0 0 0 0

n = 32 2.5% 89 60 20 14 0 0 0 0

5% 20 18 20 0 0 0 0 0

14



Table 2
Number of times (out of 5) the TBNs generated by the ID3 algorithm agree with
target TBNs for different network sizes, in-degree bounds, time-window sizes, and
levels of noise.

K = 5 K = 7

size noise T = 1 T = 2 T = 3 T = 4 T = 1 T = 2 T = 3 T = 4

1% 1 1 2 1 0 0 0 0

n = 16 2.5% 0 1 1 1 0 0 0 0

5% 0 0 1 0 0 0 0 0

1% 4 2 1 2 0 0 0 0

n = 32 2.5% 2 2 1 0 0 0 0 0

5% 0 0 1 0 0 0 0 0

Table 3
Number of times (out of 5) the EA consensus TBN agrees with the target TBN for
different network sizes, in-degree bounds, time-window sizes, and levels of noise.

K = 5 K = 7

size noise T = 1 T = 2 T = 3 T = 4 T = 1 T = 2 T = 3 T = 4

1% 5 3 5 4 5 1 0 0

n = 16 2.5% 4 4 4 3 5 1 0 0

5% 3 2 2 0 2 0 0 0

1% 5 3 1 2 0 0 0 0

n = 32 2.5% 5 3 1 1 0 0 0 0

5% 1 2 1 0 0 0 0 0

than eight to ten other genes [8]. As it was the case for increasing T , longer
evolution times may be required for larger K.

Finally, consider the consensus networks generated by the EA. Tables 2 and
3 show the number of times the target network could be successfully recov-
ered when using ID3 and the evolutionary approach respectively. Notice the
clear improvement in the number of hits in the latter. Furthermore, by using
this consensus construction it is possible to recover the original network in
situations in which individual runs of the EA could not do it consistently.

5 Discussion and Future Work

An evolutionary approach for the inference of genetic networks from noisy
data has been presented in this work. This approach can exploit pre-existing
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heuristics by incorporating the solutions they provide to the initial population.
This seeding boosts convergence towards probably optimal solutions. It also
utilizes a majority-voting mechanism for constructing a consensus solution.
This appears as a useful option for dealing with noisy data, since spurious
relationships introduced in the EA solutions can be filtered this way. Of course,
this could not be the case if such unrealistic relationships were consistently
present in the solutions; then again, this would indicate the presence of some
degeneracy in the data, e.g., due to high noise.

The empirical results obtained from its evaluation are encouraging. It has been
shown that the results of an ad-hoc algorithm (ID3) can be improved. This
has been achieved despite the fact that the optimization task the EA faced
was really challenging. Recall that a limit on the complexity (the in-degree)
of the networks generated by the EA was imposed, and the target network
was located precisely on that limit. This means that the EA had to find this
boundary, and then explore it, seeking the best solution by moving on it or
below it. Certainly, the search capabilities of the EA would be stronger if it
were allowed to temporarily travel above the boundary. In this sense, notice
that the accuracy measure used as guiding function is monotonic in the in-
degree: if the EA is allowed a higher level of complexity in the networks, it will
not descend to lower levels since accuracy can only improve when new edges
are added to a network. It would be thus precise to introduce a penalization
term in the fitness function to amount for the complexity of solutions, and
make the EA look for simpler solutions if accuracy is not strongly degraded.
We are currently working in this, and the preliminary results we are obtaining
indicate that it can produce improved solutions.

We would also like to emphasize the generalizability of the approach. We have
considered the Temporal Boolean Network model of genetic networks, and
ID3 as the heuristic for seeding the initial population. The latter can be easily
changed for any other heuristic; hence, if an improved algorithm is devised,
it can be readily used to seed the initial population. As to the underlying
model, it is also possible to change it without changing the philosophy of the
approach. It would be then necessary to change some of the EA details, such
as the representation and the operators. In this sense, there exist some works
dealing with the application of EAs for finding genetic networks under other
models, e.g., [5,6,25]. These works could pave the way for the application of
this approach to other models of genetic networks.

Notes

1Vertex Cover is a paradigmatic example of an NP-hard problem that is in
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FPT: it can be solved in linear time in the number of vertices when the size of the
vertex cover sought is fixed [12].
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