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Abstract

We propose the use of scatter search with path relinking for the inference of phy-
logenetic trees. Solutions are here represented as trees whose leaves span the set of
species under study. These trees are evaluated using a minimum weight criterion un-
der the ultrametric model. The main features of this approach are the utilization of
a crossover-based schema for diversification generation, the use of path relinking for
solution combination, and the utilization of an improvement method based on inter-
nal rotations of subtrees. The resulting algorithm is compared to other approaches
such as evolutionary and memetic algorithms, using real data as benchmark. Scatter
search provides better results for these instances.
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1 Introduction

Molecular biology and genomics are living in a period of effervescence. The
many initiatives in the life sciences already planned and currently in execu-
tion are producing an unprecedented flood of data [34], and as a result many
of the challenges in biology are increasingly becoming challenges in mathe-
matics [22], and fundamentally in computing. In effect, the task of dealing
with large-scale combinatorial problems arising in bioinformatics is undoubt-
edly one of the greatest challenges to be addressed by computer science re-
searchers [26,42]. New techniques, and new insights for algorithm design are
needed. This challenge is bound to exert a strong impact on computer science
since –among other factors– these new methods should be easily adapted to
high-performance, distributed, computing systems.
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Among the challenging areas in molecular biology one can cite the construc-
tion of evolutionary trees, a problem of great importance for tasks such as
multiple sequence alignment [17], protein structure prediction [36] or molecu-
lar epidemiological studies of viruses [33] among others. The construction of
an evolutionary tree amounts to the production of a hierarchy showing the
degree of closeness among a set of organisms. The associated difficulty of this
task is inherent to the computational complexity and the sheer amount of data
to process. Computational tools are clearly required to cope with these data.
In this sense, the use of exact techniques can be considered generally inap-
propriate here for two reasons: firstly, the intrinsic complexity of the problem
(e.g., NP -hardness has been shown for phylogenetic inference under several
models [6–8,12,43];) secondly, while the utilization of a quality measure for
evaluating hierarchies implies the definition of a optimization problem, its
global optimum has not the same significance as in other classical problems
(the existence of some uncertainty in the underlying empirical data may make
high-quality suboptimal solutions be equally valid.) Thus, the use of heuristic
techniques in this domain seems much more adequate. These can range from
simple constructive heuristics (e.g., greedy agglomerative techniques such as
UPGMA [40]) to complex metaheuristics (e.g., evolutionary algorithms –EAs–
[4]). In this sense, the use of scatter search [27] is considered in this work.

Scatter search (SS) is a powerful metaheuristic based on populational search
whose foundations can be traced back to the 70s in the context of combining
decision rules and problem constraints. Unlike other populational approaches
such as genetic algorithms, SS relies more on deterministic strategies rather
than on randomization. This important methodological difference (which in
turn motivates some other particularities of the approach, as it will be dis-
cussed later) notwithstanding, SS shares some crucial elements with evolu-
tionary and memetic algorithms (MAs) [32], such as the use of combination
procedures and local-improvement strategies. In this work, SS with path re-
linking [14–16] is used for inferring phylogenetic trees from genomic data. To
this end, some basic concepts on phylogenetic analysis will be firstly provided
in next section.

2 Beackground on Phylogenetic Inference

The inference of phylogenetic trees is one of the most important and challeng-
ing tasks in Systematic Biology. Such trees are used to represent the evolu-
tionary history of a collection of n organisms (or taxa) from their molecular
sequence data, or from other form of dissimilarity information. The Phylogeny
Problem can then be formulated as finding the phylogenetic tree that best –
under a certain optimality criterion– represents the evolutionary history of a
collection of taxa. For this purpose, it is clearly necessary to define an opti-
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mization criterion. Essentially, optimization criteria for assessing the goodness
of a phylogenetic tree T can fall within two major categories, sequence-based
and distance-based [23].

In sequence-based approaches, each node of T is assigned a sequence. Such a
sequence is known for the leaves (i.e., the taxa being classified,) and can be
inferred via pairwise alignments for internal nodes. Subsequently, the tree is
evaluated using a criterion that in most situations is either maximum likelihood
(ML) or maximum parsimony (MP). ML criteria are based on the assump-
tion of a stochastic model of evolution, e.g., the Jukes-Cantor model [21], the
Kimura 2-parameter model [24], etc. (see also [10].) Such a model is used in
order to assess the likelihood that the current tree generated the observed
data. The optimal tree would be the one that maximizes this likelihood. On
the other hand, an MP criterion specifies that the tree requiring the fewest
number of evolutionary changes to explain the data is preferred.

As to distance-based approaches, they are based on transforming the available
sequence data into an n×n matrix M . This matrix is the only information used
in the subsequent inference process. More precisely, edges in T are assigned a
weight. The basic idea here is that Mij represents the evolutionary distance or
dissimilarity between taxa i and j. We thus have an observed distance matrix
M (the input data,) and an inferred distance matrix M̂ (obtained by making
M̂ij = distance from i to j in T , i.e., the sum of the weights of all edges in
the path from i to j in T ). The quality of the tree can now be quantified
in a variety of ways. On one hand, it is possible to consider some “distance”
measure between M and M̂ ; usual examples are:

• the STRESS measure [38]: STRESS(M, M̂) = 1∑
ij

Mij

∑
i,j |Mij − M̂ij|,

i.e., the normalized sum of absolute differences,
• the L2 metric: L2(M, M̂) =

∑
ij(Mij − M̂ij)

2, i.e., a least-squares approxi-
mation,

• the L∞ metric: L∞(M, M̂) = maxij |Mij−M̂ij|, i.e., the maximum absolute
difference between observed and inferred data.

On the other hand, quality can be directly measured from T . This is typically
the case when edge-weighting has been constrained so as to have M̂ij ≥ Mij,
i.e., to have inferred distances greater than observed distances. This constraint
is based on the fact that the observed distance between two taxa will be always
a lower bound of the real evolutionary distance between them (in essence,
this is due to the existence of a set of phenomena –reversal, parallelism, and
convergence– that make taxa appear more related than they really are; these
phenomena are collectively termed homoplasy ;) see [29] for details. In this
situation, minimizing the total weight of T (i.e., the sum of all edge-weights)
is usually the criterion. This is precisely the situation considered in this work.
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Notice that by taking Mij as the minimum number of evolutionary events
needed to transform i in j, this last approach resembles MP. Actually, distance-
based methods can be generally considered as an intermediate strategy be-
tween ML and MP, exhibiting good performance in practice as well [20]. For
these reasons, we have focused in distance-based approaches in this work. To
be precise, we have forced M̂ to be ultrametric [2]. In this case, it holds that

M̂ij ≤ max{M̂ik, M̂jk}, 1 ≤ i, j, k ≤ n . (1)

If M̂ is ultrametric, then the distance in T between any internal node h and any
leaf o descendant of h is the same. Very popular when the molecular-clock hy-
pothesis [29] was in vogue, this condition provides a very good approximation
to the optimal solution under more relaxed assumptions such as mere additiv-
ity (M̂ is additive if for any i, j, k, l, the maximum of M̂ij + M̂kl, M̂ik + M̂jl,

M̂il + M̂jk is not unique.) It is also easy to compute: for a given tree T , and
observed matrix M , edge weights can be determined in O(n2) time using the
algorithm presented in [43]. This is known as the min ultrametric tree with a
given topology problem. Let us represent trees using a LISP-like notation, i.e.,
trees are represented as (r, L,R), where r is the root, L is the left subtree, and
R is the right subtree. A leaf l is represented as (l). Also, let L(T ) be the set
of leaves of tree T . Now, let the height of each node in the tree be computed
as follows:

height( (l) ) = 0 (2)

height( (r, L,R) ) = max

(
height(L), height(R),

D(L,R)

2

)
(3)

where D(L,R) = max {Mij | i ∈ L(L), j ∈ L(R)}. Subsequently, the weight
of an edge connecting two nodes i and j is defined as |height(i)− height(j)|.
In contrast to this easy computation, notice that finding optimal edge weights
(i.e., those whose sum is minimal as mentioned before) for an additive tree
requires solving a linear program with 2n−2 variables (the number of internal
edges,) and n(n−1)/2 constraints, one for each pair of taxa (i,j), corresponding
to the fact that the sum of weights for edges in the path connecting them in
the tree –i.e., the inferred distance M̂ij– be greater or equal than the observed
distance Mij (this linear program would turn into a quadratic program if a
least-squares approximation were sought [30].)

Notice that the number of possible phylogenetic trees for a given set of n taxa
is huge: there are (2n− 3)!! rooted trees [20], where k!! is the double factorial
of k (i.e., the difference between successive factors is 2 rather than 1 as in the
standard factorial.) For example, there exist 8.2 × 1021 possible trees for 20
taxa. This clearly illustrates the impossibility of applying exhaustive search to
this problem. Furthermore, finding provably good solutions constitutes a very
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Agglomerative Clustering Algorithm

Input: a distance matrix M
Output: a tree T

(1) for i = 1 : n do Ti ← (i)
(2) Let num clusters ← n
(3) while num clusters > 1 do

(a) Select Ti and Tj (1 ≤ i < j ≤ num clusters) for which dist(Ti, Tj) is
minimal.

(b) Let Ti ← (h, Ti, Tj)
(c) Let Tj ← Tnum clusters

(d) Let num clusters ← num clusters− 1
(4) output T1

Fig. 1. Pseudocode of an agglomerative clustering algorithm. In step 3b, h represents
an undistinguishable internal node of the tree.

hard combinatorial optimization problem for most optimality criteria, as an-
ticipated in the previous section. Exact techniques such as branch-and-bound
can be used, but they are computationally unaffordable for even moderate-
size (say, 30-40 taxa) problem instances. Hence, the use of heuristic techniques
seems appropriate.

Most typical heuristics for phylogenetic inference are variants of the single-link
[39], complete-link [25], and average-link [40] algorithms. These are agglom-
erative clustering algorithms whose functioning matches the generic template
shown in Figure 1.

As it can be seen, these algorithms proceed by iteratively joining in a tree the
two closest clusters, until just one group remains. They differ in the way inter-
cluster distance is defined. To be precise, they consider the following distance
measures:

• Single-Link: dist(T, T ′) = min{Mij | i ∈ L(T ), j ∈ L(T ′)}
• Complete-Link: dist(T, T ′) = max{Mij | i ∈ L(T ), j ∈ L(T ′)}
• Average-Link: dist(T, T ′) = 1

|L(T )|·|L(T ′)|
∑

i∈L(T ),j∈L(T ′) Mij

Notice that the complete-link can be regarded as a greedy approach for the
quality criterion we have chosen (the height of an internal node is always one
half of the largest distance between any of its leaves –recall equation (3)– and
complete-link makes local decisions trying this minimize this quantity.)
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3 Scatter Search for Phylogenetic Inference

As mentioned in Section 1, SS is a populational metaheuristic. This means that
a pool of solutions for the problem at hand is maintained, and used for gener-
ating new tentative solutions. Like other populational metaheuristics such as
MAs, this generation of new solutions is accomplished by combining sets of
existing solutions, and by using local improvement strategies. SS has several
distinctive features though. The main one can be found in the methodological
principles of the algorithm: randomization is given a much more secondary
role than in other populational metaheuristics, since deterministic rules are
used. This can be appreciated in the sketch of SS presented in Figure 2, e.g.,
by observing the absence of a mutation operation. More precisely, a closer
inspection to this algorithmic sketch reveals the existence of the following
components in SS:

• A diversification generation method for generating a collection of raw solu-
tions, possibly using some initial solution as “seed”.

• An improvement method for enhancing the quality of raw solutions.
• A reference set update method for building the reference set from the initial

set of solutions generated, and for maintaining it by incorporating some
solutions produced in subsequent steps.

• A subset generation method for selecting solutions from the reference set,
and arranging them in small groups (pairs, triplets, or larger groups) for
undergoing combination.

• A solution combination method for creating new raw solutions by combining
the information contained in a certain group of solutions.

• A restart reference set method for refreshing the reference set once it has
been found to be stagnated. This can be typically done by using the diversi-
fication generation method plus the improvement method mentioned above,
but other strategies might be considered as well.

The specification of a particular SS algorithm is completed once the items
above are detailed. The next subsections will be devoted to this purpose.
Obviously, it is previously required to define how solutions are represented.
In this application, solutions are trees expressing a particular evolutionary
history for an element set E . An arbitrary enumeration of elements in E will
be assumed. Subsequently, each element in this set will be referred to by means
of its index i ∈ {0, · · · , n− 1} in this enumeration. These elements constitute
the leaves of the tree. Since trees are binary, this means that there are n− 1
internal nodes. These can be labeled with any negative value. Finally, trees
are internally stored in linear strings of 2n − 1 positions by means of their
preorder traversal.
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Fig. 2. Sketch of the scatter search algorithm. Solutions for the problem considered
are represented as circles. White circles are used to represent “raw” solutions, as
obtained from the application of the diversification method or the solution combi-
nation method; as to dark circles, they represent “improved” solutions obtained by
applying the improvement method to the former solutions.

3.1 Diversification Generation Method

The diversification generation method serves two purposes in the SS algorithm
considered: it is used for generating the initial population from which the
reference set will be extracted at the beginning of the run, and it is utilized
for refreshing the reference set whenever a restart is needed. In both cases it
is used in combination with the improvement method that will be described
in a further subsection.

When utilized for generating the initial population, a certain solution is used
as seed. To be precise, the seed is the solution produced by the complete-
link algorithm described in Section 2. This solution is inserted in the initial
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population, and used for generating the remaining PSize − 1 configurations
by means of the the Prune-Delete-Graft (PDG) tree crossover operator (cf.
[4,31]). PDG is a three-step procedure for recombining two trees T1 and T2:

(1) Prune a subtree T ′ from T1.
(2) Delete from T2 all leaves occurring in T ′.
(3) Graft T ′ at a randomly selected point of T2.

Thus, PDG transfers a subtree from one tree to another, taking care of re-
specting the constraint that all elements in E are spanned. Let T be the
tree provided by the complete-link algorithm. The diversification generation
method uses PDG for recombining T with itself, i.e., trees are generated by
moving a subtree of T to a different position within itself. This method has
two advantages. On one hand, the initial population is ensured to have good-
quality solutions (the solution provided by the complete-link is known to be
very good in general, and the remaining solutions are not completely random
but perturbations of the former.) On the other hand, it results in solutions
that, while diverse, are not located in opposite regions of the search space.
This is important since path relinking is used as combination method as it
will be described in Section 3.5. Having very distant solutions in the reference
set would notably increase the cost of the relinking procedure.

When used for restarting, the same mechanism is used, with the sole excep-
tion that this time pairs of trees from the reference set are randomly selected
and submitted to PDG. This produces new solutions that introduce diversity
in the reference set, but does not do it from scratch, since valuable existing
information is also used. The best solution currently in the reference set is
preserved. Once the improvement method has been applied to these new so-
lutions, they are submitted to the reference set update method for obtaining
the new reference set.

3.2 Improvement Method

The improvement method is responsible for enhancing raw solutions pro-
duced by the diversification generation method, or by the solution combination
method. In general, this is achieved by applying small changes to a solution,
keeping them if they produce a quality increase, or discarding them otherwise.

Different strategies would have been possible given the tree representation
used in this problem. The reader may check [1] for a description of several
neighborhoods for trees (unrooted trees actually, although the ideas presented
therein can be readily adapted to rooted trees.) In this case, the improvement
method chosen is based on performing rotations within the tree. Considering
the quality measure used (minimizing the weight of an ultrametric tree,) this
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strategy offers a very good tradeoff between its computational cost, and the
attainable quality improvement.

Four symmetric operations are used within the improvement method. The first
one, ROT 1

R, is defined as

ROT 1
R [ (h, (h′, TLL, TLR), TR) ] = (h, TLL, (h′, TLR, TR)) , (4)

where h and h′ are internal nodes. This operation moves TLR, the right subtree
of the left subtree of h, to the right so it becomes the left subtree of the right
subtree of h. In order to test whether a change is satisfactory, it is not necessary
to evaluate the whole tree: it suffices to check whether the following inequality
holds:

max{Mij | i, j ∈ L(TLL) ∪L(TLR)} > max{Mij | i, j ∈ L(TLR) ∪L(TR)} (5)

A ROT 2
R operation would have performed the same movement on TLL rather

than on TLR. Analogously, ROT 1
L and ROT 2

L are mirror-inverted versions of
the previous operations. For each interior node of the tree, it is first checked
whether a ROTR movement is possible, and if so, whether ROT 1

R or ROT 2
R

produce an improvement. If this were the case, the change would be retained,
and the improvement method would stop. Otherwise, ROTL movements would
be analogously attempted. If no improvement is possible either, the procedure
is recursively applied to the left and right subtrees of h.

3.3 Reference Set Update Method

The reference set update method must produce the reference set for the next
step by using the current reference set and the newly produced offspring (or
by using the initial population generated by diversification at the beginning of
the run or after a restart.) Again, several strategies are possible here. A first
criterion for having a new solution gaining membership of the reference set is
quality: whenever a new solution is better than the worst existing solution in
the reference set, the latter is replaced by the former. This would be analogous
to the plus replacement strategy commonly used for instance in evolution
strategies (i.e., the best |RefSet| solutions in RefSet ∪ Offspring are kept.)

Another typical criterion for insertion in the reference set is diversity. The
reference set would be then structured in two tiers: the first one corresponds
to quality and is managed in the same way as described above; the second
one corresponds to diversity, and membership to it is gained when a solution
increases the distance of tier-2 to tier-1 (i.e., the minimum distance of the
new solution to any solution in tier-1 is greater than the minimum distance
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of an existing solution in tier-2 to any solution in tier-1.) Of course, this im-
plies having to define a distance measure among solutions. Some authors have
proposed considering even three tiers, having tier-3 for containing “good gener-
ators” [27]. For simplicity, these multi-tier strategies have not been considered
in this work, being quality the criterion used. This criterion is complemented
with a test-for-duplicates, so that a solution is not inserted in the reference
set if it is identical to an existing solution.

A variant of this update method has been also considered: rather than gen-
erating all descendants and then deciding which of them will be included in
the reference set, descendants can be generated one-at-a-time, and inserted
in the reference set if they qualify for it. This is called a dynamic updating
as opposed to the static updating described before. The dynamic updating
strategy allows good solutions being immediately available for reproduction,
and thus can sometimes accelerate the convergence towards high-quality re-
gions of the search space. In some sense, the dynamic updating resembles the
steady-state replacement strategy used in genetic algorithms, while the static
updating would be similar to a generational model (but only to some extent
because the number of descendants is not fixed for all steps – see below.)

3.4 Subset Generation Method

This method generates the groups of solutions that will undergo combination.
As shown in Figure 2, these groups are not necessarily pairs of solutions,
but can be subsets of higher cardinality. This will ultimately depend on the
particular combination method used, for not all such methods are capable of
handling multiparent combination.

A binary combination method has been considered in this work, and hence
this subset generation method form couples of solutions. This is done exhaus-
tively, producing all possible pairs. Let µ be the size of the reference set; then,
the maximum number of pairs produced is λmax = µ(µ− 1)/2. Since the com-
bination method utilized is deterministic, and no duplicates are accepted in
the reference set, it does not make sense to combine again pairs of solutions
that were already coupled before. For this reason, the actual number of pairs
λ generated in a certain step will be always lower or equal than λmax.

3.5 Solution Combination Method

This method is fed with the subsets generated by the previous method, and
produces new trial solutions by combining the information contained in each
of these subsets. Some resemblance can thus be found with the functioning of
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crossover operators in genetic algorithms. Nevertheless, it must be noted that
the latter are almost always based on randomization (there are some excep-
tions though; e.g., see [5];) on the contrary, the use of deterministic solution
combination methods in SS is not rara avis. Such deterministic methods are
often associated with the availability of problem-dependent heuristic rules,
exploitable for combining solutions.

In this work, solution combination is achieved via path relinking (PR). PR
is a strategy that was initially proposed for integrating diversification and
intensification in tabu search. Grosso modo, PR is based on generating a tra-
jectory in the search space. This trajectory starts from a certain solution
(called initiating solution,) and is headed towards another solution or set of
solutions (called guiding solution(s).) This trajectory is constructed by per-
forming moves on the current solution, such that attributes in the guiding
solution are increasingly added, and attributes not in the guiding solution
are increasingly dropped. This differs from classical local search techniques
in which attributes are usually added/dropped at random, and kept only if a
quality increase is attained. PR is not “blind to quality” though, for the move
to be applied is commonly selected as the best (in some problem-specific sense)
among the available ones. Once the trajectory is completed, the output of the
procedure is the best solution found in it. The improvement method can be
applied to this solution and/or to some solutions along the path.

The PR procedure used here is adapted to the tree representation utilized.
Each step consists of swapping and/or transferring leaves between the left
and right branches of a certain subtree. For this process, the corresponding
subtree in the destination tree is taken as reference. Upon completion of the
step, the leaf set in the right and left branches of the former subtree is the
same as in the guiding solution. A more precise and detailed description of
the process can be found in Figures 3 and 4.

As it can be seen, the main procedure is recursive, being initially invoked using
a copy of Tsource as the initial value of Tbest, and sending pointers to the root
of both the source and destination trees. Subsequently, each step rearranges
the leaves of a part of the tree, so that they are relocated in the same relative
position (i.e., left or right) with respect to the roots of the subtrees considered.
A part of this rearrangement is done via swaps. If there are remaining leaves
after the swapping, these are transferred to the corresponding tree, testing
all possible insertion points. This involves evaluating the different tentative
trees generated, a process whose cost is accounted in order to have a valid
estimate of the associated computational overhead. To be precise, since the
cost of evaluating a tree is O(n2) where n is the number of leaves, each time
a subtree with i leaves is evaluated this is accounted as i2/n2 full evaluations.
This is accumulated for the whole path relinking process, and added to the
SS total.
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Path Relinking in Tree Space – Main

Input: three trees Tsource, Tdest and Tbest, and pointers to subtrees S and
S ′ (S ∈ T, S ′ ∈ T ′)
Output: a tree Tbest

(1) if Tsource 6= Tdest then do
(a) Let T be the output of applying the basic step to S and S ′. Replace

S by T in Tsource.
(b) if cost(Tsource) < cost(Tbest) then do

(i) Let Tbest ← Tsource

(ii) Apply improvement method to Tbest.
(c) Apply path relinking recursively to Tsource, Tdest, Tbest, left(T ),

left(S ′).
(d) Apply path relinking recursively to Tsource, Tdest, Tbest, right(T ),

right(S ′).
(2) Output Tbest

Fig. 3. Pseudocode of the path relinking procedure. Input parameters are passed
by reference. This way, left(T ) = left(S′) after the first recursive call. Similarly,
right(T ) = right(S′) (and hence T = S′) after the second recursive call. Finally,
Tbest stores the overall best tree found in the trajectory.

Table 1
Description of the data sets used in the experimentation

M420 M1097 M877 M971 M808

number of taxa 85 107 134 158 178

sequence length 1016 2084 2684 1193 3453

data source [41] [13] [18] [3] [19]

4 Experimental Results

The SS algorithm described in the previous section has been applied to five
data sets comprising real biological data. These have been downloaded from
TreeBASE1, an online repository of publicly available data, and comprise DNA
sequences for a number of taxa ranging from 85 up to 178 (see Table 4 for
details.) The selection of this test suite is intended to cover uniformly a reason-
able range of instance sizes. These are well beyond the tenable limit for exact
techniques such as branch and bound [43]. In all cases, distance matrices have
been computed using the DNADIST program of the Phylip package2. To be
precise, the Kimura 2-parameter model (with default parameterization) has
been used.

The SS algorithm utilized has a reference set of µ = 5 solutions. The initial
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Path Relinking in Tree Space – Basic Step

Input: two trees T and T ′

Output: a tree Tbest

(1) Let L1 ← L(left(T )); let L2 ← L(left(T ′)); let R1 ← L(right(T )); let
R2 ← L(right(T ′))

(2) Let M→ ← R2 ∩ L1; let M← ← L2 ∩R1

(3) for i = 1 : min(|M→|, |M←|) do
(a) Let e (respectively e′) be the ith element of M→ (respectively M←).
(b) Swap e and e′ in T .

(4) Let Tbest ← T
Assume |M→| > |M←| (otherwise change right by left, and |M→| by
|M←| below.)

(5) for i = |M←|+ 1 : |M→| do
(a) Remove ith element of M→ from left(T ).
(b) Let Tbest ← WorstTree
(c) for each insertion point p in right(T ) do

(i) Let Ttrial ← T ; insert ith element of M→ in position p of
right(Ttrial).

(ii) if cost(Ttrial) < cost(Tbest) then do Tbest ← Ttrial

(d) Let T ← Tbest

(6) output Tbest

Fig. 4. The basic step of path relinking. Elements within sets M→ and M← are
assumed enumerated according to their appearance order (from left to right) in T .

population from which the reference set is extracted at the beginning of the
run is composed of λmax = µ(µ−1)/2 solutions. This is also the maximum size
of the offspring population used for updating the reference set in each step.
Whenever all pairs of solutions in the reference set have been mated without
yielding a new improved solution, the reference set is restarted as mentioned
in Section 3.1. The algorithm is run on each instance for a total number of
10, 000n evaluations, where n is the number of taxa. This has been repeated
10 times. The results are shown in Table 3. For comparison purposes, results
for an EA taken from [4], using the PDG operator for recombination, and the
SCRAMBLE operator for mutation (a subtree is selected at random, and its
topology is rearranged) have been included. On the basis of this EA, a MA
using the rotation operators described in Section 3.2 for local improvement is
considered as well.

First of all, results for the three basic agglomerative algorithms, as well as for
the neighbor-joining [37] and Fitch-Margoliash [11] algorithms are shown in
Table 2. As expected, the complete-link algorithm provides much better perfor-
mance for the quality criterion selected than the other approaches. According
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Table 2
Results of the classical heuristics on the data sets used.

M420 M1097 M877 M971 M808

single-link 2.93600 1.26385 53.82255 6.47470 66.51205

complete-link 2.35685 1.01205 10.15965 4.82025 11.58550

average-link 2.50110 1.04855 10.89800 5.15390 12.45225

neighbor-joining 3.44775 1.24985 18.21510 5.46825 38.20275

Fitch-Margoliash 2.63675 1.09675 29.09415 5.91770 31.86065

to the experience with smaller instances (for which the optimal solution can
be calculated,) this value usually lies near the optimum for this evaluation
model.

Subsequently, the results of the population-based metaheuristics are shown in
Table 3. As it can be seen, the MA provides better results than the EA, thus
supporting the usefulness of the rotation operators for local improvement. As
to SS, it is capable of improving the results of the MA, both with static and
dynamic updating of the reference set. This improvement tends to increase
with the number of taxa. To test the significance of these results, a statistical
analysis has been conducted. A Wilcoxon rank sum test (also known as Mann-
Whitney U test) [28] has been used for this purpose. This test does not assume
normality of the samples (as for example t-test does.) In this case, the test
indicates that the difference of SS (both static and dynamic) with respect to
the EA and MA is always significant (at the standard 5% significance level).
The difference of the MA with respect to the EA is always significant as well.
There is no significant difference between the static and dynamic SS.

A final test has been done using no heuristic seeding of the initial population
in the SS algorithm. The results are shown in Table 4. As expected, the re-
sults are inferior to those of SS with seeding, thus confirming the usefulness
of this approach; nevertheless, the algorithm manages to find solutions that
improve those of the complete-link algorithm for all instances considered. The
improvement with respect to the EA and MA is here statistically significant
in all cases too. This confirms the strength of SS for tackling this problem.

A comment must be made regarding the computational cost of the algorithms.
Both basic agglomerative algorithms and neighbor-joining run in the order of
seconds; Fitch-Margoliash is more expensive, running in 1, 2, 8, 18 and 37 min-
utes for each of the data sets respectively (using the KITSCH program of the
Phylip package;) as to SS, it takes 1, 1.5, 3, 4.5 y 12 minutes respectively (all
times have been measured in a P4 – 3.06GHz under Windows XP.) Of course,
SS is an anytime algorithm, and hence the runtime ultimately depends on the
number of evaluations allowed. Notice also that the problem being treated
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Table 3
Results (averaged for ten runs) of SS and MAs on the data sets used.

Evolutionary Algorithm

Problem best mean ± std. dev. worst median

M420 2.5351 2.6464 ± 0.068258 2.7599 2.6351

M1097 1.1185 1.1587 ± 0.030168 1.2028 1.1565

M877 10.5949 10.8158 ± 0.102150 10.9354 10.8696

M971 5.7370 5.8739 ± 0.084978 6.0301 5.8742

M808 12.7490 12.9226 ± 0.099597 13.0566 12.9181

Memetic Algorithm

Problem best mean ± std. dev. worst median

M420 2.5105 2.6118 ± 0.065334 2.7121 2.5998

M1097 1.0944 1.1285 ± 0.020596 1.1711 1.1243

M877 10.4331 10.5885 ± 0.120460 10.8297 10.5488

M971 5.5457 5.7355 ± 0.144330 6.0230 5.6920

M808 12.3868 12.5714 ± 0.144710 12.9144 12.5801

Scatter Search (static update)

Problem best mean ± std. dev. worst median

M420 2.3491 2.3545 ± 0.0028042 2.3565 2.3556

M1097 1.0114 1.0114 ± 0.0000300 1.0115 1.0114

M877 10.1451 10.1528 ± 0.0035985 10.1554 10.1541

M971 4.8049 4.8106 ± 0.0035018 4.8164 4.8100

M808 11.5306 11.5396 ± 0.0078184 11.5505 11.5362

Scatter Search (dynamic update)

Problem best mean ± std. dev. worst median

M420 2.3491 2.3526 ± 0.0026863 2.3565 2.3514

M1097 1.0114 1.0114 ± 0.0001200 1.0117 1.0114

M877 10.1485 10.1521 ± 0.0028947 10.1584 10.1516

M971 4.8040 4.8123 ± 0.0058375 4.8201 4.8134

M808 11.5247 11.5415 ± 0.0105120 11.5612 11.5438
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Table 4
Results (averaged for ten runs) of SS using no seeding of the population.

Scatter Search (static update)

Problem best mean ± std. dev. worst median

M420 2.3499 2.3612 ± 0.0093405 2.3819 2.3587

M1097 1.0114 1.0158 ± 0.0026709 1.0216 1.0153

M877 10.1498 10.1886 ± 0.0413960 10.2910 10.1774

M971 4.7958 4.8575 ± 0.0408930 4.9603 4.8487

M808 11.5834 11.6542 ± 0.0647910 11.7507 11.6333

Scatter Search (dynamic update)

Problem best mean ± std. dev. worst median

M420 2.3491 2.3708 ± 0.0410160 2.4914 2.3559

M1097 1.0114 1.0155 ± 0.0030815 1.0205 1.0157

M877 10.1433 10.1877 ± 0.0555530 10.3339 10.1622

M971 4.8027 4.8240 ± 0.0134950 4.8415 4.8258

M808 11.5663 11.6523 ± 0.0675720 11.7491 11.6320

does not require real-time response, and therefore these times are perfectly
acceptable (notice for example that the time required for pre-processing se-
quences and computing the distance matrix can be similar or longer than these
times.)

5 Conclusions

The main objective of this work has been analyzing the competitiveness of SS
for phylogenetic inference. With regard to this, the results must be considered
satisfactory, since both EAs/MAs and classical heuristics could be beaten. The
difference with respect to the complete-link algorithm is not large, but recall
that the later is known to be of high quality. Notice also that some biologically-
relevant changes in the tree topology may lead to just small changes in the
total tree weight. At any rate, it must be stressed that finding a collection
of high-quality, biologically-realistic phylogenetic trees is very important to
ground further analysis, e.g., for building consensus trees [20]. To this end, SS
constitutes a practical approach for improving raw solutions provided by this
or other heuristics.

It is interesting to notice the fact that the SS algorithm presented does not use
randomization except for generating the initial population, and restarting the
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reference set. The deterministic strategies presented here worked well on these
data instances. Of course, by no means this implies that randomization plays a
minor role, for these diversification phases are essential for the performance of
the algorithm. Actually, the algorithm presented could be somehow considered
as a hybrid of MA and SS (the diversification phase realized for restarting the
reference set can be viewed as a memetic generational step.) In this sense, this
approach combines ideas from both worlds with very encouraging results.

There are many lines for future developments. On one hand, multi-tier strate-
gies for managing the reference set can be tried. This raises the issue of select-
ing appropriate measures for evaluating diversity in this context. Regarding
this, some distance measures on trees have been defined in the literature –e.g.,
the Robinson and Foulds metric [35], quartet distance [9], etc.– and could be
used for this purpose. Other lines for future work can be found in the use
of different improvement operators. As mentioned in Section 3.2, alternative
tree neighborhoods have been defined in the literature. It may be interesting
to test the performance of SS with a different improvement method, and even
consider the possibility of using simultaneously a number of different methods.
Preliminary results indicate that these trajectory-based improvement methods
may be not competitive with population-based metaheuristics as stand-alone
techniques in the particular context presented in this work (although they
have provided good results in a parsimony-based context [1].) Nevertheless,
their integration within SS might be fruitful.
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