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Abstract. Mastermind is a well-known board game in which one player
must discover a hidden color combination set up by an opponent, using
the hints the latter provides (the number of places –or pegs– correctly
guessed, and the number of colors rightly guessed but out of place in
each move). This game has attracted much theoretical attention, since it
constitutes a very interesting example of dynamically-constrained combi-
natorial problem, in which the set of feasible solutions changes with each
combination played. We present an evolutionary approach to this prob-
lem whose main features are the seeded initialization of the population
using feasible solutions discovered in the previous move, and the use of an
entropy-based criterion to discern among feasible solutions. This crite-
rion is aimed at maximizing the information that will be returned by the
opponent upon playing a combination. Three variants of this approach,
respectively based on the use of a single population and two cooperating
or competing subpopulations are considered. It is shown that these vari-
ants achieve the playing level of previous state-of-the-art evolutionary
approaches using much lower computational effort (as measured by the
number of evaluations required).

1 Introduction

Mastermind is a board game that has enjoyed world-wide popularity since the
70s, when its current design was put forward (antecedents can be traced back to
traditional puzzles such as bulls and cows or AB [1] though). Roughly speaking,
Mastermind is a two-player code-breaking game, or in some sense a puzzle, since
one of the players –the codemaker (CM)– has no other role in the game than
providing a hidden combination, and automatically providing hints on how close
the other player –the codebreaker (CB)– has come to guess this combination.
More precisely, the functioning of the game is as follows:

– The CM sets a length ℓ combination of κ symbols. Therefore, the CB is
faced with κℓ candidates to be the hidden combination. This combination
is typically represented by an array of pegs of different colors. We will use
uppercase letters to denote these colors.



– The CB tries to guess this secret code by producing a combination with the
same length and using the same set of symbols as the secret code. As a re-
sponse to this move, the CM provides information on the number of symbols
guessed in the right position (black pegs in the physical board game), and
the number of symbols in an incorrect position (white pegs).

– The CB uses this information to produce a new combination, that is assessed
in the same way. If he correctly guesses the hidden combination in at most
N attempts, the CB wins. Otherwise, the CM takes the game.

There exist other variants of the game in which more information is provided
(i.e., which –rather than how many– symbols are correctly guessed and/or are
out of place), additional constraints are enforced on the hidden combination
(e.g., not allowing repeated symbols in the secret code, as in bulls and cows,
thus reducing the search space), or even allowing the CM to change the code
during the game in a way that is compatible with previous moves (this variant is
aimed to exploit any bias the CB may have when selecting the next combination
played, such as preferring certain symbols over others).

As mentioned before, the game is asymmetrical in the sense that the CM has
no freedom of move after setting up the hidden combination (at least in static
variants of the game in which the hidden combination does not change), and
therefore the CB does not have to outsmart the CM, but he has to put his own
analytical skills at play to determine the course of action given the information
available at each step. The resulting combinatorial problem is enormously inter-
esting, as it relates to other generally called oracle problems such as circuit and
program testing, differential cryptanalysis, uniquely identifying a person from
queries to a genetic database [2] and other puzzle-like games and problems –
check also [3]. It is also a complex problem, which has been shown to be NP-
complete under different formulations [4, 5], for which several issues remain open,
e.g., what is the lowest average number of guesses needed to solve the problem
for any given κ and ℓ. Associated to this, there arises the issue of coming up
with an efficient mechanism for finding these guesses in any particular case. To
this end, several attempts have been made to use evolutionary algorithms (EAs)
for exploring the space of feasible (meaning here compatible with the available
information) combinations, e.g., [6–8].

Most evolutionary approaches presented for this problem are based on pro-
viding the CB with a set of potential combinations among which he has to select
his next move. This decision-making process is very important, since although
all potential candidates may be compatible with the information available, the
outcome of the move can be very different, ranging from minimal reductions
in the set of potential solutions, to a major pruning of the search space. Sev-
eral metrics have been defined for this purpose. We consider here the use of an
entropy-based criterion, which is further introduced in the fitness function to
guide the search, and provide a variable-size, high-quality set of potential can-
didates. We show that this approach, combined with the seeded initialization of
the population can result in a large reduction in the computational effort of the
EA, with respect to other evolutionary approaches described in the literature.



2 Background

This section provides a brief overview of the problem, presents its classical for-
mulation, and discusses how it has been tackled in the literature.

2.1 Formulation

As mentioned in Sect. 1, a Mastermind problem instance is characterized by
two parameters, namely the number κ of colors and the number ℓ of pegs. Let
Nκ = {1, 2, · · · κ} be the set of symbols used to denote the colors. Subsequently,
any combination, either the hidden one or one played by the CB, is a string
c ∈ Nℓ

κ. Whenever the CB plays a combination cp, a response h(cp, ch) ∈ N2 is
obtained from the CM, where ch is the hidden combination. A response ⟨b, w⟩
indicates that the cp matches ch in b positions, and there exist other w symbols
in cp present in ch but in different positions.

A central notion in the context of the game is that of consistency. A com-
bination c is consistent with a played combination cp if, and only if, h(c, cp) =
h(cp, ch), i.e., if c has as many black and white pegs with respect to the cp as cp
has with respect to the hidden combination. Intuitively, this captures the fact
that c might be a potential candidate to be the hidden combination in light
of the outcome of playing cp. We can easily extend this notion and denote a
combination c as consistent (or feasible) if, and only if, it is consistent with all
combinations played so far, i.e.,

h(c, cip) = h(cip, ch) 1 6 i 6 n (1)

where n is the number of combinations played so far, and cip is the i−th combina-
tion played. Any consistent combination is a candidate solution. It is straightfor-
ward to see that the number of feasible solutions decreases with each guess made
by the CB (provided he always plays feasible solutions). By the same token, the
feasibility of a candidate solution is a transient property that can be irreversibly
lost upon obtaining further information from the CM. This turns out to be a
central feature in the strategies devised to play Mastermind, as shown next.

2.2 Game Strategy

Most naive approaches to Mastermind play a consistent combination as soon as
one is found. An example of such an approach within an evolutionary context
was proposed by Merelo et al. [3]. While this can constitute a simple and fast
strategy early in the game (when there are many feasible combinations left), and
is ensured to find eventually the hidden combination, it is a poorly performing
strategy in terms on the number of attempts the CB needs to win the game.
Indeed, unless some bias is introduced in the way solutions are searched, this
strategy reduces to random approach, as solutions found (and played) are a
random sample of the space of consistent guesses. It is also highly inefficient in
the last stages of the game (when there are very few –maybe just one– feasible



solutions), since a large part of the feasible space has to be examined to find a
feasible solution. We will return to this latter issue later on.

One of the reasons behind the poor performance of these naive strategies was
anticipated in Sect. 2.1: the feasibility of a solution can vanish upon receiving
feedback from the CM. Thus, a sensible strategy would try to take this into
account when selecting the next move. More precisely, the CB would like to
play a feasible combination that –were it not the hidden one– left him in the
best position in the next move. This leads to a generic framework for defining
Mastermind strategies in which (1) a procedure for finding a large set (even a
complete set) Φ of feasible combinations is firstly used, and (2) a decision-making
procedure to select which combination c ∈ Φ will be played is then used.

Regarding the decision-making procedure, its purpose must be to minimize
the losses of the CB, putting him in the best position for the next move. This is
substantiated in reducing the number of feasible solutions as much as possible,
and hence that the set of available options in the next step is minimal. However,
it is obvious that the reduction in the number of feasible solutions attainable by
a certain guess depends on the hidden combination which is unknown. Therefore,
any strategy based on this principle must rely on heuristics. To be precise, let
us consider the concept of partitions (also called Hash Collision Groups, HCG
[1]) defined as follows:

1. Let Φ be the set of feasible solutions available.
2. Let Ξ be a |Φ| × (ℓ+ 1)× (ℓ+ 1) all-zero matrix.
3. for each {ci, cj} ⊆ Φ do

(a) ⟨b, w⟩ ← h(c1, c2).
(b) Ξibw ← Ξibw + 1
(c) Ξjbw ← Ξjbw + 1

Notice that each combination ci has a partition matrix Ξi[·,·], indicating how it
relates to the rest of feasible solutions. Notice also that after playing combination
ci and obtaining response ⟨b, w⟩, entry Ξibw indicates how many solutions in
Φ remain feasible. Most approaches to Mastermind use the information in this
matrix to select the next combination played, typically using some kind of worst-
case or average-case reasoning. This idea was introduced by Knuth [9], whose
algorithm tries to minimize the worst case by following the strategy of minimizing
the worst expected set size, i.e., let η(ci, Ξ) = max{Ξibw | b, w 6 ℓ}, then
cp = min−1{η(ci, Ξ) | ci ∈ Φ} (ties are broken by lexicographical order). Using
a complete minimax search Knuth shows that a maximum of 5 guesses (4.478
on average) are needed to solve the game using this strategy for κ = 6, ℓ = 4.

2.3 Related work

The path leading to the most successful heuristic (non-evolutionary) strategies
to date include minimization of the worst case [9] or average case [10], or maxi-
mization of entropy [11, 12] or number of partitions [13]. We defer to next section
a more detailed description of the use of entropy, which has been the strategy
chosen in this work.



EAs that try to solve this problem have also historically proceeded more or
less in the same way. After using naive strategies that played the first combi-
nation found [6], using suboptimal strategies with the objective of avoiding the
search to be stuck [7], or even playing the best guess each generation in a policy
that resulted in a fast and very bad solution to the puzzle [14, 15]. However, it
was not until recently when Berghman et al. [8] adopted the method of partitions
to an EA. The strategy they apply is similar the expected size strategy.

The use of the information in Ξ can be considered as a form of look-ahead,
which is computationally expensive and requires the availability of set Φ. Notice
however that if no look-ahead is used to guide the search, any other way of rank-
ing solutions (i.e., any mechanism that analyze solutions on an individual basis)
might find solutions that were slightly better than random, but not more. In any
case, it has been shown [16] that in order to get the benefit of using look-ahead
methods, Φ need not be the full set of feasible solutions at a certain step: a
fraction of around one sixth is enough to find solutions that are statistically in-
distinguishable from the best solutions found. This was statistically established,
and then tested in an EA termed EvoRank [17], where the most-partitions strat-
egy was used. Solutions were quite competitive, being significantly better than
random search and also similar to the results obtained by Berghman et al., but
using an smaller set size and a computationally simpler strategy.

The strategy presented in this paper provides two fundamental steps beyond
this previous work. On one hand, the use of an entropy-based fitness function and
guided initialization reduces the computational effort required by the algorithm.
On the other hand, it is shown that not fixing in advance the size of the set Φ
(and thus letting the algorithm use limited computational resources to find a set
as large as possible but without any lower bound on its size) does not penalize
performance. This indicates the EA can be run on a fixed computational budget,
rather than until completing a large enough set Φ.

3 Entropy-Driven Approaches

The general framework used in this work is depicted in Algorithm 1. An EA plays
the role of the CB, selecting a combination to be played at each step on the basis
of (i) past guesses and their outcomes, and (ii) the set of feasible solutions found
in the previous step. In the first step no previous information is available, and
all combinations are potentially the hidden one with equal probability. Hence, a
fixed guess is made in this case.

The EA handles a population of candidate combinations. This population is
initialized using the feasible solutions found in the previous step. More precisely,
random sampling with replacement is used to select the initial member of the
population from the set of known feasible solutions. Notice that this set is prob-
ably not exhaustive, since the EA is not guaranteed to have found all feasible
solutions in the previous move. Furthermore, many of these feasible solutions will
no longer be feasible in light of the outcome of the last move. In any case, using
this set as a seed provides the EA with valuable information to focus the search



Algorithm 1: Outline of the evolutionary Mastermind approach

1 typedef Combination: vector[1..ℓ] of Nκ;

2 procedure Mastermind (in: ch: Combination, out: guesses, evals: N);
3 var c: Combination;
4 var b, w, e: N;
5 var P : List[⟨Combination,N2⟩] ; // game history

6 var F : List[Combination] ; // known feasible solutions

7 evals← 0; guesses← 0; P ← [] ; // initialize game

8 repeat
9 guesses← guesses+ 1;

10 if guesses = 1 then // initial guess

11 c← InitialGuess(ℓ, κ);
12 F ← [];

13 else
14 RunEA (↓ P , ↕ F , ↑ c, ↑ e) ; // run the EA

15 evals← evals+ e ; // update cummulative number of evaluations

16 end if
17 ⟨b, w⟩ ← h(c, ch) ; // current guess is evaluated

18 played.Add(⟨c, ⟨b, w⟩⟩) ; // game history is updated

19 until b = ℓ;

towards the new feasible region of the search space, which will likely intersect
with the known feasible set (and ideally would be a subset of the latter).

Solutions can be manipulated using standard reproductive operators for re-
combination and mutation. The fitness function is responsible for determining
the feasibility of a given combination given the currently available information.
Every feasible solution discovered during this run of the EA is kept in a secondary
population for post-processing after the run finishes. This post-processing is
aimed to select the single combination that will be played in the next move. The
procedure used for this purpose is analogous to that used for fitness assignment,
so let us firstly describe the latter.

As mentioned in Sect. 2.3, entropy is used as a quality indicator to optimize
the status of the game after the guessed combination is played. To be precise,
the fitness function firstly scans the population to divide the population in two
groups: feasible solutions and infeasible ones. Infeasible solutions are assigned a
fitness value (to be maximized) that indicates its closeness to feasibility. This
is done by computing the Manhattan distance between the score h(c, cip) the

solution obtains against the i-th combination played, and the score h(cip, ch) the
latter obtained against the hidden combination. This distance is summed over
all previously played combinations, normalized by dividing by the maximum
possible distance, and deducted from 1.0. This way, the closer (from below) the
fitness is to 1.0, the closer to feasibility the solution is.

Feasible solutions have thus a fitness equal to 1.0, and receive a bonus based
on entropy. To this end, the partition matrix Ξ is computed on the basis of the



feasible solutions contained in the current population. Subsequently, the entropy
Hi(Ξ) of each combination is computed as:

Hi(Ξ) = −
∑

06b,w6ℓ

pi(b, w|Ξ) log pi(b, w|Ξ) (2)

where pi(b, w|Ξ) = Ξibw/
∑

06b′,w′6ℓ Ξib′w′ . The underlying the idea of using this
entropy measure is to reward feasible solutions tending to produce a uniform par-
tition of the feasible search space, hence minimizing the worst-case scenario. This
procedure can be also regarded as a way of maximizing the average information
returned by the CM once the combination is played. The actual selection of
this combination is done after the EA terminates, using the procedure described
above on the set of feasible solutions discovered in the run.

Three variants of the EA described above have been considered, each one
using a different population management strategy. The first one is an EA that
follows the procedure above on a single population. We will denote this algo-
rithm as eGA. Secondly, we have considered a version of the algorithm in which
the population is divided in two equal-size tiers A and B; partitions (and subse-
quently entropy) are computed in a crossed way, i.e., determining how solutions
in tier A compare to solutions in tier B and vice versa. The rationale is to preclude
(or at least hinder) the appearance of endosymbiotic relationship (the popula-
tion evolving to maximize entropy internally, but not globally). This co-evolving
variant is denoted as eGACo. Finally, a third variant is considered analogously
to eGACo, but having combinations in tier B trying to minimize (rather than
maximize) the entropy of combinations in tier A. This can be regarded as com-
petitive co-evolution [18], aimed to provide a constant thrust in the search of
new feasible solutions. We denote this competitive variant as eGACm.

4 Experimental results

The evolutionary approaches considered use a population of 50 solutions (divided
in two subpopulations of 25 solutions in the case of eGACo and eGACm), bi-
nary tournament selection, one-point crossover (pX = .9), random-substitution
mutation (pm = 1/ℓ), and an elitist generational replacement policy. The algo-
rithms are run for a minimum number of 500 evaluations in each move. If no
feasible solution is in the (sub)population(s) at this point, the algorithm keeps
on running until one is found.

The experiments have been performed on two Mastermind problems, namely
the classical version defined by ℓ = 4 pegs and κ = 6 colors, and a harder version
involving the same number of pegs but more colors (κ = 8). In both cases a
problem-generator approach has been considered: 5,000 runs of each algorithm
have been carried out, each one of a randomly generated instance (i.e., hidden
combination). To maximize the breadth of the benchmark, instances have been
generated so that any instance in the test set is used at most once more that
any other existing instance.



Table 1. Comparison of the evolutionary approaches with random (R) and seeded (S)
initialization. Underlined results are statistically significant.

eGA eGACo eGACm
played evals played evals played evals

κ = 6 R 4.489 ± .011 1872 ± 10 4.448 ± .011 2315 ± 24 4.425 ± .011 2252 ± 20
S 4.438 ± .011 1792 ± 9 4.439 ± .011 1977 ± 14 4.425 ± .011 1982 ± 15

κ = 8 R 5.279 ± .013 2501 ± 20 5.207 ± .013 3456 ± 51 5.207 ± .013 3465 ± 50
S 5.240 ± .013 2348 ± 19 5.222 ± .013 2804 ± 38 5.207 ± .013 2810 ± 37
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Fig. 1. Results for κ = 6 colors and ℓ = 4 pegs. (a) Mean number of guesses required.
The error bars indicate the standard deviation of the mean. (b) Distribution of the
number of evaluations required.

The first set of experiments is devoted to test the impact of the seeded
initialization of the population. For this purpose, the algorithms are run both
using random initial populations and seeded initialization. The results are shown
in Table 1. As it can be seen, there is no remarkable difference in the mean
number of guesses required, but the computational effort is clearly better (with
statistical significance at 0.05 level using a Wilcoxon signed rank test).

Subsequently, the eGA* variants are compared with EvoRank, a state-of-
the-art algorithm for this problem, on the same set of instances. The results of
the comparison are shown in Figs. 1 and 2. Notice all algorithms perform very
similarly in number of guesses for κ = 6 (statistically not significant results).
EvoRank seems to be slightly better for κ = 8, but note that the difference is
only statistically significant for eGA and eGACo, and there is no statistically
significant difference between eGACm and EvoRank (p-value=.18). The situation
is different in the case of the number of evaluations required: all eGA* variants
are much computationally cheaper than EvoRank (with statistical significance).
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Fig. 2. Results for κ = 8 colors and ℓ = 4 pegs. (a) Mean number of guesses required.
The error bars indicate the standard deviation of the mean. (a) Distribution of the
number of evaluations required.

Among eGA* variants, the computational cost of eGA* is significantly lower
than that of eGACo and eGACm for κ = 6 and κ = 8.

5 Conclusions and Future Work

Mastermind is a prime example of dynamically constrained problem which of-
fer an excellent playground for optimization techniques. We have presented a
new evolutionary approach for this problem in which in addition to the hard
constraint of consistency with previous guesses, solutions are also evaluated in
terms of maximizing the information potentially returned by the CM. Seeded
initialization of the population with feasible solutions for the previous move
turns out to be an important ingredient for reducing the computational effort of
the algorithm. As a result, it can perform at state-of-the-art level, at lower cost
than other algorithms. This also indicates that entropy-guided construction of a
variable-size feasible set Φ is competitive against other procedures that impose
a lower bound on the size of this set. We believe this feature will be increasingly
important for larger problem instances, where the search space is vaster and
feasible candidate configurations can be sparsely distributed.

As an avenue for further research, the scalability of the approach will be
tested on larger instances. It will be also interesting to test whether heuristics
tricks, such as using endgames, that is, deterministic or exhaustive search meth-
ods when certain situations arise, would enhance the algorithms, and in which
way (search effort and average number of combinations played).
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