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Abstract Whenever a mass casualty disaster takes place, the medical infras-
tructure available has to deal with a surge in the number or patients severely
ill or injured. Using triage methods casualties have to be prioritized to receive
health care in a limited-resource scenario. Aiming to do the greatest good to
the greatest number of people, it has to be determined how to make the best
use of these resources. This constitutes a very complex task that has to con-
sider issues such as the current number of casualties, their lifetime expectancy,
their resource consumption, etc. We approach this task within the framework
of the pilot method and hyperheuristics. We show how these metaheuristics
can effectively manage a number of simpler heuristics, providing improved re-
sults on an ample set of simulated problem scenarios. An exhaustive empirical
evaluation analyzes the influence on performance of factors such as the total
number of casualties, the severity of their medical condition, the treatment
time, the number of resources available, or the number of triage classes.

Keywords Mass casualty incident · Triage · Hyperheuristics · Pilot method

1 Introduction

A disaster is a catastrophic event that seriously disrupts the normal function-
ing of society at a scale which may vary depending of its magnitude [1]. In the
aftermath of a disaster, society has to cope with the damage infringed, both
from the material and the humanitarian perspective. The latter is actually one
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of the most tragic aspects of a disaster, and dealing with it can undoubtedly
constitute a major challenge: a quick response is needed to deliver humani-
tarian relief and appropriate medical care to the victims of the disaster, in a
scenario in which basic infrastructures for communication and transportation
may be greatly affected. Needless to say, this involves being able to manage
adequately all available resources [2], in particular when these are scarce with
respect to the number of casualties and the severeness of their injuries.

Among the numerous problems arising in a situation as described – involv-
ing transportation logistics [3], medical routing [4], facility location [5] etc. –
we will focus on the decision-making underlying the distribution of medical
care to casualties. In this sense, mass casualty disasters require a paradigm
change from the standard approaches to emergency room care in which avail-
able medical resources are not overwhelmed by the sporadic arrival of casual-
ties [6]. Quite on the contrary, in a mass casualty scenario health care demand
typically exceeds hospital resources (e.g., imaging devices, life-support sys-
tems, operating rooms, etc.). It is thus crucial to make the most effective use
of these limited resources.

The term triage is used to denote the mentioned decision-making pro-
cess for distributing medical resources among patients [7–9]. Roughly speak-
ing, triage involves sorting patients in different categories according to their
medical condition, and prioritizing treatment among them. A more detailed
overview on triage methods will be provided in Section 2. A recurrent theme
in triage systems is ensuring the maximal benefit from the limited medical
resources [10]. We approach this problem from an utilitarian perspective in
which the goal is attaining the greatest good for the greatest number of peo-
ple [11, 12]. More precisely, we consider the problem of prioritizing patients in
order to maximize the expected number of survivors. This is done on the basis
of available information on survival probabilities and how these change over
time for each patient category. This problem will be formalized in Section 3.1.

We approach this patient prioritization problem via metaheuristics. To the
best or our knowledge, this constitutes a novel application domain for these
techniques; to be precise we consider hyperheuristics [13–16] and the pilot
method [17–19]. These techniques will exploit heuristics recently defined for
scheduling impatient jobs [20], and will be described in Section 3.3. We have
conducted an extensive experimental evaluation of these techniques on a large
number of simulation scenarios intended to capture mass casualties incidents
of different severity. Given the nature of the problem, any gain that can be
attained –even if small– is very valuable. As it will be shown in Section 4, this
is generally the case for metaheuristics, which compare favorably in general
to existing heuristic policies. The results also provide some insights on the
sensitivity of these heuristics to different features of the disaster scenarios (e.g.,
number of resources available, severity of patient conditions, overall number
of patients, etc.). This information yields useful hints on the strengths and
limitations of each technique.
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2 Background and Related Work

As mentioned in Section 1, when a mass casualty incident (MCI) takes place
there is a sudden and serious disproportion between the resources required
by the casualties and the resources that are available. Focusing on critically
ill or injured patients, a surge in their number in the aftermath of a MCI
will overwhelm the capacity of hospitals and critical care units, decreasing
their response capability [21]. In this context, the notion of surge capacity is
precisely defined as the ability to cope with a sudden, unexpected increase in
patient volume beyond the present capacity of the facility [22].

Even though most medical facilities have a certain surge capacity, peak
demand of limited resources (X-ray devices, mechanical ventilators, operating
rooms, etc.) will lead to dramatic situations in which these resources must
be rationed and directed to patients who will benefit most from them [12].
In this scenario, the needs of the community as a whole stand above those of
individuals considered in isolation. The implications of this change of paradigm
are manifold, and include the temporary adjustment of the standard of care
for all patients [23], directing resources to patients to whom these will be most
effective. The process of sorting and prioritizing patients is termed triage.

Leaving aside the profound ethical issues surrounding triage in the after-
math of a MCI [24–26], its actual technical implementation is complex. Cur-
rently, there are about a dozen mass-casualty triage systems in use around
the world [27]. These triage methods sort patients into groups according to a
certain number of medical indicators (pulse rate, breath status, etc.). For ex-
ample, one of the most commonly used systems is the Simple Triage And Rapid
Treatment (START) system [28]. This system is aimed at providing rescuers
with the ability of classifying patients in less than 60 seconds into four classes:
green (delayed care), yellow (urgent care), red (immediate care), black (‘expec-
tant’ or dead). Other triage systems may differ in the set of medical variables
considered, or in the resulting patient groups (e.g., adding a blue/violet class
for likely expectant patients). For a comparative of triage methods, the reader
is referred to [29].

Triage does not end with the classification of patients into groups as sketched
above. Actually, that is just the first step of the process, which can be described
as field triage or primary triage. Further re-examination and prioritization can
take place at different points of the medical care chain, such as at hospital ar-
rival or at the intensive care unit level. With the goal of distributive justice
in mind, patient prioritization may not necessarily equate to the severeness of
their medical condition though. Certainly, less severely injured patients can
better tolerate delays and/or some degree of suboptimal care [30] (the princi-
ple of ‘minimal acceptable care’ [31]). Likewise, START expectant category is
meant to leave out of further consideration those patients who will not survive
even with maximal resuscitative effort [27] (of course, such patients are enti-
tled to receive palliative treatment and comforting measures to preserve their
dignity). However, in some cases it has been suggested that priority should
be given to moderate severity patients rather than to those of the greatest
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severity [6]. Such a decision is motivated by the different profile of resource
consumption by patients in different groups – check, e.g., [32].

Health care officials thus face complex decisions that need to be addressed
not just considering the criticality of patient conditions, but also the number
of patients –and their corresponding health status– in need of using the same
medical resources [23, 33]. This issue has been recently addressed by Argon et
al. [20], by analyzing the conditions in which a state-independent policy (i.e.,
a policy that does not take into account the number of patients in each triage
class) can be optimal. They consider a single-server system (that is, one single
resource used in mutual exclusion and non-preemptively by waiting patients,
e.g., an operating room). It is shown that if patients can be ordered such that
those in a most urgent life-threatening situation also require less time to be
serviced, then the optimal policy will give priority to these. However, in a most
typical scenario in which patients of greatest severity also require longer use
of the server, the optimal policy has a complex structure that depends on the
system state. In a scenario in which both lifetimes and operation times are
exponentially distributed the system is memoryless. Hence the optimal pol-
icy is time-independent and only needs to consider the number of patients in
each triage class. In a more general (and realistic) situation in which lifetimes
follow a different distribution (e.g., Weibull [34]), time is however a defining
characteristic of the system state as well, thus greatly increasing the complex-
ity of the problem. This can be further aggravated if there are more than one
shared resource –e.g., multiple operating rooms– as we will consider here. In
this context, we pose the use of two metaheuristic approaches –hyperheuristics
and the pilot method– to approach this prioritization problem. These meta-
heuristics will use as internal lower level heuristics both state-independent and
state-dependent heuristics defined in the literature [20, 35].

3 Solving the Patient Prioritization Problem

In order to tackle the problem outlined before, let us firstly formulate it in
a more precise way. Subsequently, we will describe some heuristics for the
problem that will pave the way to define our metaheuristic approaches.

3.1 Problem Formulation

As mentioned in Section 2, field triage methods classify casualties into one of
several groups on the basis of a quick assessment of several health variables.
We assume this classification clusters patients into tiers c1, · · · , ck, such that
ci patients have a more critical condition than those of cj , j > i. Such criti-
cality is modelled by means of a lifetime expectancy, which we assume to be
Weibull-distributed. The Weibull distribution is commonly used in survival
analysis to model the lifetime of individuals or the time-to-failure in mechan-
ical devices [36]. One of the most salient features of the Weibull distribution
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is the fact that it allows generalizing the exponential distribution: while the
latter corresponds to a constant hazard rate (hence the memoryless property),
the Weibull distribution can model an increasing, constant, or decreasing haz-
ard rate depending on a certain shape parameter αi. We consider αi > 1 and
therefore the hazard rate increases with time, in accordance to the aggravated
state of casualties pending medical treatment. In this case, the mean lifetime
is given by βiΓ (1 + 1/αi), where Γ (·) is the gamma function and βi is the
scale parameter. As to service times, which we will refer to as operation times
henceforth, we consider two scenarios. We will initially consider patients in
each class ci require a deterministic time τi to be treated. While simplified,
this assumption is however consistent with a ‘damage control’ situation, in
which rapid and abbreviated care is given in the operating room until the
MCI overload recedes [6]. In such a situation, operation times may not greatly
fluctuate. In any case, we also analyze a second scenario in which operation
times are stochastic. To be precise, our model considers that any operation
needs a minimum time τi, and can have an excess time which for simplicity is
assumed to be exponentially-distributed with parameter 1/(ηiτi), where ηi is
an additional class parameter.

Given the above parameters the objective is to take decisions online, to
determine from which class the next patient to be operated will be taken,
so as to finally maximize the number of patients treated – or equivalently, to
minimize the number of patients dead while waiting for treatment. We assume
that there are % identical operating rooms available, and therefore decisions
are taken any time one of these operating rooms becomes available.

3.2 Basic Heuristics

Heuristics for patient prioritization can be classified as state-dependent and
state-independent. The latter are arguably simpler, since they only consider
the lifetime estimates and operation times, but not the number of patients in
each class. Among these, we have considered the following:

– Time Critical First (TCF): each time t a decision has to be taken, classes
are sorted according to decreasing values of their updated abandonment
rates ri(t) (the abandonment rate being the reciprocal of the mean remain-
ing lifetime). Subsequently, a patient of the first non-empty class is taken.
Following [20], updated abandonment rates are computed as follows:

ri(t) =
αie
−t′

βiΓ (1/αi, t′)
(1)

where t′ = (t/βi)
αi , and Γ (a, b) =

∫∞
b
ua−1e−udu is the incomplete gamma

function.

– The rµ heuristic: this heuristic is due to [35], and sorts classes by decreasing
values of riµi, where ri is the updated abandonment rate computed at time
t as before, and µi is the service rate (the reciprocal of τi).
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In addition to these heuristics, two state-dependent policies defined in [20]
are considered:

– Triangular heuristic (T): considering a two-class problem, the T heuristic
gives priority to class c1 if

(x1 − 1)r1 + x2r2
µ1

6
x1r1 + (x2 − 1)r2

µ2
(2)

where ri, µi are defined as above, and xi is the number of patients in ci.
This heuristic is termed triangular because Eq. (2) –along with x1, x2 > 0
(otherwise no heuristic decision is required)– defines a right triangle in
(x1, x2)-space. Note that this heuristic can be regarded as a greedy selection
procedure picking the class that minimizes the mean number of impatient
deaths during operation. We have therefore generalized it to scenarios with
more than two classes as selecting the class i that minimizes di given by:

di =
1

µi

−ri +
∑
j

xjrj

 . (3)

This quantity can be actually seen as the mean number of impatient deaths
in all classes when a patient from class i is taken to the operation room.

– Rectangular heuristic (R): related to the previous heuristic, this policy
assumes r1 > r2 and µ1 < µ2, and defines two threshold values:

T1 =
µ2(r1 − r2)

r1(µ2 − µ1)
and T2 =

µ1(r1 − r2)

r2(µ2 − µ1)
. (4)

T1 (resp. T2) is obtained by plugging x1 = T1 and x2 = 1 (resp. x1 = 1,
x2 = T2) in Eq. (2) and solving it as an equality, hence obtaining the
coordinates of the endpoints of the triangle hypotenuse. Class c1 patients
are selected if, and only if, 1 6 x1 6 T1 and 1 6 x2 6 T2 (thus defining
a rectangle in (x1, x2)-space by doubling the triangle defined by the T
heuristic; this simple structure is an advantage of this heuristic). Note that
unlike the T heuristic, the R heuristic is not directly generalizable to more
than two patient classes.

These heuristics have been used as low-level heuristics (LLH) in the meta-
heuristic approaches defined next.

3.3 Metaheuristics Approaches

The basic heuristics defined in the previous section provide fast yet in general
myopic decision procedures. In order to alleviate the ‘locality’ of the decision-
making procedure and obtain globally better solutions we need to add a meta-
heuristic layer to provide higher-level guidance and escape from greedy traps.
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We have approached this using both hyperheuristics [13–16] and the pilot
method [17–19].

Starting with the latter, the pilot method can be defined as a tempered
greedy method [18, 19] that looks ahead by using a LLH as pilot, that is,
to obtain an objective-value test of the goodness of each possible choice. To
describe the deployment of this method on the prioritization problem, let
us consider any prioritization policy Ξ (such as any of those described in
the previous subsection) be defined as a function Choice−Ξ(x,P, t). This
function takes as parameters the whole system state: the number of patients x
in each class, the distribution parameters P defining each class, and the times
t at which each of the operating rooms will be available. Regarding the latter,
these times are known in advance in the first scenario in which operation times
are deterministic; in the second scenario in which these times are stochastic,
an approximation can be used (we consider the minimum operating time τi
as an optimistic estimation in this case). This function returns the class index
from which a patient must be picked, given the system state that is passed as
input.

Now, let Update(x,P, t, j) be a procedure that assumes that at time tγ ,
where γ = arg min{ti | 1 6 i 6 %} a patient from class j is taken to the operat-
ing room, and updates the system state accordingly. This involves updating the
time the corresponding operating room will be available again (tγ ← tγ + τj),
decreasing by one the number of patients in class j, and recomputing the
expected number of survivors in each patient class by the time t′ the next
operating room becomes available. For Weibull-distributed survival times, the
probability of a patient surviving up to time t1 given that he survived up to
time t0 is

p(t0, t1, α, β) = e−[(t1/β)
α−(t0/β)α] (5)

where α and β are respectively the shape and scale parameters as mentioned
in the previous section. The expected number of survivors is then computed by
multiplying the actual number of patients in each class by their survival prob-
ability (calculated using t0 = tγ , t1 = t′, and the corresponding distribution
parameters), rounding to the nearest integer.

Finally, let Construct−Ξ(x,P, t) be a function that takes as input the
system state, simulates it to completion using Choice−Ξ as decision-making
procedure, and returns the total number of patients operated:

1 function Construct−Ξ(x,P, t) : N;
2 begin
3 ω ← 0;
4 while

∑
i xi > 0 do

5 j ← Choice−Ξ(x,P, t);
6 ω ← ω + 1;
7 Update(x,P, t, j);

8 end while
9 return ω;

10 end
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Now, given a certain heuristic Ξ, let us define policy Pilot(Ξ) as given
by the following choice function:

1 function Choice−Pilot(Ξ)(x,P, t) : N;
2 begin
3 σ ← {i | xi > 0};
4 for i ∈ σ do
5 x′ ← x; t′ ← t;
6 Update(x′,P, t′, i);
7 ζi ← Construct−Ξ(x′,P, t′);

8 end for
9 return arg max{ζi | i ∈ σ};

10 end

As it can be seen, Choice−Pilot(Ξ)(·) is a higher-order function that
uses Construct−Ξ to obtain an indication of the goodness of making each
of the possible choices at a given instant (i.e, a projection of the number
of patients treated; in case of ties, the most critical class is taken). This way,
choices are more informed since they rest on actual objective values rather than
on myopic measures. The quality of the pilot Ξ is crucial in the performance
of the algorithm though. This will be empirically analyzed in the next section.

The second metaheuristic approach considered is based on hyperheuristics.
These can be defined as higher level heuristics that manage a set of LLHs (of
cardinality greater than one), using only limited problem information [15].
Basically, the hyperheuristic decides at each instant which of the available
LLHs will be used. The underlying idea is thus making combined use of several
LLHs, so that by making appropriate choices it is possible to exploit their
strengths and compensate their weaknesses [14]. Such choices can be done in
a variety of ways: at random, using some greedy measure, using some kind
of machine learning mechanism, or even using a full-fledged metaheuristic to
optimize the sequence of LLHs invocations. In this case, the mechanism that
best suits the needs of fast online decision-making is a greedy selection method.
More precisely, let Ξ = {Ξ1, · · · , Ξh} be a set of LLHs defined in Section 3.2.
Then, let us define Choice−Hyper(Ξ)(·) as follows:

1 function Choice−Hyper(Ξ)(x,P, t) : N;
2 begin
3 σ ← {Choice−Ξi(x,P, t) | Ξi ∈ Ξ};
4 if |σ| = 1 then
5 return [σ]; // returns the only element in σ.
6 else
7 for i ∈ {1, · · · , |Ξ|} do
8 ζi ← Construct−Ξi(x,P, t);
9 end for

10 return arg max{ζi | i ∈ σ};
11 end if

12 end
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As it can be seen, the hyperheuristic firstly checks whether there is agree-
ment among the available LLHs on which patient class to pick. If there is,
no further computation is required and the unanimous decision is returned. If
this is not the case, each of the associated construction heuristics is run to de-
termine which selection is more beneficial. Note that even though two or more
LLHs may agree on the choice to be made, as long as there is no unanimous
decision all of them must be run since any LLH could in principle return the
best function value (i.e., number of patients treated).

Notice that the two methods presented above are related since the hyper-
heuristic actually uses in part the philosophy of the pilot method. Indeed,
Choice−Pilot(Ξ) and Choice−Hyper(Ξ) can be regarded as two comple-
mentary approaches: the first one can take any decision at a given time using
a single heuristic Ξ as pilot; the second one can only take a limited set of
decisions at any time (only those returned by the LLH set Ξ), but uses mul-
tiple LLHs as independent pilots for each decision. Furthermore, it is possible
to define a blended approach Pilot(Hyper(Ξ)), that uses the hyperheuristic
with LLH set Ξ as pilot for the construction process. This approach and all
preceding ones will be experimentally compared next.

4 Experimental Results

We have conducted an extensive empirical evaluation of the heuristics pre-
sented. The experimental setup is similar to that used in [20]. To be precise, we
have initially considered a problem formulation involving two patient classes.
These can be regarded as the two most critical classes (excluding expectant
casualties) of typical field triage methods, since patients in the ‘green’ class are
usually delayed until these most critical casualties are treated. Notice at any
rate that later on we will test the scalability of heuristics in a 3-class scenario.
We have generated N = 5, 000 problem instances for each of three different
severity conditions. In all cases, this first set of experiments assumes operating
times τi are uniformly distributed in (0.5,2.0); we enforce τ1 > τ2, i.e., class
c1 patients require more time to be operated than those of class c2. As to
the lifetime distribution, we assume it to be Weibull-distributed with shape
parameter αi = 1.5 (i.e., increasing hazard rate). The scale parameter βi is
set such that the corresponding initial abandonment rate ri is within a given
interval. These intervals represent different severity conditions as mentioned
before. Thus, we have ri ∈ (0.1, 0.5) (denoted as S1), ri ∈ (0.5, 2.0) (S2) and
ri ∈ (2.0, 5.0) (S3), respectively representing increasingly critical conditions
(in the first case operating rates are higher than abandonment rates, in the
second case they are in the same interval, and in the third case, abandon-
ment rates are higher than operating rates). Again, we enforce r1 > r2 so that
c1 patients are more critical than c2 patients. The initial number of patients
xi ∈ [1, 20] in each class is uniformly selected at random in each instance, and
the number of operating rooms % is set to 5.
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Fig. 1 Percentage of patients treated in scenario S1, using Weibull-distributed lifetimes and
deterministic operating times. The top figure corresponds to the mean percentage of patients
treated in both classes, and the bottom one to patients in the most critical class. The error
bars indicate the standard deviation of the mean. In this figure and in all subsequent ones,
algorithms are labeled as C = Time Critical First, T = Triangular, R = Rectangular, r
= rµ, H = Hyper(Ξ), PX = Pilot(X). Note the different ordering of algorithms in each
subfigure.
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Fig. 2 Percentage of patients treated in scenario S2, using Weibull-distributed lifetimes
and deterministic operating times. The top figure corresponds to the mean percentage of
patients treated in both classes, and the bottom one to patients in the most critical critical
class. The error bars indicate the standard deviation of the mean. Note the different ordering
of algorithms in each subfigure.
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Fig. 3 Percentage of patients treated in scenario S3, using Weibull-distributed lifetimes
and deterministic operating times. The top figure corresponds to the mean percentage of
patients treated in both classes, and the bottom one to patients in the most critical critical
class. The error bars indicate the standard deviation of the mean. Note the different ordering
of algorithms in each subfigure.
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Fig. 4 Rank distribution of the different algorithms in the three scenarios considered
(Weibull-distributed lifetimes, deterministic operating times) in increasing criticality from
top (S1) to bottom (S3). As usual each box comprises the second and third quartiles, the
vertical line marks the median, the circle marks the mean, the whiskers span 1.5 times the
interquartile-distance, and the dots are outliers.

The results for the three scenarios are shown in Figures 1–3. Notice firstly
the outcome of the basic heuristics T, R, rµ and TCF (respectively labelled as
T, R, r, and C in the figure). Consistently with [20], T and R perform better
in a scenario in which abandonment rates are very high, whereas rµ performs
better in scenarios of more moderate severity. Likewise, TCF provides the
worst results, in particular in the most critical scenarios in which the very
myopic policy of focusing on class c1 results in multiple impatient deaths in
class c2. Conversely, when the situation is less critical, TCF is comparatively
closer to the remaining basic heuristics since less patients leave class c2 before
treatment.

Consider now the results of the Pilot(Ξ) and Hyper(Ξ). Regarding the
former, pilot methods based on each of the four basic heuristics have been
considered. As to the latter, we have considered Ξ = {T, R, rµ}, leaving
out TCF due to its poorer performance. As it can be seen, there is a marked
difference between basic heuristics and the corresponding pilot method. Notice
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Table 1 Results of Holm’s test using Pilot(Hyper(Ξ)) as control algorithm.

S1: ri ∈ (0.1, 0.5) S2: ri ∈ (0.5, 2.0)
i algorithm p-value α/i i algorithm p-value α/i
9 TCF 0 0.00556 9 TCF 0 0.00556
8 T 0 0.00625 8 Pilot(TCF) 0 0.00625
7 R 0 0.00714 7 T 1.91e-215 0.00714
6 rµ 3.46e-302 0.00833 6 R 2.48e-199 0.00833
5 Pilot(TCF) 3.63e-293 0.01000 5 rµ 4.99e-168 0.01000
4 Hyper(Ξ) 1.32e-085 0.01250 4 Pilot(rµ) 1.53e-042 0.01250
3 Pilot(rµ) 3.45e-040 0.01667 3 Hyper(Ξ) 2.01e-018 0.01667
2 Pilot(R) 6.10e-015 0.02500 2 Pilot(T) 2.78e-009 0.02500
1 Pilot(T) 1.32e-014 0.05000 1 Pilot(R) 8.94e-009 0.05000

S3: ri ∈ (2.0, 5.0)
i algorithm p-value α/i
9 TCF 0 0.00556
8 rµ 5.62e-080 0.00625
7 T 9.31e-062 0.00714
6 R 8.11e-059 0.00833
5 Pilot(TCF) 3.34e-025 0.01000
4 Hyper(Ξ) 2.93e-018 0.01250
3 Pilot(rµ) 2.72e-005 0.01667
2 Pilot(R) 0.42 0.02500
1 Pilot(T) 0.42 0.05000

also that the hyperheuristic also provides better results than those of the basic
heuristics. Although differences seem smaller in the most critical scenario, they
are still significant. Actually, a Wilcoxon signed-rank test [37] (used to perform
a statistical comparison on paired samples) indicates that in all cases both
Pilot(Ξ) and Hyper(Ξ) are significantly (at the standard 0.05 level) better
than the corresponding LLH Ξ. Furthermore, check Figure 4 in which we plot
the distribution of ranks of each algorithm in each of the three scenarios. These
ranks are computed by sorting the algorithms on each of the 5, 000 instances,
assigning rank 1 to the best algorithm in a certain instance and rank k (k
being the total number of algorithms) to the worst one. In case of a tie, the
average of the positions involved is used as rank.

Pilot(Hyper(Ξ)) consistently provides the best rank, followed by Pi-
lot(T) and Pilot(R) that rank close to each other (like T and R do). To
ascertain the significance of these ranks, we have firstly performed both Fried-
man’s test [38] and Iman-Davenport’s test [39] on the data. Both tests indi-
cate that there are significant differences, so we have subsequently performed
Holm’s test [40] using Pilot(Hyper(Ξ)) –the algorithm with the best mean
rank– as control algorithm. The results of the test –shown in Table 1– indicate
that this control algorithm ranks significantly better than the remaining algo-
rithms in S1 and S2. In S3 no significant difference in rank can be found for
Pilot(R), Pilot(T) and Pilot(Hyper(Ξ)). This result can be explained by
the improved performance of T and R in this scenario boosting the correspond-
ing pilot methods as well. As an aside note, computational times per problem
instance were around 1-2ms milliseconds for the LLHs, about 6-40ms for pilot
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Fig. 5 Rank distribution of the different algorithms in scenario S2 as a function of the
number of operating rooms available.

methods and the hyperheuristic, and about 0.3s for Pilot(Hyper(Ξ)) (times
measured on an Intel Core 2 Quad Q6600 2.4 GHz).

Next, we have done experiments in order to determine the influence of
some problem parameters on the performance of the different methods. In
first place, we have analyzed the impact of having a different number of op-
erating rooms available. To this end, we have again generated 5, 000 instances
as defined above, each of them with a number of operating rooms % drawn
from a uniform distribution % ∈ {2, · · · , 10}. Subsequently, we have grouped
problem instances according to the number of operating rooms, and performed
a separate rank analysis on each group. The results are consistent with those
shown before for % = 5. In the most critical scenario S3, Holm’s test rejects
differences between Pilot(R), Pilot(T) and Pilot(Hyper(Ξ)) regardless of
the number of operating rooms. In S1 and S2, the test is passed using the latter
as control algorithm. Figure 5 shows the rank distribution for S2. Note that T
and R perform better than rµ for lower number of operating rooms, whereas
for a larger number the opposite is true. This can be interpreted in light of
the myopic measure of expected number of abandonments during operation
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Fig. 6 Rank distribution of the different algorithms in scenario S2 as a function of the total
number of patients.

not coping well with the fact that there may be many operations in parallel.
More foresight is required in this case to achieve better decision-making. Note
in this sense that for very low values of % rank differences are lower as well (yet
still statistically significant). Pilot methods keep performing the best, closely
followed by the hyperheuristic, which ranks the third for % < 7, ties with Pi-
lot(rµ) for 7 6 % 6 9 (no statistical difference using a Wilcoxon signed-rank
test), and is only overcome by the latter for % = 10. Computational times
per instance are 1-4ms for LLHs, about 15-70ms for pilot methods and the
hyperheuristic, and about 0.8s for Pilot(Hyper(Ξ)).

The next issue to be tackled is the scalability of heuristics, either in terms
of the number of patients or in the number of patient classes. Regarding the
former we have repeated the experiments following the previous methodology
but using this time an initial number of patients xi ∈ [1, 100], i.e., a 5-fold
increase in the upper limit. In this case, T and R are found to be better
than rµ for larger number of patients. See for example Figure 6, in which
ranks are shown for S2. Wilcoxon signed-rank test indicates that T and R
perform significantly better than rµ for more than 40 patients. Notice also
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Fig. 7 Rank distribution of the different algorithms in S1 (top), S2 (middle) and S3 (bot-
tom) when patients are sorted into three classes.

the improved performance of the Hyper(Ξ) for larger number of patients,
only second after Pilot(Hyper(Ξ)). This suggests using several pilots (either
directly or indirectly) in these larger instances as a more scalable strategy.
Computational times per instance range in this case from 5-10ms for the LLHs
to 0.1-0.3s for pilot methods and the hyperheuristic, and are about 4.7s for
Pilot(Hyper(Ξ)).

Subsequently, we have considered patients classified into 3 classes rather
than 2. We have generated 5, 000 instances enforcing as before that more crit-
ical patients have also longer operation times. The ranks of the algorithms
are shown in Figure 7. Note that since heuristic R is not directly generaliz-
able to more than two classes, we have used neither it nor Pilot(R) in this
case (also, Hyper(Ξ) does not include R in the LLH set). The results in this
case are qualitatively the same as for two classes, T outperforming rµ in S3
and Pilot(Hyper(Ξ)) being the best algorithm in S1 and S2 (Holm’s test
is passed). In S3, Holm’s test rejects there is a significant difference between
Pilot(Hyper(Ξ)) and Pilot(T), as it was the case for two classes. As to
the hyperheuristic, it ranks consistently above the basic heuristics. We have
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Fig. 8 Rank distribution of the different algorithms in S2 for stochastic operation times.

also conducted experiments on a mixed scenario in which the abandonment
rates of c1 patients correspond to S3 (the most critical scenario), those of c2
patients correspond to S2, and those of c3 to S1 (the less critical scenario).
In this case the performance of T is degraded due to its myopic choice func-
tion being too conservative and resulting in many impatient deaths in c1. This
performance drop also affects the hyperheuristic, which performs comparably
to Pilot(TCF) (no statistical difference according to Wilcoxon signed-rank
test), and below the remaining pilot methods. Computational times per in-
stance are in this case: 1-5ms for the LLHs, 0.02-0.16s for pilot methods and
the hyperheuristic, and about 1.8s for Pilot(Hyper(Ξ)).

Finally, experiments have been done to determine the influence that stochas-
tic operation times have on the performance of the heuristics. As mentioned in
Section 3.1, we model this by assuming operating a patient in class ci takes a
minimum time τi plus an excess time which is exponentially distributed with
parameter 1/(ηiτi). We consider ηi ∈ (0, 0.25), and enforce η1 > η2. In this
new scenario, pilot methods use the minimum time τi as an optimistic ap-
proximation to operation time. We have generated 5, 000 instances for each
scenario S1, S2 and S3. We perform M = 15 runs of each algorithm on each
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Table 2 Statistical analysis of the results using Wilcoxon ranksum test. Each entry in
the table indicates the percentage of instances in which the algorithm labelled in the row
outperforms the algorithm labelled in the column. Note that the sum of diagonal-symmetric
entries do not necessarily add up to 100% since it is possible that no statistically significant
difference can be established for certain instances.

S1: ri ∈ (0.1, 0.5)
Pilot

T R rµ TCF H T R rµ TCF H
T – 0 3 28 0 6 6 7 17 6
R 1 – 3 28 0 6 6 7 17 6
rµ 24 23 – 25 1 6 6 6 16 5
TCF 26 25 2 – 3 1 1 0 0 0
Hyper(Ξ) 33 33 21 46 – 12 12 15 26 9
Pilot(T) 45 44 29 46 16 – 0 4 21 0
Pilot(R) 45 44 29 46 16 0 – 4 21 0
Pilot(rµ) 44 44 28 44 17 4 4 – 17 1
Pilot(TCF) 40 39 24 34 13 6 5 2 – 2
Pilot(Hyper(Ξ)) 47 47 34 50 18 5 5 7 24 –

S2: ri ∈ (0.5, 2.0)
Pilot

T R rµ TCF H T R rµ TCF H
T – 0 12 51 0 16 16 21 36 16
R 2 – 13 51 0 16 16 21 36 16
rµ 12 11 – 40 1 12 12 13 29 12
TCF 13 12 1 – 2 0 0 0 0 0
Hyper(Ξ) 22 21 21 59 – 23 23 27 43 22
Pilot(T) 20 19 17 49 6 – 0 7 29 2
Pilot(R) 20 19 17 49 6 0 – 7 29 2
Pilot(rµ) 19 18 11 44 6 2 2 – 23 1
Pilot(TCF) 17 16 9 30 4 4 4 2 – 3
Pilot(Hyper(Ξ)) 22 21 17 50 6 3 3 8 30 –

S3: ri ∈ (2.0, 5.0)
Pilot

T R rµ TCF H T R rµ TCF H
T – 0 8 35 0 7 7 8 10 7
R 0 – 8 35 0 7 7 8 10 7
rµ 3 3 – 27 1 4 4 4 6 4
TCF 4 4 1 – 2 0 0 0 0 0
Hyper(Ξ) 5 5 10 37 – 7 7 9 11 8
Pilot(T) 11 11 13 34 7 – 0 3 8 1
Pilot(R) 11 11 13 34 7 0 – 3 8 1
Pilot(rµ) 11 11 13 33 7 1 1 – 5 1
Pilot(TCF) 12 12 13 32 8 4 4 3 – 4
Pilot(Hyper(Ξ)) 12 12 13 34 7 0 0 3 8 –

problem instance, and take the median value for ranking purposes. Computa-
tional times per instance are 1-4ms for LLHs, about 10-70ms for pilot methods
and the hyperheuristic, and about 0.9s for Pilot(Hyper(Ξ)).

As expected, the results indicate that pilot methods are sensitive to the
presence of noise, although their performance do not degrade excessively. Quite
interestingly, T and R heuristics improve their relative performance in S2 and



20

S3 with increasing values of ηi, e.g., see Figure 8. A ranksum test on T and R
vs. their respective pilot methods indicate that the rank differences are signif-
icant (except for R vs. Pilot(R) in 0.15 < max(η1, η2) 6 0.2). In particular,
this means that when all instances are considered there is a moderate but sig-
nificant advantage of the pilot methods. The hyperheuristic ranks the first (or
statistically indistinguishable from the first) in S3 for max(η1, η2) > 0.1, and
in S2 for max(η1, η2) > 0.05 (in S1 the best algorithm is Pilot(Hyper(Ξ)) as
supported by Holm’s test). The reason why the hyperheuristic performs better
than other pilot methods in these instances can be found in the fact that the
former is less ‘risky’: it accepts the choice taken by the LLHs if there is agree-
ment among them; on the contrary, other pilot methods may take decisions
departing from those of a certain LLH on the basis of future gains as indicated
by looking ahead. However, if there is uncertainty in this information a risky
decision might not be ultimately as beneficial as initially thought.

Table 2 provides a global perspective of how the different techniques com-
pare in this last setting. Entries in the table indicate the percentage of instances
in which a certain algorithm outperform another one (with statistical signifi-
cance using a Wilcoxon ranksum test to compare all runs of two algorithms on
each problem instance). Across the whole set of instances there is a trend of
superiority for the metaheuristic approaches. This superiority is less marked
in S3 where pilot methods are better than the LLHs they are based on in a
net 4-5% of instances (save for TCF where the net superiority is much larger).
This can be explained by the extremely severe condition of patients in this
scenario, whose abandonment rates are larger than operating rates, leading
to many impatient deaths in all cases (thus leaving a narrow margin for im-
provement). The uncertainties in operation times are also large with regard to
survival expectancies in that scenario, hence the higher impact they have on
pilot methods. On the other hand, the metaheuristics are remarkably better
than the LLHs in S1, where the uncertainty in operation times is comparatively
smaller with respect to the larger life expectancy of patients.

5 Conclusions

The allocation of limited medical resources to the victims of a mass casualty
incident is a complex task due to the number of factors involved (not to men-
tion its ethical ramifications). The main contribution of this paper has been
the design and extensive analysis of metaheuristics (hyperheuristics and the
pilot method) for dealing with this decision-making problem. The results have
been positive and provide evidence on the potential usefulness of this kind
of methods in this context. Quoting [41], the science of triage (in particu-
lar, tertiary triage, namely the effective assignment of limited resources under
competing patient demands) is nascent, and very much in need of more ro-
bust and researched strategies. In this sense, the techniques described in this
work should be considered as a step in this direction. Indeed, metaheuristic
approaches have been shown as effective high-level methods to coordinate the
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application of low level heuristics designed for this prioritization problem. The
results indicate they are competitive in multiple scenarios with different fea-
tures regarding the number of operating rooms, patients, and triage classes.
They are however sensitive to the presence of large uncertainties in operation
times, in particular in the most severe scenarios where these uncertainties are
comparatively larger with respect to lifetime expectancies. It is possible to
conceive the use of specialized mechanisms to deal with uncertainty in this
context. This constitutes a line of future work.

There are many other avenues for further research. Regarding the problem
model, more complex scenarios could be considered, e.g., involving survival
probabilities after treatment. Other metaheuristic frameworks, e.g., evolution-
ary algorithms, could be used here as well. The use of population-based tech-
niques would involve among other issues investigating whether they can pro-
vide an adequate tradeoff between performance and computation-time. The
application of machine learning strategies is also worth considering as a means
to adaptively control the application of low level heuristics in this domain.
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