Car setup optimization via evolutionary
algorithms

Carlos Cotta®, Antonio J. Fernandez!, Alberto Fuentes Sanchez?, and Ratil
Lara-Cabrera!

! Dept. Lenguajes y Ciencias de la Computacién, ETSI Informética,
University of Mdlaga, Campus de Teatinos, 29071 - Mélaga, Spain.
{ccottap,afdez,raul}@lcc.uma.es

2 elvetto@hotmail.com

Abstract. Car racing is a successful genre of videogames, as proved, for
example, by the racing simulator saga, Gran Turismo. In this genre of
games, players not only race but they are also involved in the process of
setting up the car, assuming the role of a technician/mechanic/engineer.
Generally, this configuration deals with a large set of parameters that
range from the amount of fuel loaded into the car to the tire pressure
and type. This article compares different proposals for optimizing this
process using evolutionary computation techniques to make several sug-
gestions for a simulated international competition for car racing setup
optimization.

1 Introduction

Artificial intelligence (AI) in games has become very important so much so that
there are even international conferences that only focus on this topic, or provide
tracks and special sessions devoted to this area. These conferences frequently
include competitions in order to compare and discuss different proposals of Al
applied to videogames.

The GECCO conference proposed simulating the days before a race, when
mechanics and drivers work together on the car setup to discover which car
setup is the best for the circuit. The goal of this competition was to design an
evolutionary algorithm to search for the best car setup in a racing car simulator
thereby replacing the team of mechanics and drivers, in the search for the best
car setup in a racing car simulator. This article describes different algorithms
and analyzes their performance within the framework of the aforementioned
competition.

There is a related competition, the Simulated Car Racing Championship,
where each participant has to submit a controller to drive a car. This is a very
active competition with a lot of controllers submitted and a wide range of Al
techniques are used to develop them. [1] presents an autonomous racing car
controller with several context-dependent behavioral modules the parameters of
which have been optimized by evolutionary strategies. For example, [6] exhibits
a tuned-by-hand modular architecture combined with a simple fuzzy system,



while in [3, 7] the authors use fuzzy systems in order to implement the controller.
Another example that uses an on-line neuroevolution system is presented in [2].

2 The competition

The competition is linked to TORCS? (The Open Racing Car Simulator), which
is a multi-platform racing simulator, that can also be used as both a game in itself
and as a research platform because it includes artificial players and comparisons
between them. The competition, called “Optimizing Car Setup”, is based on 3
tracks or grand prizes. The participants have to provide evolutionary algorithms
to optimize the best car setup for each track. The contest is divided into two
consecutive phases: optimization and evaluation. During the optimization phase,
the evolutionary algorithm should optimize the car parameters for a fixed amount
of playing time (i.e. game tics): 10 million tics. Then, the best car setup is used to
compete for a certain number of tics (time units), the maximum distance covered
by a car using this configuration. Then, all the distances of the participants are
compared with each other and these participants are ranked according to the
distance reached; the player with the longest distance earns 10 points, while the
second and third earn eight and six points, respectively. The rest of the players
from the fourth to the eighth position receive five to one point, respectively.

A real-valued vector of 50 elements represents the parameters of a car setup.
The competition software provides an API to evaluate these parameters in a race
and returns useful information such as the best lap time, the maximum speed,
the distance raced and the damage the car has suffered during the race. Through
the API, it is possible to specify the amount of game tics to use in the assessment
of a car setup. The game tics spent for an evaluation will be subtracted from
the total amount of playing time available. The evaluation process ends when it
reaches 10 million games tics or it spends more than 2 hours of computing time.

2.1 The architecture

TORCS is available as a standalone application, in which the bots (non-human
players, in other words, the cars) are compiled as separate modules of the game
and then loaded into the main memory prior to the start of a race. The cars
available in TORCS have several parameters that should be optimized for each
circuit, such as the angle of the wings or the suspension’s parameters. These pa-
rameters make TORCS an ideal testing framework for optimization algorithms
based on evolutionary computation. However, this architecture has two prob-
lems: (a) there is no separation between the bots and the simulation engine so
that bots have full access to all the data structures that represent the track and
the car; this information might be used to create game cheating Artificial Intelli-
gence (AI), and (b) TORCS architecture restricts the choice of the programming
language used to develop the bots.

3 http://sourceforge.net/projects/torcs/



The competition software modified TORCS to cope with these problems and
it extended the original architecture as follows:

1. TORCS is structured as a client-server application: the bots run as an ex-
ternal process and connect to the race server through an UDP connection.

2. It is possible to change the car parameters during the race; in the original
TORCS the parameters were loaded at the start of each race.

3. The competition software creates a physical separation between the opti-
mizer and the server of the race, building an abstraction layer, which re-
moves the restriction of which programming language is used for the bots.
Moreover, it only allows access to a set of parameters defined by the contest
designer, and it prevents the possibility of exploiting some specific domain
knowledge.

An optimization process involves a server and a client. At the beginning of
the process, the client identifies the server and establishes a connection between
them; then the latter sends some information to the former, namely the number
of parameters to be optimized and the number of available ticks. After this, the
simulation begins and the individuals sent by the client are evaluated.

For each evaluation, the client sends the server a request to evaluate a list of
values of the parameters to be optimized as well as the duration of the evaluation
expressed as a number of game tics. The evaluation (i.e. the race) is in itself a
black box and the designer does not have access to it; this aspect of the game
raises an interesting and hard challenge in the design of the game’s Al. As soon
as the evaluation is complete, the server returns the result to the client encoded
as four values: distraced (i.e., distance raced), topspeed (i.e., maximum speed
reached during the race), damage (i.e., damage to the car), and bestlap (i.e., best
lap time)

Once the simulation is over, the client must send the server the best solution
found. The final solution is the only result considered for the competition. During
the competition, the final solution produced by each competitor will be compared
with the others to assess the best optimization strategy and this will be scored
according to the rules shown in the previous section.

3 A Steady-state Algorithm

The first proposal is an evolutionary steady-state algorithm. Individuals are
selected in pairs from a population, using a binary tournament method of two
parents (i.e. the parent with the best fitness is selected), subsequently they are
combined into one individual and mutated (with a probability of 1.0). This new
individual is added to the new population and the whole process is repeated a
certain number of generations.

Each parameter was a real value and each of them was encoded as a 10-
bit binary value. There were 50 parameters to optimize so each individual of
the population was an array of 500 bits (50 * 10-bit real genes). With this



representation, the implementation of the converter had a way to translate the
binary representation to a real-value vector.

On the other hand, we had to establish a fitness function to evaluate the
quality of each individual. As mentioned above, the server returns four values:
bestlap, distraced, topspeed and damage. At this point, we considered a single
fitness to optimize:

(4 = distraced + Cy x topspeed + Cs5 * (1000 — bestlap) + Cy * damage (1)

C; are real constants that provide weights to the four values to optimize in
Eq. (1). The value of this fitness corresponds to the mono-objective version of
our evolutionary algorithm.

4 Experimental Analysis

This section includes a description of the experiments conducted in order to
evaluate the performance of the mono-objective algorithm that was described
in the last section. An analysis of the performance of this proposal during the
contest held at the conference EVO-GAMES 2010 is also presented here.

For the experiments, we decided to set the following parameters: 10 runs
of the algorithm with a population of 50 individuals and 20 generations. The
number of tics for the simulation was set to 10000 and 5000 for the evaluation
of each individual in the population and the evaluation for each solution of the
optimization respectively.

For a competitive solution, first we had to find the appropriate values for
the constants C; (for ¢ € [1,4]) in the expression (1), and for that we considered
various combinations of values. The results of the fitness functions were tested
on four different circuits (i.e., Speedway, wheell, Olethros, and E-track 4). Table
1 shows the fitness function that were proposed for the study. As there are a lot
of combinations to consider, we only present the data from some of these. The
left hand column shows the fitness function used to train our proposal and the
right hand column shows the total score after training in the four aforementioned
circuits.

Prior to running the experiments, we had to find the appropriate values for
the constants C; in the fitness definition (1). Table 1 shows the score obtained
from different combinations of these values.

The best performance of the mono-objective algorithm was achieved with the
combination of values (C; = 0.6, C2 = 2.5, C3 = 0.15 and Cy = 0.05), so the
mono-objective algorithm’s fitness function was the following:

0.6 * distraced + 2.5 * topspeed + 0.15 * (1000 — bestlap) + 0.05 * damage (2)

We submitted the mono-objective evolutionary algorithm to the EVO-* com-
petition, which specified the following rules:



Fitness Function (1) Total Points

0.6 xdistraced+ 2.5 xtopspeed+0.15% (1000 — bestlap) +0.05 x damage 29
0.6 * distraced 4 3 * topspeed — bestlap — 0.1 x damage 19
0.7 * distraced + 1.5 * topspeed — 0.1 * bestlap — 0.05 x damage 19
0.6 * distraced + 1.5 x topspeed — 0.25 * bestlap — 0.05 * damage 17
0.25 * distraced + 0.25 * topspeed — 0.25 * bestlap — 0.25 * damage 12
0.25 * distraced + topspeed — 0.25 * bestlap — 0.25 * damage 12
distraced + 0.25 x topspeed — 0.25 * bestlap — 0.25 * damage 8

distraced + topspeed — 0.25 * bestlap — 0.25 x damage
0.6 * distraced + 0.25 * topspeed — 0.15 * bestlap — 0.05 * damage
0.25 * distraced + 10 * topspeed — 0.25 * bestlap — damage
0.6+ distraced+ 2.5 xtopspeed+0.15% (1000 — bestlap) — 0.05 * damage
0.25 * distraced + 0.25 * topspeed + 0.25 * bestlap + 0.25 * damage
0.25 * distraced + 0.25 * topspeed — 0.25 * bestlap + 0.25 * damage
0.25 * distraced + 0.25 * topspeed + 0.25 * bestlap — 0.25 * damage
Table 1. Score obtained by using different C; values in the fitness function

O O O Utotoy

The contest involved 3 tracks.

— Only 22 parameters out of 50 to optimize.

The simulation time was 1 million games tics.
— The optimization algorithm ran 10 times in each circuit.

— The best solution was scored according to the distance covered in 10000
game tics.

The results for each of the three tracks considered in the competition are
presented in Table 2 (note that Fuentes/Cotta/Fdez/Cab is our mono-objective
algorithm).

Competitor CG Track Poli-Track Dirt-3 Distance Points
Muiioz (MOEA) 9831.83 (10) 7654.01 (6) 6128.29 (8) 23614.13 24
Garcia-Saez (PSO) 8386.77 (6) 7979.86 (10) 5021.41 (5) 21388.04 21
Walz (PSO) 8408.25 (8) 7304.54 (5) 5336.88 (6) 21049.77 19

(8
Fuent-Cotta-Fdez-Cab (GA) 7553.21 (4) 5931.47 (4) 6263.40 (10) 19748.08 18
Mufioz-Martin-Sdez (EA) 8167.60 (5) 7718.36 (8) 4629.33 (4) 20515.29 17
Table 2. Distance Average and final classification in the 2010-competition: Dis-
tance(Points)

Each track was won by a different competitor. Our driver won in Dirt-3 and
the difference between the second and the fourth classified, was really small
(only 3 points). The winner of the competition used a multi-objective algorithm
(MOEA) to optimize the four parameters considered in the competition (i.e.,
distraced, topspeed, bestlap and damage).



5 Multi-objective Evolutionary proposals

We also considered two multi-objective algorithms that are described next. Ini-
tially we considered several possibilities and finally decided to create two multi-
objective algorithms using SPEA2 [8], specifically the implementation of this
algorithm provided by the ECJ 4 library.

In order to use a multi-objective algorithm, it is neccessary to add a new
field to the population that corresponds to Pareto file size. This file corresponds
to a part of the subpopulation and the size of the file cannot be larger than the
size of the population.

Another peculiarity of the SPEA2 implementation from the ECJ library is
that the fitness includes two elements: an array of floating point values repre-
senting the fitness values (0.0 is the worst and infinity is the best) and another
value representing the SPEA2 fitness that identifies the individual status. The
individuals are sorted by fitness value, so the best individual is the one with the
lowest value.

In addition to this algorithm, we also propose a modification of SPEA2 multi-
objective algorithm that is capable of finding a set of characteristics for the best
individual in the Pareto archive, using a feature selection algorithm.

The feature selection algorithm used for this study consists of a Principal
Component Analysis (PCA) [4,5]. To implement PCA, we used the method
included in Matlab®. This method, which has been applied to each candidate,
returns several variables among which a set of characteristics can be found.

The method to obtain the pattern vector is as follows. Candidate solutions are
executed ten times in four tracks/races and we consider a Pareto file with size 10.
Each individual for each circuit should have a file of 100 individuals resulting
from the simulation. Then, the Pareto front of non-dominated individuals is
computed.

Each of these individuals are then evaluated in all four tracks, obtaining their
distances raced. These distances are grouped into a matrix that is passed to the
Matlab function in order to calculate the principal components. These values
are involved in the process of selecting the best individual.

6 Experimental Analysis including MOEAs

In this section, we have compared our results obtained in the aforementioned
experiments and those obtained by the participants of the competition held in
GECCO 2009.

For the multi-objective evolutionary algorithm, we consider a population of
50 individuals, 20 generations and 10000 game tics for the simulation and eval-
uation. Different candidates were run 3 times on the same tracks that were

4 http://cs.gmu.edu/ eclab/projects/ecj/
% http://www.mathworks.es/help/toolbox/stats/princomp.html



previously used for single objective. Table 3 shows some of the fitness combina-
tions that were considered (first column) and the score obtained by SPEA2 to
optimize in this context.

Fitness combinations Total
f [0] = min bestlap, f [1] = Single-objective fitness 36
f[0] = min bestlap 39
£ [0] = min bestlap, f [1] = max distraced 97
£ [0] = min bestlap, f [1] = min f [0] — damage 16
£ [0] = min bestlap, f [1] = max topspeed 15
f10] = distraced 13
f[0] = distraced, f [1] = topspeed, f [2] = min bestlap, f [3] = mindamage 13

Table 3. Results obtained using different fitness combinations

The best combination for our multi-objective algorithm was minimizing Best-
lap and maximizing the fitness used by the mono-objective algorithm explained
above.

The experiments with a variation of the multi-objective algorithm (based
on PCA) had the following characteristics: two versions of the proposals were
considered: one with a Pareto file size of 5 and another with a size of 10. Each
version, in turn, had two versions: one version with the fitness previously consid-
ered in SPEA2, and the second one considered by directly optimizing the four
main parameters of the competition (i.e., distraced, topspeed, bestlap, and dam-
age). The evaluation was performed with the same scenario as in the previous
experiments. Table 4 contains all the results.

Drivers Total

4 fitness and 5 not dominated 25
4 fitness and 10 not dominated 27
2 fitness and 5 not dominated 36
2 fitness and 10 not dominated 28
Table 4. Score obtained using different parameters

The best variation of the multi-objective algorithm is the result of combining
a Pareto file size 5 with the fitness: minimizing bestlap and maximizing the fitness
used by the mono-objective algorithm. Table 5 shows the overall score obtained
by the three proposals described above and the three drivers submitted to the
contest GECCO-2009. In this table, the best performance corresponds to our
SPEA2 multi- objective algorithm (without PCA).

Note that the winner in the evo-*2010 competition, as displayed in Section
4, is a multi-objective algorithm (MOEA) similar to our best proposal, as shown
here. In fact, our two multi-objective proposals were much more competitive



Driver Speedway ETRACK Olethros Wheel Total

Multi-objective 10 5 8 8§ 31
V&M&C 4 8 5 10 27

Jorge 8 4 10 4 26
Multi-objective PCA 3 10 6 6 25
Single-objective 5 6 4 5 20
Luigi 6 3 3 3 15

Table 5. Overall score of the proposals submitted to GECCO 2009

than the single-objective proposal that was sent to the competition. So we are
led to think that either of these two proposals could have obtained better results.

6.1 Additional comments

Three parameters were disabled in the experiments: fuel consumption, car dam-
age and the time limit per turn. The reader may wonder why and the answer is
simple: the objective of this contest was to find the best solution for a car, but,
during the training, the car may suffer variations. One of these changes is the
damage done to the car. If a car collides with an object it is likely to deform
the chassis and all the data obtained from then may not be reliable because it
is conditioned by the crash. Fuel consumption leads to the same data reliability
problem. In each lap the car consumes fuel and in turn it weights less, becoming
easier and faster to drive.

7 Conclusions

In this article, we have considered different proposals based on evolutionary
computation to set up a car in a racing simulator. In order to achieve this, we
have used an international contest in which there were several parameters to be
optimized.

The nature of the competition and experimental analysis has shown that
multi-objective evolutionary algorithms are a good solution to the problem. Fo-
cusing on our proposals, the best proposal is based on the SPEA2, although
it is true that we can not underestimate the work done by the single-objective
algorithm. That defined the fitness function and this was used in our best multi-
objective algorithm as one of the objectives to be optimized.

The results obtained by a variant of our multi-objective algorithm with search
patterns was good (better than the results obtained by the single-objective algo-
rithm) and this makes us think that the calculation of the principal components
is a good technique to take into account for the future, although it requires
further in depth studies.

There are several lines open such as trying new fitness functions for our
single-objective algorithm or searching a classification algorithm to find better
patterns for the multi-objective.



Acknowledgements

This work is partially supported by Spanish MICINN under project ANYSELF
(TIN2011-28627-C04-01), and by Junta de Andalucia under project P10-TIC-
6083 (DNEMESIS7).

References

1. Butz, M., Lonneker, T.: Optimized sensory-motor couplings plus strategy extensions
for the torcs car racing challenge. In: Computational Intelligence and Games, 2009.
CIG 2009. IEEE Symposium on. pp. 317-324 (2009)

2. Cardamone, L., Loiacono, D., Lanzi, P.L.: On-line neuroevolution applied to the
open racing car simulator. In: Evolutionary Computation, 2009. CEC ’09. IEEE
Congress on. pp. 2622-2629 (2009)

3. Ho, D., Garibaldi, J.: A fuzzy approach for the 2007 cig simulated car racing compe-
tition. In: Computational Intelligence and Games, 2008. CIG ’08. IEEE Symposium
On. pp. 127-134 (2008)

4. Jolliffe, I.: Principal Component Analysis. Series in Statistics, Sprimger, New York,
USA, 2nd edn. (2002)

5. Krzanowski, W.: Principles of Multivariate Analysis: A User’s Perspective. Oxford
University Press, New York, USA (1988)

6. Onieva, E., Pelta, D., Alonso, J., Milanes, V., Perez, J.: A modular parametric
architecture for the torcs racing engine. In: Computational Intelligence and Games,
2009. CIG 2009. IEEE Symposium on. pp. 256-262 (2009)

7. Perez, D., Recio, G., Saez, Y., Isasi, P.: Evolving a fuzzy controller for a car racing
competition. In: Computational Intelligence and Games, 2009. CIG 2009. IEEE
Symposium on. pp. 263-270 (2009)

8. Zitzler, E., Laumanns, M., Thiele, L.: Spea2: Improving the strength pareto evolu-
tionary algorithm. Tech. rep., Swiss Federal Institute of Technology (ETH) Zurich
(2001)

5 http://anyself.wordpress.com/
7 http://dnemesis.lcc.uma.es/wordpress/



