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Abstract Suicide bombing is an infamous form of terrorism that is becoming in-
creasingly prevalent in the current era of global terror warfare. We consider the case
of targeted attacks of this kind, and the use of detectors distributed over the area un-
der threat as a protective countermeasure. Such detectors are non-fully reliable, and
must be strategically placed in order to maximize the chances of detecting the attack,
hence minimizing the expected number of casualties. To this end, different meta-
heuristic approaches based on local search and on population-based search (such as a
Hill Climber, different Greedy Randomized Adaptive Search Procedures, an Evolu-
tionary Algorithm and several Estimation of Distribution Algorithms) are considered
and benchmarked against a powerful greedy heuristic from the literature. We con-
duct an extensive empirical evaluation on synthetic instances featuring very diverse
properties. Most metaheuristics outperform the greedy algorithm, and a hill-climber
is shown to be superior to remaining approaches. This hill-climber is subsequently
subject to a sensitivity analysis to determine which problem features make it stand
above the greedy approach, and is finally deployed on a number of problem instances
built after realistic scenarios, corroborating the good performance of the heuristic.
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1 Introduction

At the time of writing this paper, the Atatürk Airport in Istanbul was subject to a
terrorist attack whose perpetrators carried automatic weapons and explosive belts.
As a result of the shooting and the detonation of the suicide bombs, 44 people were
killed (in addition to the three terrorists) and more than 200 were injured (Şenses
Kurukız, 2016). A few days afterwards, a suicide car bombing killed 292 people
and left more than 200 people wounded in a shopping district of Baghdad, in what
constituted the deadliest single bomb attack in Iraq since 2007 (AFP, 2016). These
are only two recent examples of suicide bombings, a form of terrorism that not only
causes about four time more casualties than other kinds of terrorist attack (Rand Cor-
poration, 2009), cf. (Hoffman, 2003) but also instills a sense of fear in the society
as a whole that undermines public confidence in the authorities and contributes to
subjugate those living under this threat (Hoffman, 2003). As a result of the relative
inexpensiveness –they do not require escaping logistics nor sophisticated equipment
for remote operation– and effectiveness –a combination of high lethality and target
accuracy, with a statistically significant higher kill-to-wounded ratio than non-suicide
attacks, see (Edwards et al, 2016)– of this kind of attacks, they have become increas-
ingly prevalent; see Figure 1. Indeed, they are not just very frequent in conflicting
areas such as the Middle East –1,192 attacks in the period 1982-2015, only counting
those conducted using explosive belts (Chicago Project on Security and Terrorism
(CPOST), 2016)– but also constitute a global threat that has caused nearly 50,000
deaths worldwide in the 21st Century, with an average of about 10 fatalities and
24 non-fatal casualties per attack (counting all suicide attacks – data from Chicago
Project on Security and Terrorism (CPOST) (2016)).

In response to this ongoing threat, security forces and intelligence agencies are
strengthening their efforts. Obviously, the nature of this kind of attack makes it in-
feasible to rely on standard deterrence measures based on direct retaliation. Hence,
other members of the terrorist network providing intellectual or logistic support to the
attacker (and in general any assets valued by the latter) are targeted instead (Kroenig
and Pavel, 2012). In any case, this does not fully deters this kind of attacks, e.g., see
(Carson, 2017), so they must be also fought against by trying to deny their benefits,
either at a strategic level (ensuring that the ultimate goals of the terrorists will not be
achieved even if the attack was successful) or at a tactical level (trying to make the at-
tacks unsuccessful). Heightened security measures in airports, government buildings
or military installations are examples of this latter kind of counterterrorism measures.

A potential problem of these explicit, partly invasive security measures is that
they cannot be readily exported to other kind of environments also susceptible to
terror attacks (e.g., placing airport-like scanners surrounding a city square or busy
shopping street, or frisking every passer-by is out of question). More subtle surveil-
lance can be accomplished by using chemical or biological sensors tailored to detect
traces of explosives in their proximity (NRC, 2004; Singh, 2007; Yinon, 2007; Cay-
gill et al, 2012; Gares et al, 2016). In this sense, Kaplan and Kress (2005) studied the
deployment of such sensors in urban areas subject to pedestrian suicide-bombing at-
tacks. They analyzed different scenarios (an urban grid of streets and a large plaza or
park) and concluded that, while such sensors are not likely effective against random
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Fig. 1: The bart chart shows the number of casualties (dead and injured) in suicide at-
tacks in the period 2001-2015 (total year figures on top of each bar, scale on the left).
The black curve indicates the number of suicide attacks in this time frame (scale on
the right). Source: own elaboration based on data from (Chicago Project on Security
and Terrorism (CPOST), 2016).

attacks, they can play an important role in the defense of known targets. Building
on this work, Nie et al (2007) considered the case of a threat area with known tar-
gets on which a number of non-fully reliable sensors are deployed. They proposed a
branch-and-bound algorithm (BnB) and a greedy constructive heuristic to determine
the location of these sensors so as to minimize the casualties. The BnB algorithm
does not scale well with problem size, but the greedy heuristic is relatively effective
(although it will not guarantee finding the optimal solution in general). This same
approach has been recently applied by Yan and Nie (2016) in order to tackle a hy-
pothetical threat scenario where terrorists would utilize a small vessel to attack a
maritime target. A real–world case study corresponding to New York Harbor was
computationally addressed and results obtained for this particular instance by BnB
and greedy constructive algorithms were compared and analyzed.

Following these previous results, the problem is here approached for the first time
to the best of our knowledge from the point of view of iterative heuristics and meta-
heuristic techniques. We propose several algorithms based on local search, greedy
randomized adaptive search procedures and evolutionary algorithms, and analyze
their performance, comparing it to the greedy approach previously mentioned on an
extensive collection of synthetic and real scenarios. Before presenting the algorithms
considered and the experimental setup, let us firstly define formally the problem tack-
led. This is done in next section.
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2 Problem Description

Let us assume the goal is to protect a certain threat area or scenario which we can
model as a rectangular grid A = {Ai j}m×n. Each cell in this grid represents a small
square subarea which can be blocked if there is some physical obstruction (a wall, a
monument, etc.) that precludes its being traversed by the attacker, or unblocked if it
can be freely accessed. Some of these latter unblocked cells can be also objectives,
that is, cells that contain threatened individuals who may be targeted by the attacker.
To carry on this threat, the attacker can enter the scenario through some entrances,
namely specific unblocked cells typically placed in the boundaries of the grid. From
any of those entrances, the attacker will try to reach any of the objectives following
always a shortest path. Following (Nie et al, 2007), the attacker is able to move in a
straight line from the center of a grid cell to the center of any other one for which this
line does not intersect with a blocked cell. Thus, the path followed by the attacker
will be composed by a number of straight segments1, and can be computed by run-
ning classical algorithms –such as, e.g., Dijkstra’s algorithm or A*– on a weighted
complete graph G(V,E,w), where

– V = {〈i, j〉 | Ai j is unblocked}, i.e., a vertex per unblocked cell,
– E =V ×V , and
– w : E→ R is defined as

w((〈i1, j1〉,〈i2, j2〉)) = ζ

√
(i1− i2)2 +( j1− j2)2, (1)

(where ζ is the side of each grid cell) if there is no obstacle in the straight path
among both cells, and w(E) = ∞ otherwise.

Figure 2 shows an example 8× 8 scenario with 8 entrances, 6 blocked cells and 2
objectives. Notice how paths try to follow always a straight line towards the objective,
taking small detours if there are obstacles on the way.

With this setting in mind, the problem under consideration amounts to placing
some detectors in different unblocked cells of the grid. These detectors are perfectly
concealed from the attacker, but they are not fully reliable and will only detect attack-
ers that travel within a certain detection radius τ of the detector with a probability p
that depends on the length of the attacker’s path inside this detection area (a circle of
radius τ centered in the detector’s location). Detection does not imply neutralization
of the attacker though. It only amounts to firing some alarm that elicits response from
some enforcing agents, and that can lead to effective negation of the attack only if
the attacker is not yet very close to the objective, and with some probability θ . Let us
formalize the whole process in the following.

1 Note that the attacker following a non-shortest path would in principle imply a larger exposure to
detection and hence this assumption provides a baseline for evaluation, and is used too in related contexts
such as routing military ground operations (Kim et al, 2016). Also, according to the literature on modeling
realistic human walking paths, there seems to be a governing principle which is minimizing the time-
derivative of the curvature of the path (Arechavaleta et al, 2008). This mostly affects those cases in which
a turn has to be made, resulting in clothoid-like trajectories. Notice however that this effect may be minor
in light of factors such as the discretization of the map and the presence of obstacles (such as, e.g., street
walls) constraining the trajectory.
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Fig. 2: An 8× 8 scenario. Green cells correspond to entrances, blue ones to objec-
tives and gray cells represent blocked locations. Lines are shortest paths from each
entrance to each objective (note that paths would be extended backwards should a de-
tector be placed on any of the entrances). The dimension of each cell is 10m × 10m,
and the attacker must be neutralized at least 10m away from an objective (we assume
that the terrorist moves at a speed of 1m/s and that aborting the attack requires no
more than 10 seconds).

Let ε and φ be the number of entrances and objectives respectively. For each
entrance ei, 1 6 i 6 ε , and objective o j, 1 6 j 6 φ there is a path Pi j (we assume
for simplicity that the shortest path is unique – considering multiple paths does not
fundamentally affect the analysis below). The attacker will pick an entrance ei and an
objective o j with probability γi j (obviously, ∑

ε
i=1 ∑

φ

j=1 γi j = 1) and will subsequently
move along Pi j at speed v. Neutralizing the attack once detected takes some time tn
–at least 10s according to Kaplan and Kress (2005)– and hence once the attacker is
at distance vtn from the objective (distance measured along the path Pi j) no effective
neutralization is possible. Therefore, let us define P̄i j as the portion of the path Pi j
outside this “dead” zone, in which timely detection is still possible.

Now, let δ be the number of detectors in the scenario. A certain detector dk,
1 6 k 6 δ , will timely detect an attacker traveling through Pi j with probability

pi jk = 1− exp(−η li jk) (2)

where li jk is the length of the segment of P̄i j within the circle of radius τ centered at dk,
and η > 0 is a parameter (the detector’s instantaneous detection rate). It follows that
the larger this segment, the larger the detection probability (and obviously pi jk = 0
if li jk = 0, i.e., if the path is outside the detection radius of dk) – see Figure 3 for an
example. Following (Nie et al, 2007), detectors are assumed to work independently
of one another, and therefore the total probability of non-detection D̃i j if the attacker
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Fig. 3: A shortest path going from entrance ei to objective o j. Areas monitored by
detectors dk and d′k are those enclosed by circumferences. The segments of this path
detected by both detectors are shown with a dotted line and denoted by li jk and li jk′ .

follows Pi j is

D̃i j =
δ

∏
k=1

(1− pi jk) =
δ

∏
k=1

exp(−η li jk) = exp(−η

δ

∑
k=1

li jk) (3)

In case of non-detection, the attacker will reach the objective o j causing a number
of casualties C j. This will be also the case, should the attacker be timely detected
but not effectively neutralized (an event that will happen with probability 1−θ ). The
expected number of casualties Wi j for this particular path will thus be

Wi j = D̃i jC j +(1− D̃i j)(1−θ)C j =C j
[
D̃i jθ +(1−θ)

]
(4)

The total number of casualties will take into account all possible paths Pi j the attacker
can take, that is, between any entrance ei and objective o j (and recall each of these is
picked with probability γi j):

W =
ε

∑
i=1

φ

∑
j=1

γi jWi j =
ε

∑
i=1

φ

∑
j=1

γi jC j
[
D̃i jθ +(1−θ)

]
= (5)

=
ε

∑
i=1

φ

∑
j=1

γi jC j(1−θ)+
ε

∑
i=1

φ

∑
j=1

γi jC jD̃i jθ = (6)

= (1−θ)
ε

∑
i=1

φ

∑
j=1

γi jC j +θ

ε

∑
i=1

φ

∑
j=1

γi jC j exp(−η

δ

∑
k=1

li jk) (7)
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The objective of the problem is thus placing δ detectors on the grid such that
Equation (7) is minimized (this actually implies minimizing the second term therein
since the first one is independent of the placement of the detectors). We shall denote
this problem as the Optimal Placement of Suicide-Bomber Detectors (OPSBD). No-
tice that the OPSBD share some similarities with maximal location covering prob-
lems (Farahani et al, 2012), namely the fact that facilities (i.e. detectors) are to be
located in order to service some customers (i.e. objectives). The OPSBD problem
has its own distinctive features though. For example, the distance from detectors to
objectives is to a large extent irrelevant (as long as it is larger than the neutralizing
distance) and the interaction between detectors is highly non-linear. Alternatively,
one could think of each cell through which a path goes as a “customer” (and again
each of them would have a different contribution depending on how many paths go
through it, the population density of the objectives those paths go to, the distance
from the detector, and the non-linear interaction among the latter).

3 Description of Algorithms

In this section, we describe the different algorithms for the OPSBD problem that we
have considered in this work. To this end, we shall start by presenting some general
algorithmic considerations that are applicable to all algorithms considered, namely
a cache data structure aimed to avoid recomputation and a dominance criterion that
reduces the search space. Subsequently, we will provide a detailed description of
all heuristics, namely a Greedy Randomized Adaptive Search Procedure (GRASP),
a Hill Climber (HC), an Evolutionary Algorithm (EA) and a Univariate Marginal
Distribution Algorithm (UMDA). Prior to these and for the sake of completeness, we
will also describe the Greedy algorithm proposed by Nie et al (2007), which will be
used to benchmark the remaining procedures.

3.1 General Algorithmic Considerations

All algorithms compared in this work use a cache data structure in order to accelerate
the otherwise repetitive computations needed during the optimization of a particular
instance.

This memory consists of several components. The first one is a three-dimensional
array Λ = {Λi jp}m×n×r whose first two dimensions correspond to the number of rows
(m) and columns (n) of the map. The third one corresponds to the total number of
paths going from each entrance in the map to each objective (r = εφ ). We assume
these are numbered according to some arbitrary predefined order, and use the nota-
tion ip, jp to denote respectively the entrance and objective corresponding to the p-th
path under said ordering. Each entry in this data structure stores the length of the
segment of the path that would be detected by placing a detector at the center of the
cell denoted by the two first dimensions, i.e., if detector dk is placed at cell (i′, j′),
Λi′ j′p = lip jpk, where lip jpk is as defined in previous section for the corresponding
values ip, jp,k.
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Fig. 4: Dominated cells in the map from Figure 2, assuming that a total of δ = 3
detectors are to be placed. The detector effectiveness radius is τ = 10m. Red bor-
dered cells can be safely disregarded as candidate locations for placing the detectors.
Lightest cells are more dominated than darker ones.

Another component of the cache is a bi-dimensional array ∆ = {∆i j}m×n, which
stores the number of times each cell in the map is dominated by remaining cells. We
say that a cell c1 = (i1, j1) is dominated by another cell c2 = (i2, j2) if,

∀p ∈ 1, . . .εφ : Λi1 j1 p 6 Λi2 j2 p (8)
∃p ∈ 1, . . .εφ : Λi1 j1 p < Λi2 j2 p (9)

that is, for all paths in the map, the length of the segment of that path that would be
detected by placing a detector at cell c1 is less than or equal to the one detected by
placing instead the detector at cell c2, and, for at least one path, the path detected by a
detector at c1 is strictly less than that detected from c2. This concept of dominance can
be used to prune the search space of the problem since those cells that are dominated
by a number of cells greater than or equal to the total number of detectors to be placed
at the map (i.e., ∆i j > δ ) can be pruned, since there exists at least δ cells better than
those. Figure 4 illustrates dominance values for the scenario shown before.

3.2 Greedy Algorithm

As mentioned above, this algorithm (denoted as Greedy henceforth) corresponds to
the one originally described in (Nie et al, 2007) and will be used to establish a baseline
for comparison purposes. This greedy heuristic is a constructive method that places
the δ detectors one at a time as depicted in the pseudo-code provided in Algorithm 1.

Firstly, the set of candidate detectors is initialized with all non-blocked cells in the
map minus those that are dominated by at least δ cells (line 1). The algorithm starts
from an empty solution (line 2) and from there on, the δ detectors are successively
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Algorithm 1: Greedy Algorithm
Input: δ (number of detectors to be placed)

1 candidates := {(r,c) | 1 6 r 6 m,1 6 c 6 n,Arc is unblocked ,∆r,c < δ};
2 sol :=∅;
3 while length(sol)< δ do
4 fitness∗ := ∞;
5 detector∗ := null;
6 for d ∈ candidates do
7 tentative := sol+{d};
8 if value(tentative)< fitness∗ then
9 detector∗ := d;

10 fitness∗ := value(tentative);
11 end
12 end
13 sol := sol+{detector∗};
14 candidates := candidates\{detector∗};
15 end
16 return sol;

added to the current partial solution sol (lines 3-15). In each iteration, the candidate
detector whose incorporation leads to the best extended solution –i.e., locally mini-
mizing Equation (7)– is selected (lines 6-12), added to current solution (line 13) and
removed from the set of candidate detectors (line 14).

As it can be seen, this greedy algorithm performs different locally optimal deci-
sions which can be taken with a low computational cost. However, due to the myopic
functioning of this scheme, the resulting final solution is not guaranteed to be opti-
mal. Although it was shown in (Nie et al, 2007) that the quality of solutions provided
by the greedy algorithm for this particular problem is not very far from the global
optimum for the relatively small-sized instances that were considered in that work, it
will be later shown in Section 4 that other heuristics can provide better solutions for
this problem if larger instances are considered.

3.3 Greedy Randomized Adaptive Search Procedure

The Greedy Randomized Adaptive Search Procedure (GRASP) (Feo and Resende,
1995; Festa and Resende, 2009a,b) is a metaheuristic that tries to alleviate the myopic
functioning associated with greedy algorithms. This is also a constructive algorithm
that adds one component of the solution at the time, but unlike the greedy algorithm,
the one leading to largest local improvement is not always selected.

The pseudo-code in Algorithm 2 is a description of the specific incarnation of the
general GRASP scheme that we have considered in this work. First of all, a candidate
list (CL) of partial solutions is built by extending the current partial solution (sol) with
all candidate detectors (lines 4-8). Subsequently, a restricted candidate list (RCL) is
built by selecting some detectors from the candidate list (lines 9-17). This is done by
using a threshold for the quality of tolerable partial solutions (µ), which we compute
as a percentage of the difference between the values of the best and worse solutions
in the candidate list (lines 9-11). Parameter α (0 6 α 6 1) of the algorithm controls
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Algorithm 2: GRASP Algorithm
Input: δ (number of detectors)

α (greedy temperation parameter)
1 candidates := {(r,c) | 1 6 r 6 m,1 6 c 6 n,Arc is unblocked,∆rc < δ};
2 sol :=∅;
3 while length(sol)< δ do
4 CL :=∅;
5 for d ∈ candidates do
6 tentative := sol+{d};
7 CL := CL∪{(tentative,d)};
8 end
9 min := argmin(s,d)∈CL value(s);

10 max := argmax(s,d)∈CL value(s);
11 µ := min+α(max−min);
12 RCL :=∅;
13 for (s,d) ∈ CL do
14 if value(s)6 µ then
15 RCL := RCL∪{(s,d)};
16 end
17 end
18 (sol,d) := RANDOMSELECT(RCL);
19 candidates := candidates\{d};
20 end
21 return sol;

the degree of greediness used. For instance, if α is 0, then only the best extended
solution is included in the RCL (this would correspond to a greedy selection strategy).
For greater values of α , more tentative decisions can be included in the RCL (all
of them would be included when α = 1) so that selection is less intense and the
search is diversified. The next detector to be added to the solution is randomly chosen
from the RCL in an uniform way (line 18). This process concludes when the solution
being built is complete, i.e., it includes δ detectors. Although it is not shown in the
pseudo-code, this whole process can be repeated until the maximum execution time
is exhausted. The best solution found is then returned.

3.4 Hill Climbing

A simple and effective class of optimization heuristics based on the notion of neigh-
borhood is Local Search (Aarts and Lenstra, 1997; Hoos and Stützle, 2005). As op-
posed to constructive methods, Local Search algorithms are procedures that work
with complete solutions to the problem. In these algorithms, an initial solution is
provided (which can either be constructed randomly or by means of another heuris-
tic). Then, its neighborhood is examined, and if a better solution is found, a move
is performed towards it. The process is repeated with the new solution until a local
optimum is found.

Here, we consider a Hill Climbing (HC) algorithm. In the pseudo-code for this
procedure (shown in Algorithm 3), sol denotes a complete solution to be improved,
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Algorithm 3: Hill Climbing Algorithm
Input: sol (a collection with the coordinates of δ detectors)

1 candidates := {(r,c) | 1 6 r 6 m,1 6 c 6 n,Arc is unblocked,∆rc < δ};
2 improvement := true;
3 while improvement do
4 improvement := false;
5 for i := 1 to length(sol) do
6 for d ∈ (candidates\{d |d ∈ sol}) do
7 tentative := REPLACE(sol, i,d);
8 if value(tentative)< value(sol) then
9 sol := tentative;

10 improvement := true;
11 end
12 end
13 end
14 end
15 return sol;

represented as a collection of locations for different detectors. The algorithm substi-
tutes one detector location in the current solution for all unused candidate locations
for the problem instance (REPLACE(sol, i,d) denotes the solution that is obtained by
replacing i-th detector in solution sol by alternative detector d – see line 7) and selects
the one leading to a better solution (lines 8-11). If, as a result of this replacement, the
new solution is better than the current one, the corresponding move is accepted (line
9) and an improvement is acknowledged (line 10). Using the new solution, the same
process is repeated for the rest of detectors. The process is iterated as long as the so-
lution has been improved, until no further enhancement is possible. The final solution
is a local optimum and is returned as a result. Different starting solutions can be used
and the whole scheme can be repeated until the maximum allowed execution time is
reached.

3.5 Evolutionary Algorithm

Evolutionary algorithms (EAs) (Eiben and Smith, 2003) are black-box optimization
procedures inspired by the biological evolution of species that work with a popula-
tion of solutions subject to different operations such as reproduction, recombination,
mutation and replacement. In this section, we describe a steady-state evolutionary
algorithm that we have considered in order to tackle the OPSBD problem.

The pseudo-code of the EA is depicted in Algorithm 4. As shown, the algorithm
uses a population (pop) of popSize non-repeated individuals, each one corresponding
to one full solution to the problem. Each of these individuals is represented as a
vector whose length is the number of detectors (δ ) to be placed at the map. Hence,
each element in the vector corresponds to one of the cells in the map where one of the
detectors should be placed. Similarly to previous heuristics, the search space explored
by the EA is restricted to non-blocked cells in the map minus those that are dominated
by at least δ cells. Each solution in the population is initialized by randomly selecting
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Algorithm 4: Evolutionary Algorithm
Input: popSize (population size)

pX (recombination probability)
pm (mutation probability)

1 for i := 1 to popSize do
2 popi := RANDOMINDIVIDUAL();
3 EVALUATE(popi);
4 end
5 while allowed runtime not exceeded do
6 if recombination is performed(pX ) then
7 parent1 := SELECT(pop);
8 parent2 := SELECT(pop);
9 offspring := RECOMBINE(parent1, parent2);

10 else
11 offspring := SELECT(pop);
12 end
13 offspring := MUTATE(pm,offspring);
14 EVALUATE(offspring);
15 pop := REPLACE(pop, offspring);
16 end
17 return best solution found;

in an uniform way some of these cells (lines 1-4). Afterwards, the following process
is repeated, until the maximum allowed execution time is reached:

– With probability of selection pX , two parents are selected from the current popu-
lation using binary tournament selection (lines 7-9). Let us now consider the set
comprising the union of detector placements included in selected individuals. A
new individual, constituting the offspring for this generation, is then defined by
sampling in a random way δ different placements from this previous set.

– Otherwise (with probability 1− pX ) a random individual of current population is
selected as the offspring (line 11).

– Each component of the offspring is mutated with probability pm by replacing the
corresponding detector in that component with another one not included in the
solution (line 13), and the resulting individual is evaluated (line 14).

– As to replacement, the worst individual in the current population is replaced by
the offspring (line 15).

Finally, when the execution time limit is reached, the best individual found is returned
as a solution.

3.6 Univariate Marginal Distribution Algorithm

Finally, we have taken into account a Univariate Marginal Distribution Algorithm
(UMDA) (Mühlenbein and Paaß, 1996), a metaheuristic which belongs to the class of
Estimation of Distribution Algorithms (EDAs) (Larrañaga and Lozano, 2002). EDAs
are themselves based on Evolutionary Algorithms, but whereas most classical EAs
build new solutions using recombination and mutation operators, EDAs do this by
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Algorithm 5: Estimation of Distribution Algorithm
Input: popSize (population size)

1 model := BUILDINITIALMODEL();
2 for i := 1 to popSize do
3 popi := SAMPLEINDIVIDUAL(model);
4 EVALUATE(popi);
5 end
6 while allowed runtime not exceeded do
7 pop′ := SELECT(pop);
8 model := BUILDMODEL(pop′);
9 for i := 1 to popSize do

10 popi := SAMPLEINDIVIDUAL(model);
11 EVALUATE(popi);
12 end
13 end
14 return best solution found;

sampling an explicit probability model which is updated along the optimization pro-
cess. This model can be encoded in different ways, and, in the case of UMDAs, a
simple univariate linear model is used. The general functioning of an EDA is illus-
trated in Algorithm 5.

In our case, we use a GRASP-based encoding (Cotta and Fernández, 2004), that
is, individuals in the population encode the indexes in the RCL of the decisions that
the GRASP algorithm would pick to place each detector, and the univariate proba-
bility distribution is used to model these indexes. More precisely, each solution is a
vector x ∈Nδ−1, where xi indicates that the ith detector is picked as the xith best (ac-
cording to the greedy selection criterion) option available at that point, once that the
previous i−1 detectors have been placed (e.g., vector x = 0 would encode the greedy
solution described in Section 3.2 since all detectors would be picked according to the
best local decision). Note that the length of x is δ −1 because it does not make sense
to place the last detector in any other location than the locally optimal one.

In the univariate model these variables are assumed to be independent and hence
the probability distribution p(x) is factorized as

p(x = 〈v1, . . . ,vδ−1〉) =
δ−1

∏
i=1

p(xi = vi). (10)

UMDA computes p(xi = vi) as

p(xi = vi) =
1
|pop′|

|pop′|

∑
j=1

[pop′ji = vi], (11)

where pop′ji is the ith variable of the jth solution in pop′ and [·] : B→ {0,1} is an
indicator function ([true] = 1, [false] = 0).

At the beginning of the algorithm, the model is initialized (BUILDINITIALMODEL
in line 1) in a heuristic way: the GRASP algorithm described in Section 3.3 is run
popSize times for a certain fixed value of α , and the decision vectors generated in
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those runs are used to create the initial model as indicated in Equation 11. Function
SAMPLEINDIVIDUAL is used to create the individuals in the initial population (line
3) by sampling the probabilistic model built. These individuals are decoded (using
a guided GRASP algorithm as mentioned before) in order to be evaluated (line 4).
From there on, the algorithm goes into an iterative process until the allowed execu-
tion time is exhausted. During each iteration, a new population of selected solutions
from the current population is built by using truncation of the lower half (quality-
wise) of the population (line 7), a new model is created by using the greedy order
of detectors in these solutions (line 8), and a new population to be used in the next
iteration is generated by sampling the new model (lines 9-12).

4 Experimental Results

In this section, we analyze the results of different experiments we have carried out
regarding the OPSBD problem. First of all, we do a comparison of the performance
of the various algorithms introduced in Section 3 on a extensive set of synthetic in-
stances comprising a broad combination of parameters. Next, we do a sensitivity anal-
ysis on the performance of the most effective algorithm found in previous compari-
son, with the aim of understanding how different settings for parameters are related
to the difficulty of problem instances. Finally, we evaluate how the best algorithm
performs in the case of instances representing real world locations.

Although, as mentioned previously, we have considered a large set of settings for
doing these experiments, there are some parameters for which we have used values
which are good approximations to their typical configurations in a real environment
and/or are analogous to the values previously used in the literature (Kaplan and Kress,
2005; Nie et al, 2007). In this way, we have assumed for simplicity that the probability
of the attacker for choosing each of the paths going from one entrance to an objective
is constant, i.e., γi j = 1/φε , as in (Nie et al, 2007). We have also contemplated that
effective neutralization of the attacker is not possible if the distance to the objective
is less than 10m (here we assume that aborting the attack is plausible if the attacker
is at least 10 seconds away from the objective and that the terrorist moves at a speed
of 1m/s). In the case of the detector’s instantaneous detection rate, we used a value
of η = 0.06 and for the probability of effectively neutralizing a detected attacker, we
used θ = 0.6. Finally, in order to estimate the expected number of casualties for an
objective cell C j,1 6 j 6 φ , we used equation [2] in (Kaplan and Kress, 2005) which
assumes that the number of fragments after the explosion tends to ∞ and that these
and individuals around the target area follow a spatial Poisson process. We used the
same parameters for this equation as those used in (Nie et al, 2007), except for the
population densities near objective cells, which was set as a constant there but we
modelled as a random variable in N (0.4,0.1) persons / m2 instead, with the aim of
considering more diverse instances (see previous references for full details).

Regarding the hardware platform used, all experiments in this paper were exe-
cuted on Intel Xeon E7-4870 2.4 GHz processors with 2GB of RAM running under
SUSE Linux Enterprise Server 11 operating system.
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4.1 Random instances

In this section we present results of an experimental comparison on the performance
of different proposed heuristics for the OPSBD problem. We have considered the
following algorithms with the parameterization indicated:

– The local search Hill Climbing algorithm presented in Section 3.4. This algorithm
was run on different random generated instances until the allowed execution time
was exhausted.

– The Evolutionary Algorithm described in Section 3.5. For this algorithm, we used
standard parameters and operators: a population size popSize = 100 individuals,
probability of crossover pX = 0.9, probability of mutation pm = 1/δ , binary tour-
nament selection mechanism and replacement of the worst individual.

– The Greedy Randomized Adaptive Procedure introduced in Section 3.3. In this
case, we have considered different settings for parameter α ∈ {0.1,0.25,0.5}. We
denote these by GRASPα=0.1, GRASPα=0.25 and GRASPα=0.5 respectively to
indicate the value of the parameter in each case. In addition, we have considered
a version of this same heuristic that performs a local search on each constructed
solution by using the Hill Climbing algorithm. We denote this latter variant by
GRASPα=0.1+HC (we have considered this hybrid approach just for α = 0.1).

– The Greedy algorithm originally introduced in (Nie et al, 2007).
– The Univariate Marginal Distribution Algorithm described in Section 3.6. The

parameters for this algorithm were: population size popSize = 100 individuals
and a selected population pop′ of 50 individuals. Three different settings for pa-
rameter α were used for building the initial probabilistic model, leading to three
versions of the algorithm: UMDAα=0.1, UMDAα=0.25 and UMDAα=0.5.

All algorithms have been run on random instances constructed using the follow-
ing combinations of parameters:

– Maps with dimensions of 32×32 and 64×64 cells.
– Different side lengths for cells comprising the maps: ζ ∈ {5,10,20} meters.
– Different number on entrances on each border of the map in {2,3,4} leading to

ε ∈ {8,12,16}.
– Different number of objective cells on the map: φ ∈ {2,4,6,8}.
– A percentage of blocked cells on the map of 5%.
– Different number of detectors to be placed on the map: δ ∈ {6,8,10}.
– A detection radius τ = 20 meters.

For each combination of these parameters, 25 random instances were considered,
thus this benchmark comprises a total of 5,400 different problem instances2. Follow-
ing (De Jong et al, 1997), each algorithm is run once on each instance thus allowing to
obtain a more representative measure of performance across the whole set of possible
instances than that obtained by performing multiple runs on a reduced hand-picked
set of instances for which a certain algorithm could have been better adapted. A max-
imum execution time of 5 seconds was allowed for each algorithm in the case of
32×32 instances, whereas the execution time allowed for 64×64 instances was 10

2 These instances are publicly available – see the Appendix for details.
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Table 1: Mean ranks of all algorithms on 32×32 and 64×64 cells instances.

position algorithm ranking

1st HC 1.28
2nd GRASPα=0.1+HC 1.83
3rd EA 3.17
4th GRASPα=0.1 4.82
5th UMDAα=0.1 4.93
6th GRASPα=0.25 6.08
7th UMDAα=0.25 6.75
8th Greedy 7.39
9th GRASPα=0.5 8.95
10th UMDAα=0.5 9.80

seconds. Since the cache data structure described in Section 3.1 has to be precom-
puted by all compared algorithms, its computation time is not included in these time
limits.

In order to measure performance in a comparable way across the huge collection
of problem instances considered, we have recorded the best results found by any
algorithm on each instance, and used these to calculate relative deviations to such
best known solutions. The results are summarized in Figure 5 showing box plots of
the distribution of relative deviations to best known solutions for different algorithms,
separately for the 32×32 and 64×64 instances. It can be seen that deviations are very
close to 0 for HC, which means that this algorithm was able to provide best known
solutions for most of the instances. The EA comes third, with distances that are also
quite close to 0. GRASPα=0.1 and GRASPα=0.25 are the next two better algorithms,
but their performance degrades clearly when compared to HC and EA. The value of
upper whisker for the distribution corresponding to Greedy on 32× 32 instances is
of a 4.59% relative distance to the optimum, whereas the same value for HC is 0%
and for EA is 0.48%. The difference is of a 5.78% in the case of 64× 64 instances.
This is an indications of the extent of improvements achieved by both heuristics over
Greedy.

Subsequently, a statistical test was used in order to analyze whether differences
among the different techniques are statistically significant. More precisely, the Fried-
man Test (FT) (Friedman, 1937, 1940), a non-parametric test based on rankings, has
been used for this purpose. If, as a result of this test, the null hypothesis stating equal-
ity of rankings between the different techniques is rejected, we proceed to post-hoc
procedures in order to detect statistical differences among different pairs of algo-
rithms. For this purpose, Shaffer’s static procedure (Shaffer, 1986) with a standard
significance level of α = 0.05 has been used. All these analysis were carried out us-
ing the software package provided by the Soft Computing and Intelligent Information
Systems group at University of Granada (Garcı́a and Herrera, 2008).

Firstly, the mean rank of all ten algorithms in the benchmark considered is com-
puted and shown in Table 1. As can be seen, the order of performance from best to
worst is: HC, followed by EA, the two variants of GRASP|UMDA using smallest
values of α , the Greedy algorithm and finally GRASP|UMDAα=0.5. To determine
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Fig. 5: Relative distances to best solutions of results provided by different algorithms
on (a) 32×32 instances and (b) 64×64 instances.
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Fig. 6: Qualified runtime distributions (QRTD) for best performing algorithms
(Greedy also included for comparison purposes) on 32×32 (left) and 64×64 (right)
instances. Curves show the probability of reaching best known solutions along time
for different algorithms.

the significance of these rank differences, the FT is performed and results in χ2
F =

1726.18, much larger than the critical value 16.92 for α = 0.05 (according to χ2 with
9 degrees of freedom). The p-value calculated by this test is actually p= 0 which pro-
vides strong evidence for rejecting equality of rankings. Shaffer’s post-hoc procedure,
at the same standard α = 0.05 level, found statistically significant differences be-
tween all pairs of algorithms, except for GRASPα=0.1 vs UMDAα=0.1, GRASPα=0.25
vs UMDAα=0.25, GRASPα=0.5 vs UMDAα=0.5, UMDAα=0.25 vs Greedy, and HC vs
GRASPα=0.1+HC. It can thus be concluded that using the GRASPα=0.1 component
for initializing solutions for the HC algorithm is not advantageous with respect to
using random initialization for this same purpose. Moreover, using the UMDA in or-
der to guide the search of GRASP does not provide benefits with respect to taking
random decisions, as it is done in the pure GRASP algorithm. From a more general
point of view, all the algorithms proposed in this paper have a better performance than
the Greedy algorithm from (Nie et al, 2007), except GRASPα=0.5 and UMDAα=0.5
(statistically worse) and UMDAα=0.25 (better than Greedy but not significantly so).
It can be also seen that the performance of GRASP algorithm improves with smaller
values of α , but this algorithm performs worse than HC and EA for this problem.

The behavior as anytime algorithms of both the best performing heuristics and
Greedy is analyzed in Figure 6. This figure shows Qualified Runtime Distributions
(QRTD) for the best three algorithms, namely HC, GRASPα=0.1+HC and EA on
32×32 and 64×64 instances. Such QRTDs show the probabilities of reaching best
known solutions as a function of execution time. It can be seen that the algorithm
that progresses faster towards high quality solutions is HC. This algorithm is able to
find best solutions for 90% of the 32×32 instances in about 1.5 seconds. For 64×64
instances, the same rate of success is achieved after 4.0 seconds of execution. Tak-
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Fig. 7: Relative distances to best known solutions of results provided by HC and
Greedy on 128×128 instances.

ing into account the context in which the OPSBD problem should be solved, these
seem to be sensible time requirements, amenable for fast-response adjustment of de-
tector locations. From a more detailed point of view, the previous analysis showed
that HC and GRASPα=0.1+HC were roughly equivalent with respect to the quality of
solutions they provide, but QRTDs show that GRASPα=0.1+HC is however slightly
slower than HC. As GRASPα=0.1+HC is a more complicated algorithm to implement
and also does not provide advantages over HC, we can conclude that using the latter
one is a better alternative to solve this problem. Regarding the EA, QRTDs also show
that it progresses at a slower rate than HC, as its curve is always below the one for
HC. Finally, although Greedy is not able to progress towards best solutions (it is a
deteministic constructive algorithm) its inclusion in the QRTDs allows comparing its
performance to the remaining algorithms on a time-quality basis. Notice that com-
pared to the EA, it provides a better solution initially, but the EA can outperform
Greedy in a matter of tenths of a second. This is exactly the expected behavior for
such a kind of algorithm, as Greedy local decisions can be made in a very fast way
but they are expected to be suboptimal in general.

Finally, we compared the best performing algorithm (HC) with the previous pro-
posal in the literature (Greedy) on larger random instances. In this case, maps con-
sisted of 128× 128 grids of cells and, for the rest of parameters, we considered the
same combinations as those we used previously for 32× 32 and 64× 64 instances.
Maximum allowed execution times were 10 seconds per instance in this case. A
Wilconxon signed ranked statistical test rejects the null hypothesis stating equality
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of rankings between the two algorithms (p-value=0). Boxplots for relative distances
to best known results are shown in Figure 7. It can be seen that HC algorithm also
provides consistently best results for these instances, and that Greedy is not able to
provide solutions with same quality. The value of upper whisker for the distribution
corresponding to these instances of Greedy is at a 5% relative distance to the opti-
mum, whereas the same value for HC algorithm is 0%.

Notice that the number of cells in the instance mostly affects the size of the search
space and the ability for fine-tuning solutions. Results of our experimentation indicate
that this parameter does not exert a strong influence on the quality of the results
though, as the value of upper whisker for the distribution corresponding to the relative
distances between the solutions provided by Greedy and HC is consistently close to
5% for the different settings of this parameter that we have considered: 32x32, 64x64
and 128x128.

4.2 Sensitivity Analysis

In this section, we perform a sensitivity analysis on the performance of the Hill
Climbing algorithm (Section 3.4) with respect to Greedy (Section 3.2) with the aim
of studying which parameter settings of the problem lead to a larger performance gap
among these two techniques. The rationale for this procedure is that if the relative im-
provement of the solution provided by Hill Climbing over Greedy increases for some
parameter settings, it can be considered that those instances turn out to be harder-to-
solve for the latter. The different parameters and settings that have been analyzed are
a superset of those considered in the previous section, namely:

– Maps with dimensions of 32×32 and 64×64 cells.
– Different side lengths for cells comprising the maps: ζ ∈ {5,10,20} meters.
– Different number on entrances on each border of the map in {2,3,4} leading to

ε ∈ {8,12,16}.
– Different number of objective cells on the map: φ ∈ {2,4,6,8}.
– Different percentages of blocked cells on the map: ϖ ∈ {2.5%,5%,10%}.
– Different number of detectors to be placed on the map: δ ∈ {2,4,6,8,10}.
– Different values of the detection radius: τ ∈ {10,20,40} meters.

All possible combinations of these parameter settings lead to 3,240 different kinds
of instances, and for each of them, we have considered 25 random instances, so that
our analysis comprises a total of 81,000 different instances. In the case of 32×32 cell
maps, the maximum execution time allowed for the algorithms on each instances was
5 seconds whereas in the case of 64×64 maps, this time was extended to 10 seconds.

4.2.1 Percentage of Blocked Cells

We firstly analyzed differences between maps with varying percentages of blocked
cells (ϖ ∈ {2.5%,5%,10%}). The ranking is shown in Figure 8. The value of the
Friedman statistic is χ2

F = 7.59 that corresponds to a p-value = 0.02 (the critical
value is in this case is distributed according to χ2 with 2 degrees of freedom, yielding
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Fig. 8: Relative improvements of HC over Greedy for different percentages of
blocked cells (ϖ) in the map. Settings are ordered (left to right) from more difficult
to easier ones. Rankings are shown at the right side of labels. In order to interpret this
figure and subsequent ones in this subsection, notice that the boxplots depict the dis-
tribution of the aggregated data and show the range of variation in each case, whereas
the rankings are computed by aligning the results obtained by each algorithm on the
instances generated by each parameter combination and are used by the statistical
tests.

5.99). This provides evidence for rejecting the null hypothesis that states equality of
rankings between the different settings for ϖ . The order in Figure 8 goes from more
difficult instances to easier ones, so that the first position corresponds to the setting
for which the Hill Climbing algorithm provides the largest improvement. Post-hoc
procedures only show statistical significant differences, at the standard significance
level of α = 0.05, between configurations for ϖ parameter of 2.5% vs 10%. Thus,
it can be seen that a lower percentage of blocked cells leads to maps that are harder
to solve for Greedy, but also that there are no differences between the intermediate
setting for this parameter and the smaller or larger ones. We interpret this result in
terms of the broader dispersion of shortest paths in instances with fewer obstacles,
which makes more difficult to find major cross points and hence the goodness of
solutions relies on the distribution of detectors with a more global perspective, as
opposed to covering a couple of critical points and use the remaining detectors for
fine tuning.
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Fig. 9: Relative improvements of HC over Greedy for different side lengths (ζ ) of
cells in the grid. Settings are ordered (left to right) from more difficult to easier ones.
Rankings are shown at the right side of labels.

4.2.2 Side Length of Cells

Regarding side lengths of cells (ζ ) in the grid, the ranking is shown in Figure 9. We
obtain χ2

F = 518.25, corresponding to a p-value = 2.34 · 10−10 (the critical value is
here distributed again according to χ2 with 2 degrees of freedom, yielding 5.99).
Thus, there is strong evidence for rejecting the null hypothesis that states equality of
rankings between the different settings for ζ . In this case, post-hoc procedures found
statistically significant differences (at the standard significance level of α = 0.05)
between all possible settings for this parameter. It can be seen that the difficulty
of instances increases as cell sizes decrease. One possible explanation for this phe-
nomenon may be that having a more fine-grained map allows for a more precise
placement of detectors in the map. This seems to be better exploited by Hill Climb-
ing, that has more choices for fine-tuning the solution from a global perspective (as
opposed to the local approach of Greedy).

4.2.3 Detection Radius

The detectors placed in the map may have a different radius of effectiveness. Here
we consider settings for this parameter in τ ∈ {10m,20m,40m}. The resulting rank-
ing is shown in Figure 10. We obtain χ2

F = 825.17, corresponding to a p-value =
2.9 ·10−10 (the critical value is once again distributed according to χ2 with 2 degrees
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Fig. 10: Relative improvements of HC over Greedy for different values of the detec-
tion radius (τ). Settings are ordered (left to right) from more difficult to easier ones.
Rankings are shown at the right side of labels.

of freedom). Hence, the null hypothesis stating equality of rankings between the dif-
ferent settings for this parameter should be rejected. In the case of this parameter,
post-hoc procedures found statistically significant differences (at the standard signif-
icance level of α = 0.05) between all pairs of settings. It must be noted that for this
parameter harder instances are those with an intermediate radius of detection. One
interpretation of these results may be that a smaller radius leads to less interactions
between the detectors and paths followed by terrorists, whereas a very large radius al-
lows for one detector to cover a great extent of the map, thus simplifying the difficulty
of the problem. It is the intermediate radius τ = 20m that leads to harder instances
in this case as there is a good degree of interaction of each detector with different
paths and, at the same time, the radius is small enough for a precise placement of the
detector to turn out to be crucial. Of course, this effect also depends on the number of
detectors to be placed since, if this number is large, a suboptimal placement of some
detectors may be to some extent compensated by other detectors covering the same
paths. In this case, the smaller the detection radius, the more influential the location
of the detectors would become.

4.2.4 Number of Detectors

We have considered different number of detectors (δ ) to be placed on the map. Rank-
ings are shown in Figure 11. The associated Friedman statistic is χ2

F = 763.50 which
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Fig. 11: Relative improvements of HC over Greedy for different number of detectors
(δ ) placed on the map. Settings are ordered (left to right) from more difficult to easier
ones. Rankings are shown at the right side of labels.

implies a p-value = 2.41 ·10−10 (the critical value is in this case distributed according
to χ2 with 4 degrees of freedom, yielding 9.49) and thus there are significant differ-
ences for different settings of this parameter. Post-hoc procedures found statistically
significant differences (at the standard significance level of α = 0.05) between all
pairs of settings except for 6 vs. 8. Results show that instances with a smaller number
of detectors (δ ∈ {2,4}) are the easiest ones, but also that instances with the maxi-
mum number of detectors (δ=10) are easier than those with 8 and 6 detectors. One
interpretation of these results is that the search space for a small number of detectors
is relatively easy to explore for different algorithms, but also that having a higher
number of detectors allows for placing them in a less precise way without affecting
in a significant way the quality of the solution. In other words, instances with an in-
termediate number of detectors lead to a large enough search space which raises the
difficulty of the problem. At the same time, a precise placement of the limited number
of available detectors is required in order to provide high-quality solutions for these
instances.

4.2.5 Number of Entrances

Regarding the number of entrances on the map (ε), we have considered 2, 3 and 4 en-
trances on each side of the map, which leads to the following settings: ε ∈ {8,12,16}.
Rankings are shown in Figure 12. The Friedman statistic is χ2

F = 202.47 and the cor-
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Fig. 12: Relative improvements of HC over Greedy for different number of entrances
(ε) on the map. Settings are ordered (left to right) from more difficult to easier ones.
Rankings are shown at the right side of labels.

responding p-value is 9.97 · 10−11 (the critical value is in this case distributed ac-
cording to χ2 with 2 degrees of freedom, yielding 5.99). Post-hoc procedures found
differences (at the standard significance level of α = 0.05) between all pairs of set-
tings for this parameter. In this case, the larger the number of entrances, the easier the
resulting problem instances are. This result can be interpreted in terms of the number
of paths (which is proportional to the number of entrances). Recall that the probabil-
ity of targeting a certain objective is distributed across the different paths emanating
from each entrance. Therefore, the larger the number of entrances, the smaller the
weight of individual paths. This means that adjusting the precise location of a de-
tector will yield a smaller variation of the objective function as a result of the the
different coverage of the numerous existing paths. Of course, we cannot take this
argument to the opposite limit because if the number of entrances was very low it
would be easy to cover the paths by any appropriate heuristic.

4.2.6 Number of Objectives

Here we consider maps with different numbers of objective cells (φ ∈ {2,4,6,8}).
Rankings are shown in Figure 13. The Friedman statistic is χ2

F = 94.69, implying a
p-value = 5,74 · 10−11 (the critical value is in this case distributed according to χ2

with 3 degrees of freedom, yielding 7.81). Post-hoc procedures in this case show that
there are not statistically significant differences (at the standard significance level of
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Fig. 13: Relative improvements of HC over Greedy for different number of objectives
(φ ) on the map. Settings are ordered (left to right) from more difficult to easier ones.
Rankings are shown at the right side of labels.

α = 0.05) between maps with 2 and 8 objectives. In this case, instances with the low-
est (φ = 2) and highest (φ = 8) number of objectives are thus indistinguishable, and
both lead to easiest-to-solve instances. For intermediate settings of this parameter, in-
stances with φ = 4 are harder-to-solve than those with φ = 6. These results are partly
explained in accordance to the argument laid down in Section 4.2.5 for the number of
entrances, since the number of paths is also proportional to the number of objectives.
In this sense, the lower limit (φ = 2) correspond to instances in which there can be
little variation of quality in solutions because most paths leading to objectives can be
adequately covered. Similarly, in the upper limit (φ = 8) the detectors need to cover
much ground and as a result adjusting the location of a detector placed by Greedy can
increase the coverage of some paths at the expense of others, resulting in the smallest
window of improvements.

4.3 Real Instances

Finally, we have deployed Hill Climbing and Greedy on some more realistic instances
resembling the features exhibited by urban areas that might be subject to a terrorist
attack. These are depicted in Figures 14a–14c and comprise three different scenar-
ios: (1) a large square, (2) an old-town area and (3) a mixture of the previous two –
see Table 2. All of them have been constructed based on real-world locations. Objec-
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Table 2: Description of the three realistic scenarios considered in the experimentation.

Number of Number of
Name Area (m2) entrances (ε) objectives (φ ) Description
map1 160×160 22 61 A large square surrounded by buildings

and with only a few entrances, in which
several monuments and other obstacles are
scattered.

map2 224×224 16 25 An old-town area featuring small plazas
and curvy, non-perpendicular streets that
connect them.

map3 352×352 11 9 A mixture of the two previous scenarios
that includes a large square and some ad-
jacent streets

(a) (b) (c)

Fig. 14: Realistic maps considered. (a) A large plaza in the city center. (b) An old-
town urban area with curvy streets and small plazas. (c) A mixed scenario including
both a large plaza and some adjacent streets.

tives in these scenarios correspond to typical crowded places such as cafe terraces,
small flea-markets or bazaars, or monuments with great touristic attractive and other
iconic landmarks that gather people around them. All scenarios are represented on
a 32× 32 grid. These instances will be used to test the comparative performance of
both algorithms (Hill Climbing and Greedy) in a more pragmatic context, identify-
ing the circumstances under which there is a larger quality gap between them and
how different the solutions provided by either algorithm are from a structural point
of view.

The experimentation has been done with a number of detectors δ ranging from
1 to 50 and for different values of the detector radius τ ∈ {10,20,40} meters. All
experiments have been replicated 25 times for each combination of map, number of
detectors and detection radius. We let the Hill Climbing algorithm run for 10 seconds
or until an local optimum was found (cf. Algorithm 3). This resulted in Hill Climb-
ing taking an average of 4.45 seconds to provide its final solution (standard error
σx̄ = 0.043s). Hill Climbing has consistently found the same solution in each case
(Greedy is deterministic and therefore only one run is required per test case). The
results are summarized in Figure 15a, in which the average relative improvement of
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Fig. 15: (a) Relative improvement of solutions provided by HC over those provided
by Greedy algorithm across the three scenarios, as a function of the number of de-
tectors δ for different values of the detection radius τ . The shaded areas indicate the
standard error. (b) Cumulative distribution of improvements depending on the detec-
tion radius τ . The inner quartiles are shown.

Hill Climbing over Greedy is shown. As can be seen, this improvement is always pos-
itive for any number of detectors. Indeed, this improvement is statistically significant
(p-value ≈ 0) according to a Wilcoxon signed rank test for any scenario and detec-
tion radius, except for map3 and τ = 40. Aggregating the results for all values of τ ,
the improvement is also statistically significant for all scenarios (again p-value ≈ 0).
Not surprisingly, the relative improvement initially increases when more detectors are
used, and then declines after reaching a certain peak. Obviously, as more and more
detectors are placed the fitness function starts to saturate (recall Equation 7 – when
the coverage of the paths is large, an additional increase in this coverage only implies
a small fitness increase due to the exponential decay of the last term of the equation).
It is nevertheless interesting to note two qualitative differences in behavior depending
on the value of the detection radius. Firstly, as τ decreases, the peak is located in an
interval comprising more detectors. This is more precisely depicted in Figure 15b,
in which the cumulative distribution of improvement is shown (normalized in terms
of percentiles for comparison purposes). If we focus on the central half of the distri-
bution (that is, the second and third quartiles), it comprises δ ∈ [4,7] for τ = 40m,
δ ∈ [6,12] for τ = 20m, and δ ∈ [13,24] for τ = 10m. This can be interpreted in terms
of the area covered by each detector in that case: as the detection radius increases,
larger segments of the paths can be covered and therefore the fitness functions starts
to saturate at an earlier point than it would for smaller detection radius. In the latter



Metaheuristic Approaches to the Placement of Suicide Bomber Detectors 29

1
2

3

4

5

6

(a) (b)

Fig. 16: Solutions found for map2 using δ = 6 detectors of radius τ = 40m. (a)
Greedy (b) Hill Climbing. The numbers close to detector locations in the left image
indicate the order in which Greedy places the detectors.

case, adjusting the location of detectors result in comparatively smaller length vari-
ations in the paths covered, implying that the fitness function saturates more slowly
(and hence for a larger interval of detectors) and relative improvements are compar-
atively smaller than for larger values of the detection radius. Indeed, if we perform
a head-to-head comparison among the values obtained on each map and number of
detectors for each value of τ , we observe that τ = 10 ranks better than τ ∈ {20,40}
(mean ranks are 1.48, 1.87 and 2.65 respectively), the differences being statistically
significant (Friedman test p-value ≈ 0, Shaffer’s test passed at α = 0.05 for all pairs
of values of τ). This is in agreement with the interpretation laid down in Section 4.2
for random instances, and underlines the larger interval for which improvements are
obtained for decreasing values of the detector radius.

Figure 16 show a comparison of the solutions found by Greedy and Hill Climbing
on a specific case, namely the old-town scenario with δ = 6 and τ = 40m. Notice
how the solution created by Greedy places the first three detectors trying to cover the
densest target areas. Then, it tends to place the next two detectors in partial overlap
with the first two, aiming to maximize the coverage of these areas by virtue of the
independent functioning of the detectors. Finally, the last detector is placed close to
a corner of the map, covering paths originating in two entrances. On the other hand,
the solution provided by Hill Climbing has three detectors in locations rather close,
but not identical, to the first three detectors placed by Greedy. This slight variation
in their locations allows to place the remaining three in strategical positions to cover
all paths originating in the four upper entrances, in three of the lower entrances, and
in one of the entrances in the right part whose paths were receiving less attention by
Greedy. Overall, the solution found by Hill Climbing has a more global rationale and
looks more spatially balanced.
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5 Conclusions

Suicide bombing is an infamous form of terrorism that presently causes a large num-
ber of casualties worldwide. In this work we have researched the problem of placing
a number of non-fully reliable detectors on a threat area with known targets with the
aim of maximizing chances of detecting a suicide-bombing attack, thus minimizing
the expected number of casualties.

Apart from a branch-and-bound algorithm that does not scale well with prob-
lem size, the only previous proposal in the literature to tackle this problem was a
greedy algorithm. We have approached this problem for the first time to the best of
our knowledge from the point of view of iterative heuristics and metaheuristic tech-
niques. To this end, we firstly performed an experimental comparison of the different
proposed algorithms on a benchmark comprising a large set of random instances with
different parameterizations. Results indicate that, among all considered techniques,
a Hill Climbing algorithm obtains the best results in a consistent way, clearly out-
performing the previous proposal from the literature, as well as other metaheuristic
approaches. While the latter may be further improved by including other algorithmic
components, it is interesting to note how such a relatively simple heuristic can provide
a comparatively good performance, suggesting the appropriateness of search intensi-
fication in this context. Secondly, we did a sensitivity analysis in order to determine
those settings of problem parameters leading to harder-to-solve instances. Thirdly,
the Hill Climbing heuristic (as the best performing algorithm) was experimentally
compared to the greedy algorithm (as the previous approach in the literature) on a set
of real world scenarios that could be subject to terrorist attacks. Results of these tests
corroborate the good performance of Hill Climbing observed before.

Different lines of research are open as future work to the present study. First of
all, alternative algorithmic approaches can be explored. For instance, we have ob-
served that the proposed UMDA is able to outperform GRASP in case the maximum
allowed execution time is increased. Designing an alternative probabilistic model or
performing new experimental comparisons with increased allowed execution times
constitute promising extensions to this paper. Another promising proposal is to hy-
bridize in a synergistic way the EA and Hill Climbing algorithms, as best performing
algorithms studied in this work. To this end, Memetic Algorithms (Neri et al, 2012)
constitute a well established and successful framework that can be used for this pur-
pose. Also, more sophisticated versions of the problem studied could be also tackled
in future work, like, for instance, considering more precise models of the functioning
of detectors or making dynamic the locations of targets, so that their situation and
even their number may vary along time. Notice finally that the interesting connection
between the OPSBD problem and maximal covering location problems mentioned in
Sect. 2 could be also used as a source of inspiration for designing new, more complex
algorithmic approaches to this problem in future work.
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A Data Instances

The data instances used in the experimentation can be downloaded from:
– Synthetic instances:

– 32×32: https://doi.org/10.6084/m9.figshare.4542691.v1
– 64×64: https://doi.org/10.6084/m9.figshare.4542700.v1
– 128×128: https://doi.org/10.6084/m9.figshare.4542706.v1

– Realistic instances: https://doi.org/10.6084/m9.figshare.4542817.v1
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