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Abstract. The problem of finding the optimal placement of emergency
exits in an indoor environment to facilitate the rapid and orderly evacu-
ation of crowds is addressed in this work. A cellular-automaton model is
used to simulate the behavior of pedestrians in such scenarios, taking into
account factors such as the environment, the pedestrians themselves, and
the interactions among them. A metric is proposed to determine how suc-
cessful or satisfactory an evacuation was. Subsequently, two metaheuris-
tic algorithms, namely an iterated greedy heuristic and an evolutionary
algorithm (EA) are proposed to solve the optimization problem. A com-
parative analysis shows that the proposed EA is able to find effective
solutions for different scenarios, and that an island-based version of it
outperforms the other two algorithms in terms of solution quality.

Keywords: Pedestrian Evacuation · Cellular Automata · Greedy Heuris-
tics · Evolutionary Algorithms.

1 Introduction

In the event of an emergency, the rapid and orderly evacuation of crowds from
enclosed spaces is essential to minimize casualties and ensure public safety. Need-
less to say, it can also become a critical challenge requiring meticulous planning
at different levels, in order to avoid panic, bottlenecks, and potential harm to
people in a potentially chaotic scenario [9]. There are different factors that need
being taken into account depending on the specificities of each situation (e.g.,
what the particulars of the environment are, what the typical size and composi-
tion of the crowd is, and so on), and the level at which the planning is done (e.g.,
architectural decisions, signaling, etc.). In this work we are specifically concerned
about the placement of emergency exits in the most convenient way to facilitate
the efficient evacuation of the crowd.
⋆ This work is supported by Spanish Ministry of Science and Innovation under project

Bio4Res (PID2021-125184NB-I00 – http://bio4res.lcc.uma.es) and by Universidad
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In order to approach any evacuation optimization problem –such as the one
considered here– and attain safe and efficient evacuation plans, understanding
and predicting the behavior of pedestrians is of paramount importance. How-
ever, pedestrian evacuation is a complex and dynamic process, influenced by
many factors, such as the environment, the pedestrians themselves, and the
interactions among them. Therefore, modeling pedestrian evacuation is a chal-
lenging task that requires a balance between simplicity and realism. There are
different tools that can be used for this purpose, depending on the scope of the
simulation. Thus, whereas macroscopic approaches will often consider the crowd
as a continuous medium whose flow is to be modeled, e.g., see [2,8], microscopic
models will focus on the pedestrians –the individual components of the crowd–
and model the crowd behavior as an emergent property of the collective behav-
ior of those individual agents. The latter models can be further divided into two
major categories, namely models based on social forces (in which pedestrians are
particles in a continuous space, subject to different forces resulting from their
interaction with the environment and other particles, e.g., [3,12]), and cellular-
automaton (CA) models (in which the environment is modeled as a discrete
grid, and pedestrians transition between these following some predefined rules,
e.g.,[16,18]). We refer to [4,13] for a more in-depth survey of all these approaches.

We have precisely considered the CA approach in this work, and devised a
model for modeling the behavior of a crowd evacuating an indoor environment
(see Sect. 3). Using this tool, we aim to find which would be the most appropriate
location for emergency exits. This also entails defining appropriate metrics to
assess to which extent an evacuation was successful/satisfactory or not. We do
this in Sect. 2. Subsequently, we consider different algorithmic approaches to
tackle this problem. To be precise, we devise an iterated greedy heuristic and
an evolutionary algorithm (EA) for this purpose (see Sect. 4). We conduct an
extensive experimentation to analyze the performance of these algorithms (as
well as an island-based version of the EA) in Sect. 5. Our main aim in this work is
to determine the effectiveness of these approaches for this particular optimization
setting, as a stepping stone for devising more powerful approaches and tackling
more complex evacuation scenarios. We close this work with a critical outlook
of the results and an overview of the following steps in this research.

2 Problem Statement

In order to model the evacuation problem, we need to start by formalizing the
indoor space from which the evacuation is attempted. To this end, let A be this
space, which we will assume to be a rectangular area of width w and height h.
This rectangular area represents the floor plan of an enclosed space and there-
fore all its boundaries are assumed to be blocked (i.e., to be non-traversable),
except in specific locations which will be denoted as accesses. More precisely, we
can define an access α as a pair (pα, wα), where pα denotes a point along the
perimeter (i.e., a value between 0 and 2(w + h), where 0 corresponds to a cer-
tain predefined reference point (e.g., the bottom-left corner of A) of the area at
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which the access is anchored, and wα denotes the width of the access along the
perimeter, that is, the access extends from pα to pα+wα

3. Now, within A there
may be a number of obstacles. Each obstacle o ⊆ A denotes a non-traversable
region (representing real-world objects such as walls or furniture). Therefore, the
whole environment can be represented as a tuple (w, h,A,O), where:

– w and h are the width and height of A respectively.
– A = {α1, . . . , αk} is a collection of accesses.
– O = {o1, . . . , om} is a collection of obstacles.

This environment is crowded with n pedestrians (they represent the users of
said environment, i.e., residents, workers, customers, etc. depending on what
it is being modeled) distributed along traversable areas of A. At time t = 0,
an emergency is declared and the evacuation of the place begins. Let M be a
model that can be used to predict the behavior of pedestrians in this context,
and how the evacuation process would then be conducted (cf. Sect. 3). Let ρi(t)
represent the position coordinates of the i-th pedestrian at time t, and let T be
the maximum time up to which the model is simulated. Then, we can split the
collection of pedestrians into two sets:

– evacuees ξ+ = { i | 1 ⩽ i ⩽ n, ∃ti ⩽ T : ∃α ∈ A : ρi(ti) ∈ α}, i.e., all
pedestrians i who manage to reach an access before T .

– non-evacuees ξ− = {1, . . . , n} \ ξ+, i.e., the pedestrians who could not reach
an access before T . Given a non-evacuee i, we can define di = minα∈A∥α −
ρi(T )∥, i.e., their distance to the nearest exit at the end of the simulation.

In order to quantify the extent to which the evacuation is successful, different
metrics could be used. We consider the following hierarchy of objectives:

1. The first goal is to minimize the number of non-evacuees |ξ−|. This has the
highest priority.

The next levels of the hierarchy depend on whether the first goal could be ac-
complished or not. In the first case (ξ− = ∅), we consider:

2a. Minimize the time at which the last pedestrian left the area, i.e., minimize
t∗ = max1⩽i⩽n ti.

3a. Minimize the average time at which pedestrians left the area, i.e., minimize
t̄ = 1

n

∑
1⩽i⩽n ti.

If the evacuation was however not complete, then:

2b. Minimize the minimum distance between a non-evacuee and an access, i.e.,
minimize d∗ = mini∈ξ− di.

3b. Minimize the average distance between non-evacuees and accesses, i.e., min-
imize d̄ = 1

n

∑
i∈ξ− di.

3 Note that since the perimeter is closed, the sum is to be understood as cycling back
to 0 when reaching 2(w + h).
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This hierarchy of goals can be combined into a single numerical value by using
appropriate weights that ensure that any comparison respects said hierarchy.
To be precise, let σ(A, S) be a tuple containing the evacuation status of each
pedestrian and the corresponding value of di or ti at the end of the simulation,
given that S = [ρ1(0), . . . , ρn(0)] are the initial positions in A of the pedestrians
at time t = 0. Then, we define:

f(σ(A, S)) = |ξ−|+ [ξ− = ∅]
(

1
T max1⩽i⩽n ti +

1
nT 2

∑
1⩽i⩽n ti

)
+

+ [ξ− ̸= ∅]
(

1
D mini∈ξ− di +

1
nD2

∑
i∈ξ− di

) (1)

where [·] are Iverson brackets, and D =
√
w2 + h2 is the diagonal of the area.

Now, we can formally define the Optimal Evacuation Problem (OEP) as:

Instance: a tuple (A,S, k, ω), where
• A = (w, h,A,O) is the environment.
• S = {S1, . . . , Sl} is a collection of initial configurations of n pedestrians,

i.e., for all 1 ⩽ i ⩽ l, |Si| = n.
• k ∈ N is a non-zero value that indicates the number of emergency exits

whose location is sought.
• ω > 0 is the width of emergency exits.

Solution: a collection E = {e1, . . . , ek} ⊂ [0, 2(w + h)], where each ei rep-
resents the location of an emergency exit and such that

ψ(E) =
1

l

∑
1⩽i⩽l

f(σ(A′, Si)) (2)

is minimal, where A′ is obtained from A by adding {(e1, ω), . . . , (ek, ω)} to
the existing accesses.

Having defined the problem, let us turn our attention to how pedestrian
behavior is modeled in next section.

3 A CA for modeling pedestrian evacuation

Cellular automata are simple and powerful tools to simulate complex systems,
as they can capture the emergence of global patterns from local interactions. In
this section, we describe the details of our CA model for pedestrian evacuation.

3.1 State of the CA

The state of the CA is the state of each cell in the environment (represented by
a regular lattice of square cells). Each cell can be in one of three states:

– empty: The cell is empty and can be occupied by a pedestrian.
– occupied: The cell is occupied by a pedestrian.
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– obstacle: The cell is occupied by an obstacle and cannot be occupied by a
pedestrian.

Some cells in the environment are marked as exit cells. These are the cells that
the pedestrians want to reach to leave the environment. We assume that pedes-
trians are rational and will try to find the shortest path to the nearest exit.
However, the presence of obstacles and other pedestrians can affect their move-
ment and make them choose alternative paths. To capture this behavior, we
define two concepts for each cell: the static field and the crowd repulsion. The
former is a measure of how close a cell is to an exit. The latter is a measure of
how crowded the neighborhood of a cell is, taking into account obstacles and
other pedestrians. We use these two concepts to calculate the desirability of a
cell, which is the probability that a pedestrian will move to that cell.

The static field of a cell is computed using Dijkstra’s algorithm, which is
a well-known algorithm for finding the shortest path between two nodes in a
weighted graph [6]. We consider the environment as a graph, where nodes are
cells and edges are connections between neighboring cells. The weight of an edge
is the geometric distance between the cell centers, if the target cell is not an
obstacle and infinity otherwise. Formally, we define the graph as G = (V,E),
where V is the set of cells in the environment and E is the set of edges between
neighboring cells. The weight function is w : E → R+, such that w(vi, vj) is the
geometric distance between cells vi and vj , as defined before. Let SPi,j be the
length of the shortest path from cell (i, j) to its nearest exit as computed by
Dijkstra’s algorithm. The static field of a cell (i, j) is then defined as:

SFi,j = 1− SPi,j

SPmax
(3)

where SPmax is the larger shortest path from any cell in the environment to its
nearest exit. This definition makes the static field be in [0,1] and only depend on
the relative distance of a cell to its nearest exit. The higher the static field, the
closer the cell is to an exit. Notice that, as this field is static, it does not change
over time and is only computed once before the simulation.

The crowd repulsion of a cell is computed using the number of reachable cells
in its neighborhood. A cell is reachable if it is currently empty and not blocked
by an obstacle. For each occupied cell (i, j), let Ni,j be the set of reachable cells
in its neighborhood. The repulsion of a cell (i, j) is defined as the inverse of one
plus the number of reachable cells in this neighborhood:

Ri,j = (1 + |Ni,j |)−1 (4)

where | · | denotes the cardinality of a set. This definition makes the repulsion be
in (0,1] and depend on how crowded the neighborhood of a cell is. The higher
the repulsion, the more crowded the neighborhood is.

The desirability of a cell is computed using a combination of the static field
and the crowd repulsion. We introduce two parameters to weight the importance
of these two factors: the field attraction bias ϕ and the crowd repulsion bias ζ.
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The field attraction bias reflects how strongly the pedestrians are attracted to
the exit cells, while the crowd repulsion reflects how strongly the pedestrians are
repelled by the crowded cells. We firstly define the attraction of a cell (i, j) as:

Ai,j = exp(ϕ · SFi,j − ζ · Ri,j) (5)

In this way, the attraction of a cell is a positive number that increases with the
static field and decreases with the crowd repulsion. The higher the attraction,
the more desirable the cell is. However, we can make the pedestrian behavior
more realistic and adaptive by reducing the reliance on the global knowledge
of the environment and by making use of the information available in the local
neighborhood. As the attraction of a cell is not enough to capture this behavior,
we need to consider instead the desirability of a cell, which is defined as the
gradient of its attraction. The desirability of a cell reflects how the attraction
changes locally by comparing the attraction of the cell with the minimum attrac-
tion in its reachable neighborhood. Let Amini,j

denote the minimum attraction
in neighborhood of cell (i, j), which is defined as:

Amini,j = min
(k,l)∈Ni,j

Ak,l (6)

Then, the desirability of cell (i, j) is defined as:

Di,j = ϵ+Ai,j −Amini,j
(7)

where ϵ is a small number which is added to avoid the desirability being zero
(ϵ = 10−5 in our implementation). In this way, the desirability of a cell is a
positive number that increases with the gradient of the attraction. The higher the
desirability, the more likely a pedestrian will move to that cell. The desirability
of a cell is the main input of the local rule that updates the state of each cell
on each time step. The local rule is based on a probabilistic transition function
that determines the probability of a pedestrian moving from one cell to another.

3.2 Update Procedure

The update procedure is the procedure that is used to update the state of the
CA on each time step. The procedure is as follows:

1. We start by marking as empty in the next state the cells that are currently
occupied by pedestrians, as they may change depending on their movement.

2. We then mark the cells that are occupied by obstacles in the current state
as obstacle in the next state. These cells will not change, as they cannot be
occupied by pedestrians.

3. We also mark the exit cells that are occupied by pedestrians in the current
state as empty in the next state. This models the evacuation of the pedes-
trians through the exits. We assume that once a pedestrian reaches an exit,
they leave the environment and do not come back.
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4. For any other cell that is occupied by a pedestrian in the current state, we
compute the desirabilities of reachable neighboring cells. We use the desir-
ability as the probability of a pedestrian moving to that cell and randomly
select one neighboring cell according to these probabilities. If the selected
cell is not occupied by another pedestrian in the next state, we mark it as
occupied by the pedestrian in the next state. This means that the pedes-
trian moves to that cell. Otherwise, we mark the current cell as occupied by
the pedestrian in the next state, i.e., the pedestrian stays in the same cell.
This way, we avoid collisions between pedestrians and ensure that each cell
can have at most one pedestrian. To ensure fairness among pedestrians, we
shuffle the order in which we process occupied cells on each time step.

We consider that each cell in the environment is a square and we denote by cl
its side length. We denote the time elapsed for each time step as ∆t. The speed
of a pedestrian that moves to a neighboring cell on each time step is then cl/∆t.
We call this the reference speed of a pedestrian, and denote it by v. However,
not all pedestrians may move at the same speed (for instance, some pedestrians
may move slower than the reference speed, due to physical or psychological
factors). To model this, we introduce for each pedestrian a parameter called
velocity percent (vp), which is a percentage of the reference speed. For example,
if vp = 0.5 for a pedestrian, their speed would be 0.5v. We model this by letting
vp be the probability of a pedestrian moving to a neighboring cell on each time
step so that, on average, their speed would be vp · v.

3.3 Transition Function

The transition function is the function that determines the probability of a pedes-
trian moving from one cell to another. The function is based on the desirability
of the neighboring cells. The function is defined as follows:

T (ci, cj) =

{
Pi,j · vp, if cj is empty or an exit in the current state
0, otherwise

(8)

where ci and cj are two neighboring cells, Pi,j is the probability of agent in cell
ci to move to cell cj based on its desirability:

Pi,j =
Dcj∑

c∈Nci
Dc

(9)

and vp is the velocity percent of the pedestrian in cell ci. The transition function
returns the probability of the pedestrian in cell ci moving to cell cj on the next
time step. The function is zero if cell cj is blocked or already occupied by another
pedestrian in the current state, or if the pedestrian in cell ci does not move in
this time step, which happens with probability 1 − vp. The transition function
is applied to each occupied cell in the current state, after shuffling the order of
the cells. The result of the function and the procedure to avoid collisions (step
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Algorithm 1: Greedy constructive heuristic
Data: an instance OEP(A, S, k, ω)
E ← ∅;
η ← ⌈2(w + h)/ω⌉;
for i← 1 to k do

p← rand(0, 2(w + h));
best←∞;
for j ← 1 to η do

cur← ψ(E ∪ {p});
if cur < best then best←cur ; e← p;
p← p+ ω;
if p > 2(w + h) then p← p− 2(w + h);

end
E ← E ∪ {e};

end
return E

4 in Sect. 3.2) is used to update the state of the CA on the next time step.
The update procedure is repeated until all the pedestrians have evacuated or a
maximum number of time steps (corresponding to time T ) is reached.

4 Algorithms for Emergency Exit Optimization

As indicated in Sect. 2, a solution to problem instance OEP(A,S, k, ω) is a set
E = {e1, . . . , ek} ⊂ [0, 2(w+h)]. The mapping between solutions and their asso-
ciated objective functions values is not just non-linear, but also not available in
closed form, and only computable via a stochastic simulation. Thus, it is com-
plex to design low-level heuristics to construct such solutions. We can however
engineer a constructive approach on top of the simulations, based on greedy
principles. The core of this approach is shown in Algorithm 1.

This procedure starts by picking a random initial point p along the perimeter.
Then all points p, p+ω, p+2ω, . . . , p+ηω are potential candidates to place an exit,
where the addition is assumed to wrap around the length of the perimeter, and η
is picked so as to ensure that we cover the whole perimeter. For each candidate,
we simulate the system with an emergency exit in the corresponding location (in
addition to any other exits that might have been considered in previous steps),
and keep the one that returns the best value of the objective function. This is
repeated as many times as needed (i.e., k times) to construct the solution. Notice
that this procedure involves computing the value of the objective function η · k
times. Also, this is a randomized procedure and therefore can be iterated as
many times to desired to obtain different greedy solutions. We will denote this
latter iterated procedure as greedy.

As an alternative to this greedy heuristic, we consider an EA approach. This is
a real-coded EA in which individuals are vectors of k values in the range [0, 2(w+
h)]. We can initially generate such vectors by sampling uniformly at random the
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Algorithm 2: Set-based recombination
Data: two sets E = {e1, . . . , ek} and E′ = {e′1, . . . , e′k}
C ← E ∪ E′; S ← ∅;
for i← 1 to k do

e← pick (C); // makes random selection
S ← S ∪ {e}; C ← C \ {e};

end
return S

search space. Notice that we do not introduce any constraint regarding the non-
overlap of exits. Having two overlapping exits is equivalent within the simulation
to having a single exit of width 2ω−overlap. We pose that this is less convenient
than having two exits back to back without overlapping, or those two exits
strategically placed somewhere else. For this reason, we expect evolution will
get rid of those suboptimal solutions without the need of introducing an explicit
constraint. As to mutation, we have opted for a Gaussian perturbation of a single
exit, whose amplitude is a certain percentage γ of its current value, i.e.,

e′ ← e · (1 + γN (0, 1)) (10)

where N (0, 1) is a normally distributed random value of mean 0 and variance
1. As usual, the value of the variable will wrap around [0, 2(w + h)]. As for re-
combination, we have opted for a discrete set-based approach, since standard
operators for continuous variables require a meaningful matching between ho-
mologous variables in the parental solutions which is not possible (or at least
non-trivial) in this problem. Our recombination algorithm is depicted in Algo-
rithm 2. It creates a set of candidate locations from the union of the individuals
being recombined, and makes a sequence of random picks without replacement
from this candidate set. The resulting operator is therefore transmitting and as-
sorting, but not necessarily respectful [15]. Besides these operators, our EA uses
binary tournament solution, and elitist generational replacement. We have also
considered an island version of this EA [1], which divides the population into
a number of separate demes (arranged following a certain topology – a bidirec-
tional ring in our case) which evolve in partial isolation, and periodically migrate
the best solution to neighboring demes, who accept these in substitution of their
current worst solutions. We will denote our EA and our island-based EA as EA
and iEA respectively. All algorithms are available in our GitHub repository4.

5 Experimental Results

The different algorithms described in the previous section have been put to test
on a collection of problem instances with different features. These instances and
the remaining experimental parameters are described in Sect. 5.1. Subsequently,
the numerical results will be reported and analyzed in Sect. 5.2.
4 https://github.com/Bio4Res/pedestrian-evacuation-optimization

https://github.com/Bio4Res/pedestrian-evacuation-optimization


10 C. Cotta, J. E. Gallardo

5.1 Experimental Setup

To evaluate the performance of different algorithms, we have generated several
environments that simulate evacuation scenarios. Our instance generator dis-
cretizes the evacuation area in the same fashion our CA does (see Sect. 3), and
places obstacles randomly in the domain, avoiding overlaps and ensuring a mini-
mum distance between them. The obstacles are rectangular and their dimensions
are randomly generated as follows: the width of the obstacle can be either one or
two cells, if the obstacle is vertical, or between one and 25 cells, if the obstacle
is horizontal. The height of the obstacle is inversely proportional to the width,
and it can be between one and half of the rows of the domain. The orientation of
the obstacle is also randomly chosen, with a 50% probability of being vertical or
horizontal. The position of the obstacle is randomly selected, with the condition
that the obstacle does not exceed the boundaries of the domain, and that there
is a minimum distance of two cells between the obstacle and any other obstacle,
so that the agents can always move around them. The purpose of the obstacles
is to create a realistic, diverse, and challenging environment for the agents, by
obstructing their movement and forcing them to find alternative paths.

We have generated three sets of instances, each containing five environments
with different characteristics depending on the number |O| of obstacles:
– low-density : |O| ∈ {20, . . . , 30}. A low density of obstacles implies that the

agents have more space to move and less chances of colliding with them.
– mid-density : |O| ∈ {50, . . . , 75}. A medium density of obstacles means that

the agents have less space to move and more chances of colliding with them,
but still have some room for maneuvering and finding alternative paths.

– high-density : |O| ∈ {100, . . . , 150}. A high density of obstacles results in the
agents having very little space to move and very high chances of colliding
with them, facing a lot of congestion and bottlenecks in their movement.

In all cases, the width and height are picked from [40, 50] and [20, 30], the side of
the square cells is 0.5m and no exits are initially placed. Hence, evacuation will
only proceed through the emergency exits placed by the optimization algorithms.
We consider three setting in this regard, namely k ∈ {3, 4, 5} exits. The width
of the emergency exits is set to ω = 2m. All the instances are publicly available
in our data repository [5]. For each instance, we have randomly generated 1000
initial pedestrian configurations. 20 are used as training set for the optimization
algorithms, and the remaining ones are used as test set. In every case we have
considered 100 pedestrians. Each of them has a reference velocity v = 1.3m/s,
a velocity percent vp ∈ [0.5, 1], field attraction bias ϕ ∈ [1.5, 2], and crowd
repulsion bias ζ ∈ [0.25, 0.5]. The simulation is run up to T = 60s.

Regarding the algorithms, in all cases we consider maxevals = 20000. The
EA has a population size µ = 100, recombination probability pX = 0.9, mutation
probability equivalent to a mutation rate 1/ℓ per variable, where ℓ is the num-
ber of variables, and gaussian mutation amplitude γ = 0.05. As to the iEA, it
considers 4 islands of size µ = 25, and migration frequency of 10 generations. No
fine tuning of these parameters has been attempted. For each algorithm, floor
plan and number of exits sought, we perform 20 runs.
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Fig. 1: (a) Rank distribution of the different algorithms on the training set. (b)
Rank distribution of the best solution of each algorithm on the test set.

(a) (b) (c)

Fig. 2: Evolution of fitness in three of the instances. (a) low-density (b) mid-
density (c) high-density

5.2 Results

Table 1 shows the summary of results over the 20 runs of the algorithms. As
it can be seen there is a general superiority of iEA over all types of instances
and number of exits, and even more clearly for k ⩾ 4 exits. This superiority is
not just clear on a head-to-head basis with respect to EA and greedy on specific
instances, but it is also globally significant. To show this, we rank each algo-
rithm on each problem instance, and determine the distribution of ranks – see
Fig. 1a. These ranks show statistically significant differences according to Quade
test [14] (Quade F = 37.351, p-value = 1.803e−12). Subsequently, we conduct
Holm test with Bonferroni correction [7,10] using iEA as control algorithm. The
test is passed against both EA and greedy with p-value = 7.433e−4. These re-
sults indicate that the evolutionary search, and in particular the island-based
EA, is capable of effectively navigating the search space and finding solutions
that perform satisfactorily on the training set. Fig. 2 shows an example of the
evolution of fitness as a function of the number of solution evaluations for the
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Table 1: Results of the algorithms (out of 20 runs) on the training set. Each
column depicts the best (x∗), median (x̃), mean (x̄) and standard error of the
mean (σx̄). For each instance, the algorithm with the best mean is marked with
a star (⋆), and the remaining algorithms are marked with a symbol that denotes
whether the differences are statistically significant at α = 0.01 ( ), α = 0.05 (•),
and α = 0.1 (◦) according to a Wilcoxon rank sum test [17].

greedy EA iEA

instance x∗ x̃ x̄± σx̄ x∗ x̃ x̄± σx̄ x∗ x̃ x̄± σx̄

low-density-1-3 8.109 8.410 8.493 ± 0.045 7.111 7.111 7.171 ± 0.023 ⋆ 7.111 7.111 7.184 ± 0.058
low-density-2-3 7.511 8.436 8.662 ± 0.216 6.417 6.467 6.520 ± 0.020 ⋆ 6.417 6.488 6.534 ± 0.024
low-density-3-3 9.462 9.584 9.606 ± 0.020 9.462 9.660 9.687 ± 0.035 • 9.409 9.660 9.598 ± 0.030 ⋆
low-density-4-3 11.309 11.309 11.759 ± 0.115 9.259 9.556 9.657 ± 0.069 9.259 9.309 9.438 ± 0.072 ⋆
low-density-5-3 8.510 8.862 8.867 ± 0.035 4.066 4.318 4.411 ± 0.052 ◦ 4.066 4.315 4.279 ± 0.030 ⋆

mid-density-1-3 13.104 13.482 13.435 ± 0.039 10.709 10.709 10.894 ± 0.118 ⋆ 10.709 11.509 11.613 ± 0.210 •
mid-density-2-3 15.306 15.432 15.477 ± 0.046 14.507 14.507 14.507 ± 0.000 ⋆ 14.507 14.507 14.507 ± 0.000
mid-density-3-3 24.656 25.007 24.919 ± 0.055 15.555 15.555 15.688 ± 0.061 ⋆ 15.555 15.658 15.696 ± 0.057
mid-density-4-3 14.758 15.006 15.016 ± 0.019 11.704 12.058 12.198 ± 0.100 11.704 11.757 12.089 ± 0.128 ⋆
mid-density-5-3 13.656 14.383 14.195 ± 0.107 12.557 12.557 12.557 ± 0.000 ⋆ 12.557 12.557 12.642 ± 0.075

high-density-1-3 16.909 17.804 17.736 ± 0.083 15.005 15.005 15.206 ± 0.126 ⋆ 15.005 15.005 15.436 ± 0.144
high-density-2-3 17.556 17.607 17.813 ± 0.110 17.556 17.556 18.034 ± 0.477 17.556 17.556 17.556 ± 0.000 ⋆
high-density-3-3 25.757 25.982 26.055 ± 0.072 18.757 19.307 19.341 ± 0.097 18.757 19.005 19.218 ± 0.111 ⋆
high-density-4-3 17.205 17.831 17.629 ± 0.084 15.105 15.356 15.959 ± 0.216 ⋆ 15.105 15.306 16.069 ± 0.236
high-density-5-3 13.406 13.508 13.613 ± 0.056 13.006 13.006 13.325 ± 0.095 13.006 13.006 13.129 ± 0.038 ⋆

low-density-1-4 1.316 1.510 1.492 ± 0.025 ⋆ 1.333 1.668 1.700 ± 0.060 • 1.263 1.738 1.611 ± 0.051
low-density-2-4 3.015 3.369 3.359 ± 0.040 2.472 2.690 2.802 ± 0.084 • 2.378 2.577 2.588 ± 0.031 ⋆
low-density-3-4 2.216 2.888 2.793 ± 0.076 1.827 2.110 2.152 ± 0.039 1.808 1.967 2.078 ± 0.131 ⋆
low-density-4-4 2.774 3.246 3.171 ± 0.041 2.006 2.145 2.144 ± 0.024 1.869 2.122 2.123 ± 0.034 ⋆
low-density-5-4 1.100 1.170 1.166 ± 0.009 1.100 1.189 1.205 ± 0.023 1.053 1.089 1.106 ± 0.013 ⋆

mid-density-1-4 3.515 3.963 3.926 ± 0.041 2.867 3.342 3.367 ± 0.048 2.961 3.190 3.213 ± 0.045 ⋆
mid-density-2-4 5.261 5.984 5.808 ± 0.078 ◦ 5.261 5.637 5.769 ± 0.118 5.261 5.470 5.618 ± 0.106 ⋆
mid-density-3-4 6.161 6.513 6.523 ± 0.046 5.610 6.111 6.100 ± 0.041 5.610 5.860 5.870 ± 0.044 ⋆
mid-density-4-4 5.011 5.188 5.221 ± 0.046 2.929 3.120 3.156 ± 0.026 2.666 3.062 3.005 ± 0.041 ⋆
mid-density-5-4 5.114 5.345 5.351 ± 0.030 • 4.967 5.188 5.266 ± 0.044 4.915 5.263 5.247 ± 0.036 ⋆

high-density-1-4 4.611 5.090 5.151 ± 0.082 4.110 4.487 4.564 ± 0.055 4.110 4.440 4.484 ± 0.068 ⋆
high-density-2-4 7.507 7.663 7.742 ± 0.057 7.112 7.509 7.492 ± 0.047 ⋆ 7.112 7.360 8.889 ± 0.523
high-density-3-4 7.009 7.259 7.229 ± 0.041 6.859 7.209 7.189 ± 0.038 6.712 6.985 6.980 ± 0.031 ⋆
high-density-4-4 5.206 5.487 5.614 ± 0.073 4.711 4.944 5.098 ± 0.090 ⋆ 4.519 4.786 5.424 ± 0.193
high-density-5-4 5.513 5.863 5.898 ± 0.032 5.014 5.816 5.787 ± 0.070 • 4.662 5.640 5.523 ± 0.083 ⋆

low-density-1-5 0.985 1.053 1.055 ± 0.010 0.968 1.025 1.035 ± 0.012 • 0.948 0.979 1.005 ± 0.012 ⋆
low-density-2-5 1.241 1.455 1.423 ± 0.017 ⋆ 1.295 1.561 1.608 ± 0.050 1.151 1.611 1.513 ± 0.052
low-density-3-5 1.417 1.691 1.707 ± 0.035 1.419 1.608 1.609 ± 0.020 • 1.352 1.531 1.520 ± 0.024 ⋆
low-density-4-5 1.130 1.263 1.253 ± 0.019 • 1.192 1.250 1.254 ± 0.012 1.062 1.168 1.198 ± 0.028 ⋆
low-density-5-5 0.942 0.964 0.965 ± 0.002 0.924 0.945 0.950 ± 0.005 ◦ 0.908 0.935 0.941 ± 0.006 ⋆

mid-density-1-5 1.552 1.812 1.787 ± 0.025 1.265 1.534 1.536 ± 0.029 ◦ 1.323 1.416 1.489 ± 0.040 ⋆
mid-density-2-5 3.520 3.971 3.980 ± 0.047 • 3.318 3.820 4.067 ± 0.120 3.272 3.744 3.838 ± 0.081 ⋆
mid-density-3-5 3.515 4.309 4.255 ± 0.057 • 3.515 4.036 4.016 ± 0.058 3.513 3.912 3.990 ± 0.078 ⋆
mid-density-4-5 2.064 2.380 2.355 ± 0.050 1.298 1.505 1.522 ± 0.035 ◦ 1.201 1.366 1.433 ± 0.035 ⋆
mid-density-5-5 2.215 2.393 2.517 ± 0.063 1.467 1.771 1.774 ± 0.032 1.460 1.666 1.657 ± 0.022 ⋆

high-density-1-5 2.112 2.411 2.419 ± 0.051 • 2.012 2.385 2.504 ± 0.084 • 1.760 2.090 2.201 ± 0.078 ⋆
high-density-2-5 4.967 5.410 5.479 ± 0.062 4.811 5.511 5.507 ± 0.093 4.465 5.514 5.384 ± 0.101 ⋆
high-density-3-5 4.911 5.237 5.246 ± 0.039 4.513 4.914 4.895 ± 0.045 4.113 4.611 4.655 ± 0.068 ⋆
high-density-4-5 3.218 3.573 3.599 ± 0.044 2.010 2.511 2.468 ± 0.069 1.905 2.126 2.234 ± 0.072 ⋆
high-density-5-5 2.060 2.410 2.363 ± 0.047 1.520 1.864 1.881 ± 0.042 1.512 1.812 1.829 ± 0.034 ⋆
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Table 2: Test results of the best solution found by each algorithm during training.
The meaning of symbols is the same as in Table 1.

greedy EA iEA

instance x∗ x̃ x̄± σx̄ x∗ x̃ x̄± σx̄ x∗ x̃ x̄± σx̄

low-density-1-3 2.000 9.001 8.816 ± 0.093 0.972 8.001 7.866 ± 0.087 ⋆ 0.972 8.001 7.866 ± 0.087
low-density-2-3 2.015 8.011 8.278 ± 0.084 1.010 7.521 7.680 ± 0.083 ⋆ 1.010 7.521 7.680 ± 0.083
low-density-3-3 3.013 11.001 10.839 ± 0.098 3.013 11.001 10.839 ± 0.098 2.009 11.001 10.673 ± 0.097 ⋆
low-density-4-3 4.067 12.026 12.687 ± 0.110 2.000 10.010 10.399 ± 0.099 ⋆ 2.000 10.010 10.399 ± 0.099
low-density-5-3 1.005 9.011 8.962 ± 0.091 0.918 6.001 5.958 ± 0.074 ⋆ 0.918 6.001 5.958 ± 0.074

mid-density-1-3 5.011 15.001 14.707 ± 0.112 3.010 11.010 11.340 ± 0.103 ⋆ 3.010 11.010 11.34 ± 0.103
mid-density-2-3 6.010 16.001 15.970 ± 0.110 5.010 15.011 15.391 ± 0.112 ⋆ 5.010 15.011 15.391 ± 0.112
mid-density-3-3 13.010 25.002 25.242 ± 0.137 8.001 17.009 17.296 ± 0.119 ⋆ 8.001 17.009 17.296 ± 0.119
mid-density-4-3 4.028 16.001 15.648 ± 0.117 4.019 13.001 12.831 ± 0.107 ⋆ 4.019 13.001 12.831 ± 0.107
mid-density-5-3 4.011 15.001 15.022 ± 0.112 3.000 13.001 12.954 ± 0.101 ⋆ 3.000 13.001 12.954 ± 0.101

high-density-1-3 7.010 17.001 16.852 ± 0.117 6.011 15.010 15.336 ± 0.108 ⋆ 6.011 15.010 15.336 ± 0.108
high-density-2-3 7.011 18.001 18.038 ± 0.118 ⋆ 7.011 18.001 18.038 ± 0.118 7.011 18.001 18.038 ± 0.118
high-density-3-3 16.001 27.002 27.097 ± 0.137 8.009 20.018 20.685 ± 0.127 ⋆ 8.009 20.018 20.685 ± 0.127
high-density-4-3 7.010 18.510 18.585 ± 0.120 7.013 17.010 17.227 ± 0.115 ⋆ 7.013 17.010 17.227 ± 0.115
high-density-5-3 5.011 14.011 14.365 ± 0.107 5.011 14.011 14.35 ± 0.109 ⋆ 5.011 14.011 14.350 ± 0.109

low-density-1-4 0.819 2.000 1.915 ± 0.035 ⋆ 0.863 2.010 2.098 ± 0.039 0.809 2.010 2.056 ± 0.037
low-density-2-4 0.896 4.010 3.982 ± 0.059 0.852 3.011 3.039 ± 0.050 ⋆ 0.874 3.011 3.144 ± 0.054
low-density-3-4 0.853 3.009 2.973 ± 0.049 0.863 2.029 2.669 ± 0.049 ⋆ 0.875 3.001 2.885 ± 0.049
low-density-4-4 0.917 4.001 3.875 ± 0.060 0.809 2.042 2.714 ± 0.049 ⋆ 0.906 3.010 3.164 ± 0.053
low-density-5-4 0.754 1.062 1.664 ± 0.030 0.754 1.021 1.422 ± 0.025 0.787 1.024 1.417 ± 0.024 ⋆

mid-density-1-4 0.917 4.020 4.429 ± 0.063 ◦ 0.885 4.020 4.446 ± 0.064 ◦ 0.917 4.014 4.300 ± 0.064 ⋆
mid-density-2-4 0.983 6.010 6.329 ± 0.077 ⋆ 0.983 6.010 6.329 ± 0.077 0.983 6.010 6.329 ± 0.077
mid-density-3-4 2.000 7.013 7.408 ± 0.082 1.009 6.009 6.216 ± 0.075 ⋆ 1.009 6.009 6.216 ± 0.075
mid-density-4-4 0.994 6.010 6.166 ± 0.074 0.907 4.010 4.201 ± 0.062 0.939 4.010 4.177 ± 0.062 ⋆
mid-density-5-4 1.010 7.000 6.691 ± 0.078 0.994 7.001 6.904 ± 0.081 0.885 6.001 5.617 ± 0.070 ⋆

high-density-1-4 0.929 5.014 5.449 ± 0.070 0.907 5.010 4.978 ± 0.068 ⋆ 0.907 5.010 4.978 ± 0.068
high-density-2-4 1.029 8.010 8.432 ± 0.088 0.972 8.010 8.251 ± 0.089 ⋆ 0.972 8.010 8.251 ± 0.089
high-density-3-4 0.962 8.009 8.281 ± 0.088 0.972 7.020 7.627 ± 0.083 ⋆ 1.090 8.001 8.035 ± 0.087
high-density-4-4 1.000 6.014 6.496 ± 0.078 0.961 6.009 6.021 ± 0.077 ⋆ 1.005 6.010 6.063 ± 0.074
high-density-5-4 1.037 7.011 7.151 ± 0.079 0.972 6.011 6.102 ± 0.073 1.000 6.001 5.851 ± 0.071 ⋆

low-density-1-5 0.775 1.022 1.482 ± 0.026 0.754 1.010 1.242 ± 0.019 0.743 1.003 1.174 ± 0.017 ⋆
low-density-2-5 0.743 1.041 1.570 ± 0.027 ⋆ 0.732 1.042 1.638 ± 0.030 0.786 1.042 1.630 ± 0.030
low-density-3-5 0.852 2.012 2.217 ± 0.043 0.863 2.009 2.087 ± 0.039 • 0.819 2.001 1.988 ± 0.038 ⋆
low-density-4-5 0.797 1.027 1.486 ± 0.026 0.775 1.021 1.475 ± 0.026 ⋆ 0.743 1.027 1.540 ± 0.028
low-density-5-5 0.742 1.011 1.23 0± 0.019 0.655 0.970 1.046 ± 0.012 ⋆ 0.689 0.971 1.06 0± 0.013

mid-density-1-5 0.808 2.010 2.119 ± 0.039 0.831 2.000 1.922 ± 0.036 0.809 2.000 1.906 ± 0.036 ⋆
mid-density-2-5 0.984 5.000 4.713 ± 0.069 0.896 4.010 4.231 ± 0.064 ⋆ 0.917 4.017 4.452 ± 0.066 •
mid-density-3-5 1.000 5.009 5.243 ± 0.069 1.000 5.009 5.243 ± 0.069 0.972 5.000 4.785 ± 0.067 ⋆
mid-density-4-5 0.820 2.029 2.577 ± 0.046 0.797 1.044 1.703 ± 0.032 ⋆ 0.765 1.069 1.844 ± 0.035
mid-density-5-5 0.884 3.011 3.119 ± 0.052 0.830 2.011 2.182 ± 0.041 0.830 2.011 2.142 ± 0.039 ⋆

high-density-1-5 0.863 2.022 2.514 ± 0.045 0.842 2.028 2.577 ± 0.045 0.863 2.014 2.218 ± 0.042 ⋆
high-density-2-5 1.010 7.000 6.700 ± 0.081 0.928 6.000 5.803 ± 0.074 ⋆ 0.950 6.001 5.943 ± 0.074
high-density-3-5 0.994 6.009 6.148 ± 0.075 0.950 6.000 5.755 ± 0.073 0.929 5.009 5.201 ± 0.070 ⋆
high-density-4-5 0.885 3.036 3.581 ± 0.059 0.896 3.000 2.802 ± 0.048 ⋆ 0.852 3.000 2.819 ± 0.049
high-density-5-5 0.830 2.021 2.436 ± 0.044 0.830 2.024 2.511 ± 0.045 ◦ 0.831 2.021 2.379 ± 0.042 ⋆
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three algorithms. As it can be seen, greedy often starts with good quality so-
lutions, typically better than those of EA and iEA for a similar computational
effort. However, in the long run the evolutionary approaches are capable of out-
performing the greedy heuristic.

Subsequently, we move to the test phase. To this end, we select the solution
that has the best fitness on each instance for each algorithm, and evaluate it
on all the test cases. Table 2 shows the resulting results. Note that iEA remains
superior in general, and both EAs outperform greedy. However, the differences
are less marked. This is better seen in Fig. 1b, where the rank distribution of the
different algorithms according to the performance of their solution on the test set
is shown. Again, these ranks show statistically significant differences according
to Quade test (Quade F = 50.376, p-value = 2.618e−15), and iEA remains the
algorithm with the best mean rank, so it is chosen as control algorithm for Holm
test. Now, the test is passed against greedy (p-value ≈ 0), but not against EA
(p-value = 3.428e−1). We believe this may be an indication that the training
set is not large enough and therefore iEA may be overfitting its solutions.

6 Conclusions

Optimizing the placement of emergency exits in indoor environments is not just a
problem of importance for public safety, but also poses a challenging optimization
task. We have conducted a comparative analysis of two different optimization
approaches, namely an iterated greedy heuristic and an evolutionary algorithm
(in two variants, both panmictic and island-based). This analysis indicates the
superiority of the evolutionary approaches, both on the training and test phases,
underpinning the need for powerful global optimization techniques in this con-
text. It also hints at the need of using larger training sets, which of course will
have a toll on computational cost. This makes a strong case for directing effort
into solutions of computational nature (such as parallel computing) and solutions
of algorithmic nature (e.g., lightweight simulations or surrogate models [11]).

In addition to the research directions sketched above, it is clear that the
evacuation scenario can be enriched with additional layers of complexity. While
we have here assumed situations of orderly evacuation as an initial base case, we
can go on to consider situations in which the cause of the emergency does pose a
visible threat (e.g., a rampant fire, or ongoing explosions) that might disrupt the
evacuation process or the flow of people. Such scenarios may be in need of more
sophisticated approaches, and this work has paved the way for hybrid approaches
that combine greedy components within an evolutionary search engine. Work is
in progress in this area.
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