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Abstract

Evolutionary algorithms (EAs) are stochastic optimization techniques
based on the principles of natural evolution. An overview of these tech-
niques is provided here. We describe the general functioning of EAs, and
give an outline of the main families into which they be divided. Subse-
quently, we analyze the different components of an EA, and provide some
examples on how these can be instantiated. We finish with a glimpse of
the numerous applications of these tecniques.

1 Introduction

One of the most striking features of Nature is the existence of living organisms
adapted for surviving in almost any ecosystem, even the most inhospitable:
from abyssal depths to mountain heights, from volcanic vents to polar regions.
The magnificence of this fact becomes more evident when we consider that
the life environment is continuously changing. This motivates that certain life
forms become extinct whereas other beings evolve and preponderate due to their
adaptation to the new scenario. It is very remarkable that living beings do not
exert a conscious effort for evolving (actually, it would be rather awkward to
talk about consciousness in amoebas or earthworms); much on the contrary,
the driving force for change is controlled by supra-organic mechanisms such as
natural evolution.

Can we learn –and use for our own profit– the lessons that Nature is teaching
us? The answer is a big YES, as the optimization community has repeatedly
shown in the last decades. ‘Evolutionary algorithm’ are the key words here. The
term evolutionary algorithm (EA henceforth) is used to designate a collection
of optimization techniques whose functioning is loosely based on metaphors of
biological processes.

This rough definition is rather broad and tries to encompass the numer-
ous approaches currently existing in the field of evolutionary computation [10].
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Quite appropriately, this field itself is continuously evolving; a quick inspection
at the proceedings of the relevant conferences and symposia suffices to demon-
strate the impetus of the field, and the great diversity of the techniques that
can be considered ‘evolutionary’.

This variety notwithstanding, it is possible to find a number of common
features of all (or at least most of) EAs. The following quote from [70] illustrates
such common points:

“The algorithm maintains a collection of potential solutions to a
problem. Some of these possible solutions are used to create new
potential solutions through the use of operators. Operators act on
and produce collections of potential solutions. The potential so-
lutions that an operator acts on are selected on the basis of their
quality as solutions to the problem at hand. The algorithm uses this
process repeatedly to generate new collections of potential solutions
until some stopping criterion is met.”

This definition can be usually found in the literature expressed in a technical
language that uses terms such as genes, chromosomes, population, etc. This
jargon is a reminiscence of the biological inspiration mentioned before, and has
deeply permeated the field. We will return to the connection with biology later
on.

The objective of this work is to present a gentle overview of these techniques,
comprising both the classical ‘canonical’ models of EAs, as well as some modern
directions for the development of the field, namely the use of parallel computing,
and the introduction of problem-dependent knowledge.

2 Learning from Biology

Evolution is a complex fascinating process. Along History, scientist have at-
tempted to explain its functioning using different theories. After the devel-
opment of disciplines such as comparative anatomy in the middle of the 19th
century, the basic principles that condition our current vision of Evolution were
postulated. Such principles rest upon Darwin’s Natural Selection Theory [41],
and Mendel’s work on genetic inheritance [81]. They can be summarized in the
following points (see [85]):

• Evolution is a process that does not operate on organisms directly, but
on chromosomes. These are the organic tools by means of which the
structure of a certain living being is encoded, i.e. the features of a living
being are defined by the decoding of a collection of chromosomes. These
chromosomes (more precisely, the information they contain) pass from one
generation to another through reproduction.

• The evolutionary process takes place precisely during reproduction. Na-
ture exhibits a plethora of reproductive strategies. The most essential
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ones are mutation (that introduces variability in the gene pool) and re-
combination (that introduces the exchange of genetic information among
individuals).

• Natural selection is the mechanism that relates chromosomes with the ad-
equacy of the entities they represent, favoring the proliferation of effective,
environment-adapted organisms, and conversely causing the extinction of
lesser effective, non-adapted organisms.

These principles are comprised within the most orthodox theory of evolution,
the Synthetic Theory [68]. Although alternate scenarios that introduce some
variety in this description have been proposed –e.g. the Neutral Theory [73],
and very remarkably the Theory of Punctuated Equilibria [60]– it is worth to
consider initially the former basic model. It is amazing to see that despite
the apparent simplicity of the principles upon which it rests, Nature exhibits
unparallel power in developing and expanding new life forms.

Not surprisingly, this power has attracted the interest of many researchers,
who have tried to translate the principles of evolution to the realm of algorith-
mics, pursuing the construction of computer systems with analogous features.
An important point must be stressed here: evolution is an undirected process,
i.e. there exists no scientific evidence that evolution is headed to a certain final
goal. On the contrary, it can be regarded as a reactive process that makes organ-
isms change in response to environmental variations. However, it is a fact that
human-designed systems do pursue a definite final goal. Furthermore, whichever
this goal might be, it is in principle desirable to reach it quickly and efficiently.
This leads to distinguish two approaches to the construction of nature-inspired
systems:

a) Trying to reproduce Nature principles with the highest possible accuracy,
i.e., simulate Nature.

b) Using these principles as inspiration, adapting them in whatever required
way so as to obtain efficient systems for performing the desired task.

Both approaches concentrate nowadays the efforts of researchers. The first
one has given rise to the field of Artificial Life (e.g. see [77]), and it is interesting
because it allows re-creating and studying numerous natural phenomena such
as parasitism, predator/prey relationships, etc). The second approach can be
considered more practical, and constitutes the source of EAs. Notice anyway
that these two approaches are not hermetic containers, and have frequently
interacted with certainly successful results.

3 Nature’s way for Optimizing

As mentioned above, the standpoint of EAs is essentially practical: using ideas
from natural evolution in order to solve a certain problem. Let us focus on
optimization and see how this goal can be achieved.
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3.1 Algorithm Meets Evolution

An EA is a stochastic iterative procedure for generating tentative solutions for a
certain problem P. The algorithm manipulates a collection P of individuals (the
population), each of which comprises one or more chromosomes. These chromo-
somes allow each individual represent a potential solution for the problem under
consideration. An encoding/decoding process is responsible for performing this
mapping between chromosomes and solutions. Chromosomes are divided into
smaller units termed genes. The different values a certain gene can take are
called the alleles for that gene.

Initially, the population is generated at random or by means of some heuristic
seeding procedure. Each individual in P receives a fitness value: a measure
of how good the solution it represents is for the problem being considered.
Subsequently, this value is used within the algorithm for guiding the search.
The whole process is sketched in Figure 1.

As it can be seen, it is assumed the existence of a set F (also known as
phenotype space) comprising the solutions for the problem at hand. Associated
with F , there also exists a set G (known as genotype space). These sets G and F
respectively constitute the domain and codomain of a function g known as the
growth (or expression) function. It could be the case that F and G were actually
equivalent, being g a trivial identity function. However, this is not the general
situation. As a matter of fact, the only requirement posed on g is surjectivity.
Furthermore, g could be undefined for some elements in G.

Figure 1: Illustration of the evolutionary approach to optimization.

After having defined these two sets G and F , notice the existence of a func-
tion ι selecting some elements from G. This function is called the initialization
function, and these selected solutions (also known as individuals) constitute the
so-called initial population. This initial population is in fact a pool of solutions
onto which the EA will subsequently work, iteratively applying some evolution-
ary operators to modify its contents. More precisely, the process comprises three
major stages: selection (promising solutions are picked form the population by
using a selection function σ), reproduction (new solutions are created by modi-
fying selected solutions using some reproductive operators ωi), and replacement
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Evolutionary-Algorithm:

1. P ← apply ι on G to obtain µ individuals (the initial population);

2. while Termination Criterion is not met do

(a) P ′ ← apply σ on P ; /* selection */

(b) P ′′ ← apply ω1, · · · , ωk on P ′; /* reproduction */

(c) P ← apply ψ on P and P ′′; /* replacement */

endwhile

Figure 2: Pseudocode of an evolutionary algorithm.

(the population is updated by replacing some existing solutions by the newly
created ones, using a replacement function ψ). This process is repeated until a
certain termination criterion (usually reaching a maximum number of iterations)
is satisfied. Each iteration of this process is commonly termed a generation.

According to this description, it is possible to express the pseudocode of
an EA as shown in Figure 2. Every possible instantiation of this algorithmic
template1 will give rise to a different EA. More precisely, it is possible to distin-
guish different EA families, by considering some guidelines on how to perform
this instantiation.

3.2 The Flavors of Evolutionary Algorithms

EAs, as we know them now, began their existence during the late 1960s and
early 1970s (some earlier references to the topic exist tough; see [53]). In these
years –and almost simultaneouly– scientists from different places in the world
began the task of putting Nature at work in algorithmics, and more precisely
in search or problem solving duties. The existence of these different primordial
sources originated the rise of three different EA models. These classical families
are:

• Evolutionary Programming (EP): this EA family originated in the work
of Fogel et al. [55]. EP focuses in the adaption of individuals rather
than in the evolution of their genetic information. This implies a much
more abstract view of the evolutionary process, in which the behavior of
individuals is directly modified (as opposed to manipulating its genes).
This behavior is typically modeled by using complex data structures such
as finite automata or as a graphs (see Figure 3-left). Traditionally, EP
uses asexual reproduction –also known as mutation, i.e. introducing slight
changes in an existing solution– and selection techniques based on direct
competition among individuals.

1The mere fact that this high-level heuristic template can host a low-level heuristic, justifies
using the term metaheuristic, as it will be seen later.
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Figure 3: Two examples of complex representations. (Left) A graph representing
a neural network. (Right) A tree representing a fuzzy rule.

• Evolution Strategies (ES): these techniques were initially developed in Ger-
many by Rechenberg and Schwefel [93, 96]. Their original goal was serving
as a tool for solving engineering problems. With this goal in mind, these
techniques are characterized by manipulating arrays of floating-point num-
bers (there exist versions of ES for discrete problems, but they are much
more popular for continuous optimization). As EP, mutation is sometimes
the unique reproductive operator used in ES; it is not rare to also consider
recombination (i.e. the construction of new solutions by combining por-
tions of some indviduals) though. A very important feature of ES is the
utilization of self-adaptive mechanisms for controlling the application of
mutation. These mechanisms are aimed at optimizing the progress of the
search by evolving not only the solutions for the problem being considered,
but also some parameters for mutating these solutions (in a typical situa-
tion, an ES individual is a pair (−→x ,−→σ ), where −→σ is a vector of standard
deviations used to control the Gaussian mutation exerted on the actual
solution −→x ).

• Genetic Algorithms (GA): GAs are possibly the most widespread vari-
ant of EAs. They were conceived by Holland [66]. His work has had a
great influence in the development of the field, to the point that some
portions –arguably extrapolated– of it were taken almost like dogmas (i.e.
the ubiquitous use of binary strings as chromosomes). The main feature
of GAs is the use of a recombination (or crossover) operator as the pri-
mary search tool. The rationale is the assumption that different parts of
the optimal solution can be independently discovered, and be later com-
bined to create better solutions. Additionally, mutation is also used, but
it was usually considered a secondary background operator whose pur-
pose is merely ‘keeping the pot boiling’ by introducing new information in
the population (this classical interpretation is no longer considered valid
though).
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These families have not grown in complete isolation from each other. On the
contrary, numerous researchers built bridges among them. As a result of this
interaction, the borders of these classical families tend to be fuzzy (the reader
may check [9] for a unified presentation of EA families), and new variants have
emerged. We can cite the following:

• Evolution Programs: this term is due to Michalewicz [85], and comprises
those techniques that, while using the principles of functioning of GAs,
evolve complex data structures, as in EP. Nowadays, it is customary to use
the acronym GA –or more generally EA– to refer to such an algorithm,
leaving the term ‘traditional GA’ to denote classical bit-string based GAs.

• Genetic Programming (GP): the roots of GP can be traced back to the
work of Cramer [40], but it is undisputable that it has been Koza [74]
the researcher who promoted GP to its current status. Essentially, GP
could be viewed as an evolution program in which the structures evolved
represent computer programs. Such programs are typically encoded by
trees (see Figure 3-ritgh). The final goal of GP is the automatic design of
a program for solving a certain task, formulated as a collection of (input,
output) examples.

• Memetic Algorithms (MA): these techniques owe their name to Moscato
[86]. Some widespread misconception equates MAs to EAs augmented
with local search; although such an augmented EA could be indeed con-
sidered a MA, other possibilities exist for defining MAs. In general, a MA
is problem-aware EA [87]. This problem awareness is typically acquired by
combining the EA with existing algorithms such as hill climbing, branch
and bound, etc.

In addition to the different EA variants mentioned above, there exist sev-
eral other techniques that could also fall within the scope of EAs, such as Ant
Colony Optimization [45], Distribution Estimation Algorithms [78], or Scatter
Search [76] among others. All of them rely on achieving some kind of balance
between the exploration of new regions of the search space, and the exploitation
of regions known to be promising [18], so as to minimize the computational
effort for finding the desired solution. Nevertheless, these techniques exhibit
very distinctive features that make them depart from the general pseudocode
depicted in Figure 2. The broader term metaheuristic (e.g. see [57]) is used to
encompass this larger set of modern optimization techniques, including EAs.

4 Dissecting an Evolutionary Algorithm

Once the general structure of an EA has been presented, we will get into more
detail on the different components of the algorithm.
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4.1 The Fitness Function

This is an essential component of the EA, to the point that some early (and
nowadays discredited) views of EAs considered it as the unique point of inter-
action with the problem that is intended to be solved. This way, the fitness
function measured how good a certain tentative solution is for the problem of
interest. This interpretation has given rise to several misconceptions, the most
important being the equation ’fitness = quality of a solution’. There are many
examples in which this is simple not true [87], e.g., tackling the satisfiability
problem with EAs (that is, finding the truth assignment that makes a logic
formula in conjunctive normal form be satisfied). If quality is used as fitness
function, then the search space is divided into solutions with fitness 1 (those
satisfying the target formula), and solutions with fitness 0 (those that do not
satisfy it). Hence, the EA would be essentially looking for a needle in a haystack
(actually, there may be more than one needle in that haystack, but that does
not change the situation). A much more reasonable choice is making fitness
be the number of satisfied clauses in the formula by a certain solution. This
introduces a gradation that allows the EA ‘climbing’ in search of near-optimal
solutions.

The existence of this gradation is thus a central feature of the fitness func-
tion, and its actual implementation is not that important as long this goal is
achieved. Of course, implementation issues are important from a computational
point of view, since the cost of the EA is typically assumed to be that of evalu-
ating solutions. In this sense, it must be taken into account that fitness can be
measured by means of a simple mathematical expression, or may involve per-
forming a complex simulation of a physical system. Furthermore, this fitness
function may incorporate some level of noise, or even vary dynamically. The
remaining components of the EA must be defined accordingly so as to deal with
these features of the fitness function, e.g., using a non-haploid representation
[97] (i.e., having more than one chromosome) so as to have a genetic reservoir
of worthwhile information in the past, and thus be capable of tackling dynamic
changes in the fitness function.

Notice that there may even exist more than one criterion for guiding the
search (e.g., we would like to evolve the shape of a set of pillars, so that their
strength is maximal, but so that their cost is also minimal). These criteria
will be typically partially conflicting. In this case, a multiobjective problem
is being faced. This can be tackled in different ways, such as performing an
aggregation of these multiple criteria into a single value, or using the notion of
Pareto dominance (i.e., solution x dominates solution y if, and only if, fi(x)
yields a better or equal value than fi(y) for all i, where the fi’s represent the
multiple criteria being optimized). See [21, 20] for details.

4.2 Initialization

In order to have the EA started, it is necessary to create the initial population
of solutions. This is typically addressed by randomly generating the desired
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number of solutions. When the alphabet used for representing solutions has low
cardinality, this random initialization provides a more or less uniform sample
of the solution space. The EA can subsequently start exploring the wide area
covered by the initial population, in search of the most promising regions.

In some cases, there exists the risk of not having the initial population ade-
quately scattered all over the search space (e.g., when using small populations
and/or large alphabets for representing solutions.) It is then necessary to resort
to systematic initialization procedures [94], so as to ensure that all symbols are
uniformly present in the initial population.

This random initialization can be complemented with the inclusion of heuris-
tic solutions in the initial population. The EA can thus benefit from the ex-
istence of other algorithms, using the solutions they provide. This is termed
seeding, and it is known to be very beneficial in terms of convergence speed,
and quality of the solutions achieved [33, 92]. The potential drawback of this
technique is having the injected solutions taking over the whole population in a
few iterations, provoking the stagnation of the algorithm. This problem can be
remedied by tuning the selection intensity by some means (e.g., by making an
adequate choice of the selection operator, as it will be shown below).

4.3 Selection

In combination with replacement, selection is responsible for the competition
aspects of individuals in the population. In fact, replacement can be intuitively
regarded as the complementary application of the selection operation.

Using the information provided by the fitness function, a sample of indi-
viduals from the population is selected for breeding. This sample is obviously
biased towards better individuals, i.e., good –according to the fitness function–
solutions should be more likely in the sample than bad solutions2.

The most popular techniques are fitness-proportionate methods. In these
methods, the probability of selecting an individual for breeding is proportional
to its fitness, i.e.

pi =
fi∑

j∈P fj
(1)

where fi is the fitness3 of individual i, and pi is the probability of i getting
into the reproduction stage. This proportional selection can be implemented in
a number of ways. For example, roulette-wheel selection rolls a dice with |P |
sides, such that the ith side has probability pi. This is repeated as many times
as individuals are required in the sample. A drawback of this procedure is that

2At least, this is customary in genetic algorithms. In other EC families, selection is less
important for biasing evolution, and it is done at random (a typical option in evolution strate-
gies), or exhaustively, i.e., all individuals undergo reproduction (as it is typical in evolutionary
programming).

3Maximization is assumed here. In case we were dealing with a minimization problem,
fitness should be transformed so as to obtain an appropriate value for this purpose, e.g.,
subtracting it from the highest possible value of the guiding function, or taking the inverse of
it.
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the actual number of instances of individual i in the sample can largely deviate
from the expected |P | · pi. Stochastic Universal Sampling [11] (SUS) does not
have this problem, and produces a sample with minimal deviation from expected
values.

Fitness-proportionate selection faces problems when the fitness values of
individuals are very similar among them. In this case, pi would be approximately
|P |−1 for all i ∈ P , and hence selection would be essentially random. This can
be remedied by using fitness scaling. Typical options are (see [85]):

• Linear scaling: f ′i = a · fi + b, for some real numbers a, b.

• Exponential scaling: f ′i = (fi)k, for some real number k.

• Sigma truncation: f ′i = max
(
0, fi −

(
f̄ − c · σ))

, where f̄ is the mean
fitness of individuals, σ is the fitness standard deviation, and c is a real
number.

Another problem is the appearance of an individual whose fitness is much
better than the remaining individuals. Such super-individuals can quickly take
over the population. To avoid this, the best option is using a non-fitness-
proportionate mechanism. A first possibility is ranking selection [105]: indi-
viduals are ranked according to fitness (best first, worst last), and later selected
–e.g. by means of SUS– using the following probabilities

pi =
1
|P |

[
η− + (η+ − η−)

i− 1
|P | − 1

]
, (2)

where pi is the probability of selecting the ith best individual, and η−+η+ = 2.
Another possibility is using tournament selection [17]. In this case, a direct

competition is performed whenever an individual needs be selected. To be
precise, α individuals are sampled at random, and the best of them is selected
for reproduction. This is repeated as many times as needed. The parameter α
is termed the tournament size; the higher this value, the stronger the selective
pressure. These non-proportionate selection methods have the advantage of
being unsensitive to fitness scaling problems and to the sense of optimization
(maximization or minimization). The reader is referred to e.g. [43, 24] for a
theoretical analysis of the properties of different selection operators.

Regardless of the selection operator used, it was implicity assumed in the
previous discussion that any two individuals in the population can mate, i.e.,
all individuals belong to am unstructured centralized population. However, this
is not necessarily the case. There exists a long tradition in using structured
populations in EC, especially associated to parallel implementations. Among
the most widely known types of structured EAs, distributed (dEA) and cellular
(cEA) algorithms are very popular optimization procedures [7].

Decentralizing a single population can be achieved by partitioning it into sev-
eral subpopulations, where component EAs are run performing sparse exchanges
of individuals (distributed EAs), or in the form of neighborhoods (cellular EAs).
The main difference is that a distributed EA has a large subpopulation, usually
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much larger than the single individual a cEA has typically in every compo-
nent algorithm. In a dEA, the subpopulations are loosely coupled, while for a
cEA they are tightly coupled. Additionally, in a dEA, there exist only a few
subpopulations, while in a cEA there is a large number of them.

The use of decentralized populations has a great influence in te selection
intensity, since not all individuals have to compete among them. As a conse-
quence, diversity is often better preserved.

4.4 Recombination

Recombination is a process that models information exchange among several
individuals (typically two of them, but a higher number is possible [47]). This
is done by constructing new solutions using the information contained in a
number of selected parents. If it is the case that the resulting individuals (the
offspring) are entirely composed of information taken from the parents, then the
recombination is said to be transmitting [39, 91]. This is the case of classical
recombination operators for bitstrings such as single-point crossover, or uniform
crossover [99], among others. Figure 4 shows an example of the application of
these operators.

Figure 4: Two examples of recombination on bitstrings: single-point crossover
(left) and uniform crossover (right).

This property captures the a priori role of recombination: combining good
parts of solutions that have been independently discovered. It can be difficult to
achieve for certain problem domains though (the Traveling Salesman Problem
–TSP– is a typical example). In those situations, it is possible to consider
other properties of interest such as respect or assortment. The former refers
to the fact that the recombination operator generate descendants carrying all
features common to all parents; thus, this property can be seen as a part of
the exploitative side of the search. On the other hand, assortment represents
the exploratory side of recombination. A recombination operator is said to
be properly assorting if, and only if, it can generate descendants carrying any
combination of compatible features taken from the parents. The assortment is
said to be weak if it is necessary to perform several recombinations within the
offspring to achieve this effect.
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Figure 5: PMX at work. The numbers in brackets indicate the order in which
elements are copied to the descendant.

The recombination operator must match the particulars of the representation
of solutions chosen. In the GA context, the representation was typically binary,
and hence operators such as those depicted in Figure 4 were used. The situation
is different in other EA families (and indeed in modern GAs too). Without
leaving GAs, another very typical representation is that of permutations. Many
ad hoc operators have been defined for this purpose, e.g., order crossover (OX)
[42], partially mapped crossover (PMX; see Figure 5) [59], and uniform cycle
crossover (UCX) [35] among others. The reader may check [35] for a survey of
these different operators.

When used in continuous parameter optimization, recombination can exploit
the richness of the representation, and utilize a variety of alternate strategies
to create the offspring. Let (x1, · · · , xn) and (y1, · · · , yn) be two arrays of real
valued elements to be recombined, and let (z1, · · · , zn) be the resulting array.
Some possibilities for performing recombination are the following:

• Arithmetic recombination: zi = (xi + yi)/2, 1 ≤ i ≤ n.

• Geometric recombination: zi =
√

xiyi, 1 ≤ i ≤ n.

• Flat recombination: zi = αxi + (1− α)yi, 1 ≤ i ≤ n, where α is a random
value in [0,1].

• BLX-α recombination [49]: zi = ri + β(si − ri), 1 ≤ i ≤ n, where ri =
min(xi, yi) − α|xi − yi|, si = max(xi, yi) + α|xi − yi|, and β is a random
value in [0,1].

• Fuzzy recombination: zi = Q(xi, yi), 1 ≤ i ≤ n, where Q is a fuzzy
connective [64].
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In the case of self-adaptive schemes as those typically used in ES, the pa-
rameters undergoing self-adaption would be recombined as well, using some of
these operators. More details on self-adaption will follow in next subsection.

Solutions can be also represented by means of some complex data structure,
and the recombination operator must be adequately defined to deal with these
(e.g., [4, 6, 37]). In particular, the field of GP normally uses trees to represent
LISP programs [74], rule-bases [5], mathematical expressions, etc. Recombina-
tion is usually performed here by swapping branches of the trees involved, as
exemplified in Figure 6.

Figure 6: A example of branch-swapping recombination, as it is typically used
in GP.

4.5 Mutation

From a classical point of view (at least in the GA arena [58]), this was a sec-
ondary operator whose mission is to keep the pot boiling, continuously injecting
new material in the population, but at a low rate (otherwise the search would
degrade to a random walk in the solution space). Evolutionary-programming
practitioners [55] would disagree with this characterization, claiming a central
role for mutation. Actually, it is considered the crucial part of the search en-
gine in this context. This later vision has nowadays propagated to most EC
researchers (at least in the sense of considering mutation as important as re-
combination).

As it was the case for recombination, the choice of a mutation operator de-
pends on the representation used. In bitstrings (and in general, in linear strings
spanning Σn, where Σ is arbitrary alphabet) mutation is done by randomly
substituting the symbol contained at a certain position by a different symbol.
If a permutation representation is used, such a procedure cannot be used for
it would not produce a valid permutation. Typical strategies in this case are
swapping two randomly chosen positions, or inverting a segment of the permu-
tation. The interested reader may check [48] or [85] for an overview of different
options.

If solutions are represented by complex data structures, mutation has to be
implemented accordingly. In particular, this is the case of EP, in which e.g.,
finite automata [29], layered graphs [107], directed acyclic graphs [106], etc., are
often evolved. In this domain, it is customary to use more than one mutation
operator, making for each individual a choice of which operators will be deployed
on it.

13



In the case of ES applied to continuous optimization, mutation is typically
done using Gaussian perturbations, i.e.,

zi = xi + Ni(0, σi) (3)

where σi is a parameter controlling the amplitude of the mutation, and N(a, b) is
a random number drawn from a normal distribution with mean a and standard
deviation b. The parameters σi usually undergo self-adaption. In this case, they
are mutated prior to mutating the xi’s as follows:

σ′i = σi · eN(0,τ ′)+Ni(0,τ) (4)

where τ and τ ′ are two parameters termed the local and global learning rate
respectively. Advanced schemes have been also defined in which a covariance
matrix is used rather than independent σi’s. However, these schemes tend to
be unpractical if solutions are highly dimensional. For a better understanding
of ES mutation see [16].

4.6 Replacement

The role of replacement is keeping the population size constant4. To do so,
some individuals from the population have to be substituted by some of the
individuals created during reproduction. This can be done in several ways:

• Replacement-of-the-worst : the population is sorted according to fitness,
and the new individuals replace the worst ones from the population.

• Random replacement : the individuals to be replaced are selected at ran-
dom.

• Tournament replacement : a subset of α individuals is selected at random,
and the worst one is selected for replacement. Notice that if α = 1 we
have random replacement.

• Direct replacement : the offspring replace their parents.

Some variants of these strategies are possible. For example, it is possible to
consider the elitist versions of these, and only perform replacement if the new
individual is better than the individual it has to replace.

Two replacement strategies (comma and plus) are also typically considered
in the context of ES and EP. Comma replacement is analogous to replacement
of the worst, with the addition that the number of new individuals |P ′′| (also
denoted by λ) can be larger that the population size |P | (also denoted by µ).
In this case, the population is constructed using the best µ out of the λ new
individuals. As to the plus strategy, it would be the elitist counterpart of the
former, i.e., pick the best µ individuals out of the µ old individuals plus the λ

4Although it is not mandatory to do so [50], it is common practice to use populations of
fixed size.
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new ones. The notation (µ, λ)−EA and (µ+λ)−EA is used to denote these two
strategies.

It must be noted that the term ‘elitism’ is often used as well to denote
replacement-of-the-worst strategies in which |P ′′| < |P |. This strategy is very
commonly used, and ensures that the best individual found so far is never lost.
An extreme situation takes place when |P ′′| = 1, i.e. just a single individual
is generated in each iteration of the algorithm. This is known as steady-state
reproduction, and it is usually associated with faster convergence of the algo-
rithm. The term generational is used to designate the classical situation in
which |P ′′| = |P |.

5 Fields of Application of EAs

EAs have been thoroughly used in many domains. One of the most conspicuous
fields in which these techniques have been utilized is combinatorial optimization
(CO). This way, EAs have been used to solve classical NP−hard problems such
as the Travelling Salesman Problem [26, 52, 82], the Multiple Knapsack Problem
[36, 72], Number Partitioning [15, 69], Max Independent Set [1, 65], and Graph
Coloring [32, 51], among others.

Other non-classical –yet important– CO problems to which EAs have been
applied are scheduling (in many variants [25, 31, 35, 80, 88]), timetabling [19, 89],
lot-sizing [63], vehicle routing [13, 14], quadratic assignment [83, 84], placement
problems [67, 75], and transportation problems [56].

Telecommunications is another field that has witnessed the successful appli-
cation of EAs. For example, EAs have been applied to the placement of antennas
and converters [23, 102], frequency assignment [38, 46, 71], digital data network
design [28], predicting bandwidth demands in ATM networks [98], error code
design [27, 44], etc. See also [30].

EAs have been actively used in electronics and engineering as well. For
example, work has been done in structure optimization [108], aeronautic de-
sign [90], power planning [101], circuit design [62] computer aided design [12],
analogue network synthesis [61], and service restoration [8] among other areas.

Besides the precise application areas mentioned before, EAs have been also
utilized in many other fields such as, e.g, medicine [22, 103], economics [2, 79],
mathematics [95, 104], biology [34, 54, 100], etc. The reader may try querying
any bibliographical database or web search engine for “evolutionary algorithm
application” to get an idea of the vast number of problems that have been
tackled with EAs.

6 Conclusions

EC is a fascinating field. Its optimization philosophy is appealing, and its practi-
cal power is striking. Whenever the user is faced with a hard search/optimization
task that she cannot solve by classical means, trying EAs is a must. The ex-
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tremely brief overview of EA applications presented before can convince the
reader that a “killer approach” is in her hands.

EC is also a very active research field. One of the main weaknesses of the
field is the absence of a conclusive general theoretical basis, although great
advances are being made in this direction, and in-depth knowledge is available
about certain idealized EA models.

Regarding the more practical aspects of the paradigm, two main streamlines
can be identified: parallelizing and hybridizing. The use of decentralized EAs
in the context of multiprocessors or networked systems can result in enormous
performance improvement [3], and constitutes an ideal option for exploiting
the availability of distributed computing resources. As to hybridization, it has
become evident in the last years that it constitutes a crucial factor for the suc-
cessful use of EAs in real-world endeavors. This can be achieved by hard-wiring
problem-knowledge within the EA, or by combining it with other techniques.
In this sense, the reader is encouraged to read other essays in this volume to get
valuable ideas on suitable candidates for this hybridization.
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