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Abstract 
This paper describes and investigates a swarm intelligence 
system with similarity-oriented behavioral rules, hierarchical 
clustering and evolution by random mutation. The evolutionary 
scheme is based on the Bak-Sneppen model of co-evolution 
between interacting species. The swarm of species, in this case, 
is randomly distributed on a 2-dimensional grid of nodes. The 
number of nodes is larger than the swarm size and the species 
are allowed to move on the grid. The rule that defines the 
movement of the species through the gird is based on the 
similarity between the species’ fitness values and the ranking of 
those same values within the entire population. Meanwhile, the 
fitness values are modified using the rules of a 2-dimensional 
Bak-Sneppen model. The system is intended to be a framework 
for metaheuristics with spatially structured populations and we 
show that it displays the desired characteristics for that purpose. 
Furthermore, these characteristics emerge as global patterns 
from the local interaction of the species. Without requiring the 
tuning of control parameters to precise values, the system 
seems to self-organize into a critical state between randomness 
and order.  

Introduction 
Self-organization is a concept that includes a wide range of 
systems and dynamics. It is used in the realm of physics, 
chemistry, mathematics, biology and even in social sciences. 
In general, the term refers to a process through which a 
system increases its complexity without any external action. 
Although the complexity sciences have not yet devised a 
mathematical language that explains the origins and dynamics 
of self-organization, it may be stated that self-organization 
describes the property of systems whereby unexpected global 
patterns emerge from local rules. This paper presents a self-
organized model of a population of simple entities that 
displays coherent global behavior emerging from local rules. 
The model was designed with the main objective of being 
applied as a dynamic and self-regulated base-structure for 
non-panmictic (or structured structured) population-based 
metaheuristics. The resulting system is a type of swarm 
intelligence − see Kennedy and Eberhart (2001). 

Swarm intelligence algorithms are self-organized systems 
in which unsophisticated distributed entities interact locally, 
causing global patterns to emerge. The interaction may be 

restricted to the communication between the entities, or it may 
use an environment as a medium for that communication.  
When the entities interact with (and via) the environment, the 
system is said to be stigmergic, a term introduced by Grassé 
(1959) to describe the ability of social insects in using the 
environment as a communication medium. 

Fernandes et al. (2012) have recently described a new 
swarm intelligence discrete system with stigmergic local 
rules. The system consists of a population of   simple 
individuals (or particles) moving and interacting on a  -
dimensional grid of nodes. Stigmergy is modeled by providing 
the particles with the capacity of depositing and following 
marks that carry information about the particle. The structure 
is defined by local spatial neighborhood and results in a 
partially connected and dynamic grid of individuals. Each 
individual is assigned with a random value in thr range      . 
This value is called fitness. 

The motivation behind the work by Fernandes et al. (2012) 
is to create a dynamic framework for non-panmictic 
Evolutionary Algorithms (EAs), as defined by Tomassini 
(2005). EAs belong to a class of metaheuristics based on the 
Darwinian theories of evolution by natural evolution that use a 
population of possible solutions (individuals) to a problem. 
The population evolves by selection, recombination and 
mutation towards optimal regions of the search landscape. In 
panmictic EAs, every individual is allowed to interact with 
every other individual in the population. However, large-scale 
problems or deceptive functions with multiple local optima 
may require other type of structures. Therefore, in recent 
years, non-panmictic EAs, also known as spatially structured 
EAs (see Tomassini (2005)), are gaining increasing attention 
by the community. This class of EAs restricts the interaction 
according to a pre-defined or evolving structure that connects 
the population of solutions. They permit to control the genetic 
diversity of the population and avoid premature convergence, 
but they also require extra designing and tuning efforts. In 
addition, the chosen structure affects the connectivity and the 
performance of the algorithm.  

One possible approach to overcome the rigid connectivity 
of the traditional structures without being trapped in 
complicated network design is to use the self-organizing and 
emergent properties of complex adaptive systems. The work 
by Fernandes et al. (2012) is an attempt to model the desired 
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characteristics of a dynamic and self-regulated population 
structure for non-panmictic EAs. In fact, complex properties, 
such as dynamic clusters of particles displaying pink noise 
patterns, have been observed while testing the model. 
However, the experiments in Fernandes et al. (2012) are 
restricted to a stationary version of the model, i.e., the fitness 
values of the individuals do not change during the run.  

This paper extends the study by Fernandes et al. (2012) and 
investigates the behavior of the system when populations of 
time-varying fitness values interact on the grid and generate 
the structure. The rules for varying the fitness values were 
taken from the Bak-Sneppen model of co-evolution between 
interacting species, a complex system proposed by Bak and 
Sneppen (1993): in each time-step, the fitness value of the 
worst individual and the fitness values of its neighbors (if any) 
are replaced by random values in the range      . In other 
words, the worst individual and its adjacent neighbors in the 
habitat are mutated.    

The Bak-Sneppen model is an example of Self-Organized 
Criticality (SOC), a theory that has been proposed by Bak et 
al. (1987) for explaining a class of systems that self-organize 
into a critical state without requiring the tuning of control 
parameters. When in the critical behavioral region, these 
systems display typical signatures, such as scale-invariance, 
power-law relationships between events and their intensity (or 
duration) and output variables with pink noise power 
spectrum. 

The Bak-Sneppen model has all the above referred 
signatures. Like other SOC systems, it doesn’t require 
parameters that need to be tuned. Furthermore, its global 
behavior can be described as a population of fitness values 
that evolve during the run. The average fitness of the 
population tends to grow and the gap      of the system, 
which is the maximum of the minimum fitness before time-
step  , is increased during the run until it reaches a specific 
range (that depends on the topology of the population). These 
characteristics make the Bak-Sneppen a good candidate for 
being implemented on the framework proposed by Fernandes 
et al. (2012) in order to investigate if the behavior observed in 
the stationary version is maintained in a population of time-
varying fitness values. Moreover, the resulting model provides 
the opportunity to study a version of the Bak-Sneppen model 
that, to the extent of our knowledge, has not yet been 
proposed. This new version is characterized by a dynamic 
topology and by the self-regulated and hierarchical clustering 
of species.      

In this paper, the experiments were designed for describing 
the properties of the new system, for analyzing the system’s 
behavior in search for complexity and self-organization 
signatures, and for testing the robustness of the system to 
changes in the fitness distribution of the population. 

The remainder of the paper is structured as follows. The 
following section addresses SOC and describes the original 
Bak-Sneppen model. Then, the proposed system is described 
and contextualized within the current research on spatially 
structured populations. The subsequent section describes the 
experiments and the system’s dynamic behavior. The final 
section concludes the paper and outlines future lines of 
research.  

SOC and The Bak-Sneppen Model 
SOC is a critical state formed by self-organization in a long 
transient period at the border of order and chaos. While order 
means that the system is working in a predictable regime 
where small disturbances have only local impact, chaos is an 
unpredictable state very sensitive to initial conditions or small 
disturbances. In complex adaptive systems, complexity and 
self-organization usually arise at that transition region 
between order and chaos, or on the edge of chaos, as it is 
sometimes stated. SOC systems are dynamical with a critical 
point at the region between order and chaos as an attractor. 
However, and unlike many physical systems, which have a 
parameter that needs to be tuned in order to obtain the critical 
state, SOC systems are able to self-tune to the critical point.  

In a SOC system, small disturbances can lead to the so-
called avalanches, that is, events that are spatially or 
temporally spread through the system. This happens 
independently of the initial state. Moreover, the same 
perturbation may lead to small or large avalanches, which in 
the end will display a power-law proportion between the size 
of the events and its abundance. 

This means that large (catastrophic) events may hit the 
system from time to time and reconfigure it. These power-law 
relationships between the size of the events and their 
frequency are widespread in Nature. Earthquake distribution, 
for instance, follows the Gutenberg-Richter law, which is a 
power-law proportion between the magnitude of the 
earthquakes that occurred in a specific area during a specific 
period of time, and the frequency of those earthquakes. Pink 
noise, or     noise, also displays power-law behaviour (as 
opposed to white noise, which is chaotic). 

 One may distinguish three types of power-laws arising 
from physical systems. For instance, the power spectral 
density distribution (like the pink noise) is described by: 

      
   (1) 

where   is the frequency,      is the power of that frequency 
and   is a real number between   and    , but usually close to 
   . If     then      is named white noise; if       then 
it is named red noise or Brownian noise; when       then 
the function      describes pink noise. In general, this 
function describes which frequency is the most dominant in 
the temporal behaviour of the system under consideration: the 
power spectral density is just the square of the Fourier 
transform of the signal under consideration.  

Another power-law arises in size distributions (like the 
Guttenberg-Richter law, for instance): 

      
   (2) 

where   is the size of an event (or magnitude) and      
reflects a distribution of frequency of such events. 

A third kind of power-law is identified in the temporal 
distribution of events, where   is either the duration of the 
event, or the time between events, as described by equation 
(3): 

      
   (3) 

SOC may be the common link between a wide range of 
natural phenomena operating at the region between order and 
chaos that exhibit these power-law relationships, a scale-
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invariant behavior that does not need to be tuned. The first 
system were SOC was identified is a cellular automaton called 
sand pile and it is described by Bak et al. (1987). Later, Bak 
and Sneppen (1993) introduced the model of co-evolution 
between interacting species: the Bak-Sneppen model.  

In nature, different species in the same eco-system are 
related trough several features (food chains, for instance). 
They co-evolve, and the extinction of one species affects the 
species that are related to them, in a chain reaction that can 
reach huge proportions. Fossil records suggest that the size of 
extinctions events is in power-law proportion to its frequency. 
It is also known that the biological history of life on Earth is 
punctuated by catastrophic extinction events. The Bak-
Sneppen model aims at understanding and explaining the 
mechanisms underlying mass extinction. It consists of a 
number of species, each one with a fitness value assigned and 
each one connected to other species (neighbors). Every time 
step, the species with the worst fitness and its neighbors are 
eliminated from the system and replaced by individuals with 
random fitness. 

This description may be translated to a mathematical 
model. The system is defined by    fitness numbers    
arranged on a  -dimensional lattice (ecosystem) with   cells. 
At each time step, the smallest   value and its     
neighbours are replaced by uncorrelated random values drawn 
from a uniform distribution (in other words, the worst species 
is removed from the population and its neighbors are 
mutated). The system is thus driven to a critical state were 
most species have reached a fitness above a certain threshold 
and the avalanches produce non-equilibrium fluctuations in 
the configuration of the fitness values. The complex behavior 
is observed even in the one-dimensional case, were species 
are arranged in a chain, an each one has two neighbors. 

Since its proposal, the model has been thoroughly 
investigated by the community and several extensions and 
modifications have been described. In the seminal paper by 
Bak and Sneppen, the research is focused on the 1-
dimensional version of the system. Higher dimensional 
models have been since then investigated. De los Rios et al. 
(1998), for instance, study the high dimensional Bak-Sneppen 
model (     and conclude that the system shows a rich 
behavior with four qualitatively different regimes as a 
function of dimensionality:    ,      ,       and 
   . 

In this paper, we have used the rules of a Bak-Sneppen 
model with    . However, the resulting system is not a 
standard  -dimensional Bak-Sneppen model. In our model, 
the position of species is dynamic and the grid is partially 
connected, i.e., each species may have four or less species in 
its von Neumann neighborhood. This leads necessarily to a 
different behavior and the dynamics observed in the 2-
dimensional model may not occur. However, we are mainly 
interested in the behavior of the proposed system as a 
potential framework for spatially structured EAs and therefore 
we search for signatures of dynamic clustering and robustness 
to changes. A theoretical analysis and empirical validation of 
the Bak-Sneppen model for determining critical exponents 
and the gap function is left for future work.  

The System 
The proposed framework is a discrete system with a swarm of 
heterogeneous individuals controlled by a set of local rules. 
The rules define the actions of a population of   particles that 
move on a 2-dimensional toroidal grid of nodes with size 
   . In each time-step, every particle tries to move to a 
neighboring node. The rules that model the system are the 
following.  

At      , the particles are assigned a random fitness value 
in the range       and then randomly distributed in a     
grid of nodes. Then, at each time-step, each particle moves to 
an adjacent free node (if any), leaving a mark with 
information on its status in the previous node. In this paper, 
the status is the fitness of the particle. The particles decide 
where to go by inspecting their Moore neighborhood. If there 
are no free nodes in the neighborhood (i.e., all the cells are 
occupied by particles), the particle stays in that same node 
until the next iteration. If there are free cells, the particle 
checks for marks. If it finds no marks, it just randomly 
chooses a destination node between the free neighboring 
nodes. If marks are found with better fitness than the particle’s 
fitness, the particle moves to the node with the mark that 
minimizes the difference between its fitness and the fitness on 
the mark. Whenever a particle changes its position, it leaves a 
mark in its previous location. The marks only remain in the 
habitat for a time-step. In summary, communication by 
dropping and following information is the base-rule of the 
proposed system. The system is modeled with a stigmergic 
behavior. 

The particles are ranked according to their fitness. This 
strategy is imposed with the objective of establishing a 
hierarchy in the self-organization of the clusters: worst 
particles tend to follow better particles (the better individuals 
are leading the way). 

In each time-step (which comprises the update of every 
particle’s position), the particle with lowest fitness is mutated 
(i.e., its fitness is replaced by a random value with uniform 
distribution within the range      ), as well as the fitness of its 
neighbors. The position of the neighbors is defined by the von 
Neumann neighborhood of the particle (with range  ). This is 
the standard Bak-Sneppen model on 2-dimensional habitats. 
The only difference is that in this case the number of 
neighbors of the worst particle that are also mutated is not 
necessarily      . This is the maximum number of 
individuals that are mutated. If the worst particle is isolated (if 
there are no particles in its von Neumann neighborhood) there 
are no more mutations in that time-step except for the particle 
itself. Therefore, in each time-step,   particles are mutated, 
with        .  

This basic set of rules drives the system towards a dynamic 
global pattern that displays signs of self-organization. A 
structure of particles, formed by clusters and paths, emerges 
on the habitat. However, these clusters are far from being 
static and, in a few generations, the distribution of the whole 
swarm may change dramatically (while maintaining a typical 
configuration of clusters and paths). The swarm’s behavior is 
not ordered (nor chaotic). Please remember that convergence 
to a behavioral region between order and chaos is a signature 
of self-organization. 
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Algorithm 
1. Randomly place   particles in a grid of node with size 

    
2. Randomly attribute a fitness value to each particle 
3. Find the particle with the lower fitness value. Mutate its 

fitness and the fitness of its neighbors (von Neumann 
neighborhood).  

4. Rank the particles by increasing fitness 
5. For each particle do 

6. check Moore neighborhood for marks and other 
particles 

7. if no marks in the neighborhood 
8. move to a free cell in the neighborhood (if any) 

9. if there are marks in the neighborhood 
10. move to the site of the nearest fitness mark 

which is better than its own fitness 
11. leave a mark in the previous site 
12. erase the mark in the new site 

13. if stop criteria not met return to 3 
 
Besides dynamic clusters, there are other signatures that 

suggest that the model comprises a hidden order that emerges 
from local rules. The following section tries to detect and 
describe those signatures under static and dynamic 
populations. 

Please note that the only parameters that need to be set are 
the population size   and the grid size. If the ratio between   
and the grid size is set within a specific range (large enough to 
allow communication between the particles, while not so large 
so that the particles hardly move on the grid), the system self-
organizes without requiring the tuning of control parameters. 
The following section shows that dynamic global patterns 
emerge within a wide range of population and grid size 
values. But first, let us discuss the motivation behind the 
proposed model.  

Motivation 
Genotypic representation, operators, selection schemes and 
population size are typical panmictic EAs moduli that require 
design choices. However, a population structure may be also 
introduced in the design scheme of this class of algorithms. 
This structure specifies a network of acquaintances for 
individuals to interact, that is, mating or selection is restricted 
to neighborhoods within the network structure. Spatially 
structured EAs include fine-grained approaches such as 
cellular EAs and course-grained approaches such as island 
models.  

The initial objective of spatially structured EAs was to 
develop a framework for studying massive parallelization – 
see Gordon and Whitley (1993). Afterwards, the need to 
provide traditional EAs with a proper balance between 
exploration and exploitation motivated several lines of 
research that explore the potentiality of different population 
structures in maintaining genetic diversity. Population 
structures were primarily devised as static regular lattices: 
every individual has a fixed number of potential interaction 
partners. Later on, complex population structures have been 
also studied − by Giacobini et al. (2005) and Payne and 
Eppstein (2006), for instance.  However, these standard 
cellular EAs have some drawbacks: synchronicity (in most 
cases) and a strong dependence on the problem since the 

genetic diversity promoted by a prefixed topology is 
uncorrelated to the problem structure. 

Dynamic population structures have only recently raised 
the interest of researchers. To the extent of our knowledge, 
only few works address explicitly the issue of dynamic 
population structures in cellular EAs. Alba and Dorronsoro 
(2005) dynamically change the ratio that defines the 
neighborhood of interaction. Since the ratio may affect 
selection pressure, the authors analyze its influence on the 
balance between exploration and exploitation. However, the 
base-structure of the cellular EA (i.e. a grid lattice) is 
maintained throughout the run. 

Whitacre et al. (2008) focus on two important conditions 
missing in EA populations: a self-organized definition of 
locality and interaction epistasis. With that purpose in mind, 
they propose a dynamic structure and conclude that these two 
features, when combined, provide behaviors not observed in 
the canonical EAs or traditional spatially structured EAs. The 
most noticeable change in the behavior is an unprecedented 
capacity for sustainable coexistence of genetically distinct 
individuals within a single population. The authors state that 
the capacity for sustained genetic diversity is not imposed on 
the population; instead, it emerges as a natural consequence of 
the dynamics of the system. 

Laredo et al. (2010) propose a framework for EAs based on 
peer-to-peer networks (see Steinmetz and Wehrle (2005) for a 
survey on peer-to-peer networks). Within a simulated 
environment, they model the dynamics of real networks and 
conclude that their system is able to achieve better 
performance than traditional EAs on a wide range of 
problems, while being scalable and resilient to the volatility of 
nodes in the network.  

The work by Fernandes et al. (2012), extended in this paper 
with a Bak-Sneppen model, has some minor similarities to 
that by Whitacre et al. (2008), since the structural 
characteristics of complex systems within an EA population 
are also recreated. However, while in Whitacre et al. (2008) 
the structure co-evolves with the EA until it reaches a stable 
self-organized state, the system described here does not 
converge to rigid or nearly-rigid state. Instead, it aims at a 
system working in a critical state where links are frequently 
created and destroyed and where new emergent patterns 
appear at high rate.  

We demonstrate that the proposed system has indeed 
emergent properties that could prove useful for spatially 
structured EAs, or other spatially structured population-based 
metaheuristics. In this paper, the dynamics of the system and 
its self-organizing behavior are studied under dynamic 
populations: the fitness values vary through the run according 
to the rules of the Bak-Sneppen model. Such dynamics are 
intended to model the behavior of EAs on the proposed 
framework. Therefore, it is expected that the outcome of the 
experiments can provide information on the self-organizing 
properties of the system and on the limits of those properties. 

Experiments and Discussion 
This section investigates the dynamic behavior of the system. 
Visual descriptions of the patterns that emerge from the 
interaction of the particles are given. Output patterns are 
analyzed in search for self-organization signatures. The 
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degree of clustering throughout the entire run is inspected, as 
well as the distance of the particle to their neighbors 
(measured in variation between fitness values).  

The system was tested with stationary and time-varying 
populations. The experiments with static populations have 
been described by Fernandes et al. (2012); therefore, in this 
paper we only give an overview of the results and conclusions 
in that study in order to contextualize the discussion. The 
stationary model is described by the pseudo-code given in the 
previous section after removing step 3. 

The main goals of this section are: 1) check if the self-
organizing properties are maintained with time-varying fitness 
values; 2) investigate the properties of the dynamic and 
partially connected Bak-Sneppen model and compare it to the 
standard models.  
 

 

 

Figure 1. Space-time diagrams of a  -dimensional habitat.   
 :      . Swarm:   ,    (top to bottom).  

Stationary Fitness Values  
Although the model has been designed has a  -dimensional 
framework for EAs, the  -dimensional version may be 
constructed by setting   or   to 1 (see the pseudo-code in the 
previous section). The  -dimensional version displays 
interesting and complex behavior, has shown in Figure 1. The 
graphics represent the space-time diagrams of the system. 
These diagrams are usually used to track the spatial 
configuration of a cellular automaton over a number of time-
steps. In this case, the diagrams may illustrate the chaotic and 
order factors of the system. 

Results with grid size        and       and       
are shown in Figure 1. The leftmost row of the cells is the  -
dimensional lattice set up with a random initial distribution of 
particles. Each successive row going right is the updated 
lattice at the next time step. The diagrams show a mixture of 
order and randomness which is typical, for instance, of class   
cellular automata. Some clusters of particles move up or 
down, while free particles randomly move through the grid 
until they are “captured” by a cluster. Meanwhile, clusters 
disaggregate, freeing more “wandering” particles. These are 
typical signatures of complexity and activity between order 
and randomness. If these traits emerge in a  -dimensional 
environment, it is expected that, at least, a similar degree of 
complexity is present in the  -dimensional system. 

In order to investigate the 2-dimensional model, the grid 
was then set to       and the swarm size to      (meaning 
that the ratio between particles and nodes is 1:3.  

Figure 2 depicts the distribution of the particles on the grid 
at different time-steps between     and       . The 

    
      

(      ) 
       

(      ) 
         

(      ) 
         
(      ) 

Figure 2. Position of particles and average degree of clustering  . 
   :      ;       . 

average degree   of clustering is given. This variable 
measures the number of particles in each particle’s Moore 
neighborhood. The average   is the degree value averaged 
over the entire population. 

The images in Figure 2 show that the particles are able to 
self-organize into a dynamic structure of clusters and paths. 
This assumption is confirmed by the   values, which, starting 
from       , tend to grow, reaching      after      
iterations. The graphics also confirm that the particles do not 
only aggregate in small clusters, they also form trails between 
the clusters. In fact, in most of the time-steps, large parts of 
the population are connected. This is a key result for the 
project of designing a dynamic self-organized framework for 
spatially structured EAs, since information may flow quickly 
through the population. 

Another important outcome is observed in the snapshots of 
later iterations. Averaged   is similar at iterations     and 
    . In fact, at this later stage,   does not tend to increase. 
However, the distribution of the particles is clearly different in 
the two snapshots of the system. That is, even after 
converging to the maximum range of   values, the swarm 
continues to reorganize and reshape the clusters. The system 
is in a state of dynamic equilibrium. Clusters form, but they 
may disaggregate at any moment, and the particles move to 
another region of the habitat where they will cluster again 
with other particles.  

Figure 3 shows the distribution of fitness values on the grid 
by plotting the particles with a grey-level proportional to their 
fitness. Comparing the distributions at an early and later stage 
we see that the particles do not only self-organize into 
clusters; they also tend to cluster according to the fitness, 
creating structures of particles with similar fitness. 

A quantitative analysis of the system was conducted by 
investigating its output variables, namely the average degree 
of clustering   and the average distance   to the neighbors. 
The Fourier Transform of   and   was calculated for a 
representation of the signal in the frequency domain. For the 
Fourier Transform,      samples of the signals were used, 
from        to       . This way, the spectral density 
leaves out the transient phase, from the random configuration 
at     to the self-organized state. The observation and 
analysis of the spectral density showed that large regions of 
the spectra are reasonably approximated by power-laws. 

The power spectra were plotted in log-log coordinates, as is 
customary, since the logarithmic transform renders the power 
spectrum a straight line whose slope can be easily estimated. 
The slope   of the power-law in both cases was found to be 
close to  , which is the slope of pink noise. The more general 
case, which displays a spectral density                 , 
where      , is sometimes referred simply as     noise. 
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Figure 3. Distribution of fitness values on the grid. Lighter 
grey areas correspond to particles with lower fitness.   
 :      ;       . 

If we investigate the spectrum of   and   that emerges 
from a random structure, we find an almost flat density, a 
signature of white noise. The stigmergic rule supply the 
system with a typical trait of complex adaptive system and 
self- organization in near-equilibrium state between order and 
chaos.  

Table 1 show the slopes of the power-laws used for fitting 
the data obtained by different ratios between the grid size and 
the number of particles. The relationship between intensity 
and frequency of   and   is similar when the ratio is in the 
range [1:24, 1:2]. Outside this range,   tends to decrease.  
This is an expected result, due to the physical constraints of 
the system.  On one hand, the swarm requires critical mass to 
interact. On the other hand, the particles require space to 
move. However, the model seems to be robust. In order to 
study its robustness, the swarm was tested with a fixed ratio 
between the population size and the number of nodes. Several 
combinations of   and grid size were used. The slopes of the 
power-laws used for fitting   and   spectrum are in Table 2. 
With      the slope of the power-law decreases, but for 
     the power-laws are very similar. The properties of the 
signals are stable for three orders of magnitude. The system is 
robust as long as the ratio is within a specific range. The 
complete description of these experiments, as well as other 
details on the results with the stationary version of the model, 
are given by Fernandes et al. (2012). 

Table 1. Slope   and  -squared of the power-law that fits the   
and   spectral density for different ratios between   and the 

number of nodes on the grid (    .  

       → 1:24 1:12 1:6 1:3 1:2 1:1.5 1:1.2 

  1.18 
(0.76) 

1.23 
(0.76) 

1.23 
(0.76) 

1.20 
(0.76) 

1.07 
(0.70) 

0.88 
(0.60) 

0.56 
(0.60) 

  0.82 
(0.60) 

1.00 
(0.72) 

0.97 
(0.68) 

1.01 
(0.69) 

1.00 
(0.69) 

0.93 
(0.64) 

0.42 
(0.60) 

Table 2. Slope   and  -squared.         is fixed and equal to 
   . 

   33 75 147 300 616 1200 2408 4800 

  1.15 
(0.72) 

1.29 
(0.77) 

1.18 
(0.75) 

1.22 
(0.77) 

1.18 
(0.74) 

1.20 
(0.76) 

1.17 
(0.74) 

1.18 
(0.76) 

  0.87 
(0.62) 

1.04 
(0.70) 

1.04 
(0.71) 

1.10 
(0.75) 

1.03 
(0.70) 

1.01 
(0.69) 

1.02 
(0.69) 

0.97 
(0.69) 

Time-Varying Fitness Values 
In this paper, the model was tested with the Bak-Sneppen 
mutation rules (i.e., including the step 3 of the pseudo-code 
given in the previous section). The size of the grid was set to 
      and the swarm is comprised of      individuals.  

The first analyses aim at comparing the behavior of the 
system with stationary and non-stationary fitness values. For 
that purpose, the spectra of the output variables (  and  ) 
were computed and compared with the spectral densities of 
the stationary version. 

Figure 4 compares the spectral density of the average 
distance between neighboring particles in each time-step. The 
introduction of the mutation rules based on the Bak-Sneppen 
model does not affect significantly the distribution of 
frequencies.  

Figure 5 shows the spectral density of the connectivity 
degree  . Again, introducing a mutation mechanism in the 
original model does not affect the general behavior of the 
swarm and the clustering dynamics. These results demonstrate 
that it is possible to obtain an emergent behavior consisting of 
dynamic clustering based on similarity and hierarchy using 
not only a population of stationary fitness values, but also an 
evolving population. This is an important result since an EA, 
by definition, is a population of solutions that, in average, 
improves over time. If an EA is implemented on a population 
of the model, and if the intensity of changes is maintained 
within a certain boundary (here, the number of fitness values 
that change in each time-step is in the range      ), it is 
expected that global patterns that emerge from the proposed 
model also appear in the model-based EA.   

 

 

Figure 4. Comparing the spectral density of the average distance 
  that emerges from the stationary and non-stationary fitness 
versions of the model. 
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Figure 5. Comparing the spectral density of the average 
connectivity degree k that emerges from the stationary and non-
stationary fitness versions of the model. 

The evolution of the population can be visualized by 
plotting the average and minimum fitness of the population, as 
well as the gap function     . Figure 6 shows the evolution of 
     particles on a       grid, while Figure 7 shows the 
evolution of a population of      on      , i.e., Figure 7 
displays the behavior of a standard  -dimensional Bak-
Sneppen model. The average fitness of the partially connected 
model evolves to higher values. The proposed model reaches 
an average fitness values of approximately    , while the 
standard 2D model stays below     (a result observed in 
several runs with different random seeds).  

The gap function also grows faster and reaches higher 
values. In the several runs conducted for this study, the critical 
value of the gap function was found to be       . The 
dynamics of the proposed model is clearly different from the 
standard 2D model. The sparser connection between the 
particles is a reasonable explanation for the differences in the 
evolutionary rates (please remember that in our model there 
are         particles that are mutated in each time-step, 
while in the standard 2D Bak-Sneppen model there are 
        mutations). The effects of the local movement 
rules are harder to measure, but since the particles cluster 
according to the fitness values, better particles tend to gather 
in the same regions, and therefore the mutation of the worst 
individuals will tend affect also weak neighbors, thus leading 
to a faster evolution of the population’s fitness values.  

One of the SOC signatures of the Bak-Sneppen model is 
the power-law relationship between the duration of the 
species’ periods of stasis (time-steps between successive 
mutations) and their frequency. The proposed model displays 

 
Figure 6. Evolution of 1200 particles on a       grid. 
Average fitness, minimum fitness and gap function. 

 
Figure 7. Evolution of      particles on a       grid 
(standard 2D Bak-Sneppen model).  

the same signature. The exponent of the power-law is 
approximately    , as seen in Figure 8. This is the same 
exponent obtained with the standard 2-dimensional model, 
while the 1-dimensional Bak-Sneppen system, in our 
experiments, displays a power-law with exponent 
approximately    ..  

The model maintains the characteristics of the stationary 
version proposed by Fernandes et al. (2012). Global patterns 
of clusters connected by paths tend to emerge. These clusters 
are highly dynamic, and in a few generations the distribution 
of the particles in the habitat may dramatically change (we 
believe there is an avalanche-based self-organized 
phenomenon behind the massive reconfigurations of the 
system but we haven’t yet identified i). The output variables 
of the system display pink noise spectral densities. 
Furthermore, the proposed model maintains the characteristics 
of standard 2-dimensional Bak-Sneppen models. The average 
fitness of the population tends to grow with time, and the gap 
function converges to a specific critical value. The power-law 
observed in the distribution of distances between successive 
mutations also appears in the proposed model, with the same 
exponent as the 2-dimensional Bak-Sneppen model. 

Conclusions and Future Work 
This paper describes an evolutionary extension of the self-

organized swarm intelligence system proposed by Fernandes 
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Figure 8. Duration of the periods of stasis (periods in-
between mutations). 

et al. (2012). The system is a swarm of simple particles that 
interact on a heterogeneous grid of nodes. The particles 
communicate via the grid, and move according to simple 
rules. A fitness value is assigned to each particle. In each 
time-step, the fitness values of the worst particle and its 
neighbors are mutated. This is the basic rule of a Self-
Organized Critically (SOC) model known as the Bak-Sneppen 
model of co-evolution between interacting species.  

The system has been designed as a base-framework for 
spatially structured Evolutionary Algorithms (EAs). The 
original model (without the Bak-Sneppen mutation rules) 
displays a complex behavior illustrated by dynamic clustering 
of the particles, catastrophic reconfigurations of the 
distribution of the particles on the grid, and output variables 
with pink noise spectral densities. The model proposed in this 
paper maintains the main characteristic of the stationary 
fitness values version. This conclusion is very important for 
the project of designing a spatially structured framework for 
EAs based on the proposed system. Furthermore, the system 

displays the same SOC signatures as the standard 2-
dimensional Bak-Sneppen model.  

In the future, the research will be focused on two main lines 
of work. Firstly, an EA will be implemented on the model and 
compared to standard spatially structured EAs. Secondly, the 
behavior of the system as an (hypothetical) SOC system will 
be studied. Traits such as the critical fitness threshold and the 
critical exponents of the model will be investigated. 
Furthermore, we believe that there is an avalanche-based 
phenomenon triggering the massive reconfigurations of the 
system (particles’ positions on the grid). In a future research, 
we will try to identify that phenomenon, its origin, and study 
its distribution in search for self-organization signatures. 
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