Some Probabilistic Modelling Ideas for Boolean
Classification in Genetic Programming

Jorge Muruzabal', Carlos Cotta-Porras? and Amelia Ferndndez?

1 University Rey Juan Carlos, 28933 Méstoles, Spain
2 University of Malaga, 29071 Mélaga, Spain

Abstract. We discuss the problem of boolean classification via Genetic
Programming. When predictors are numeric, the standard approach pro-
ceeds by classifying according to the sign of the value provided by the
evaluated function. We consider an alternative approach whereby the
magnitude of such a quantity also plays a role in prediction and evalua-
tion. Specifically, the original, unconstrained value is transformed into a
probability value which is then used to elicit the classification. This idea
stems from the well-known logistic regression paradigm and can be seen
as an attempt to squeeze all the information in each individual function.
We investigate the empirical behaviour of these variants and discuss a
third evaluation measure equally based on probabilistic ideas. To put
these ideas in perspective, we present comparative results obtained by
alternative methods, namely recursive splitting and logistic regression.

1 Introduction

Consider the problem of boolean classification via Genetic Programming (GP).
The goal is to learn the relationship between a boolean response y and a set of
predictors xq, g, ...,x, on the basis of a body of known classifications. Let x
and D denote the vector containing all predictors and the M x (n + 1) training
data matrix respectively. The GP approach proceeds by evolving a population of
individuals or functions ¢ = ¢(x) according to some evaluation or fitness measure
© and some set of basic functions I'. All functions ¢ ever considered by the
algorithm are combinations of members of I', inputs z; and random constants;
their fitness is given by @(¢, D) € IR. The well-known procedures of selection
and recombination are applied as usual for a fixed number of generations. Once
this simulated evolution process is over, the best function found is ready for
validation and, if appropriate, deployment on new cases X.

The nature of predictors xj, is closely related to both the function set 1" and
the evaluation method @. If all predictors are boolean, then one can naturally
use logical operators in I" [1]: all ¢ produce boolean values and no transformation
is needed in 6. In this paper, however, we consider the case of numeric predictors
xp € IR. Now ¢ outputs real numbers and some kind of transformation is needed.
The standard approach [2] proceeds by implementing a wrapper that classifies
each x in D according to the sign of ¢(x); the resulting predictions and evaluation
measure are called deterministic for reasons that will become apparent below.

This idea returns to the previous boolean case but has a number of disadvantages.
For example, it does not matter whether ¢(x) =+.1 or ¢(x) = 41,000, the
prediction § will be 1 in either case. This is fine as long as § = 1 is correct, but
otherwise ¢ would seem much less valuable in the latter case. Another problem
is that several unrelated functions may share the same signs over (the majority
of) D. This may introduce a substantial amount of confusion in the evolutionary
process. Finally, this approach yields no information about the confidence that
we should place on our predictions; we can look at proximity to the border
¢(x) = 0, but there is no absolute scale on which our assessment could be based.
Overall, it seems a bit wasteful to carry out the search in the space of functions ¢
when all the system needs is a much simpler boolean decision criterion. It would
be nice if we could profit from every bit of information in ¢.

In this paper we study an alternative approach inspired by standard logistic
regression modelling [3]. A distinctive feature of this approach is that the mag-
nitude of ¢(x) also plays a role. To define a new evaluation measure, the idea is
to use first an appropriate function G to produce an estimate #(x) = G o ¢(x)
of the target conditional probability 7(x) = P(Y = 1/X = x), then introduce
a random mechanism to exploit the probabilistic information in #(x). Here X
and Y denote the obvious random variables in the underlying statistical model.
The random decision ¢ is simply the result of a coin flip with probability of
heads #(x). From this point on, the new evaluation measure works exactly as
before. Note that constraints on G make only a few functions suitable for the
present purpose. To illustrate their desired behaviour: if ¢(x) = +.1, #(x) is
slightly above .5 and will often yield § = 1 as well as §y = 0; conversely, if
d(x) = +1,000, then #(x) ~ 1 and § = 1 nearly always. This seems to be more
in line with our intuition in this context.

We talk of stochastic predictions and evaluation in this case; let @, and O
respectively denote the deterministic and the stochastic evaluation measures.
We provide some evidence below suggesting that Gy is better than 6, for some
purposes and that the situation may be reversed for others. Specifically, 6,
is better than 6, in the sense of providing more accurate results with “well-
behaved” (or deterministic) training data; @, seems more parsimonious when
there is noise in the data.

As regards interpretation, #(x) € (0, 1) is an extremely simple and informa-
tive summary for future x. In particular, we shall explore below another way of
exploiting the whole set {#(x),x € D} for evaluation purposes. This will be seen
as an attempt to quantify the overall fit of the selected ¢ in a well-defined sense.

The organization of the paper is as follows. Section 2 contains a brief de-
scription of the logistic regression paradigm. Section 3 presents our experimen-
tal setup and main empirical results. Section 4 links up with some related work.
Section 5 closes with some discussion and an outline of future research.

2 A review of the logistic regression paradigm

In logistic regression (LR) modelling, the boolean random variable Y is assumed
to depend on the available predictors zy, xo, ..., , in the following way. First,
the contribution of these predictors is totally captured by a linear combination

f(x,w) =wo +wizr + ... + W@

Here we may have all or some of the original variables together with some other
(simple) functions thereof (eg. squares). An important point is that the user
needs to specify exactly what m variables come into play. Now, it is assumed
that, for some link function G and some w €IR™*!, Y follows, conditionally on
x, a Bernoulli distribution with parameter Go f(x, w). A link function is a one-to-
one mapping from IR onto the unit interval (0, 1). While several choices for G are
available, the most widely used is the inverse-logistic or sigmoid transformation

G(y)=1/[1+exp(—y)l.

This particular choice will also be assumed throughout this paper. We note in
passing that this model can be seen as a particular case (namely, the no-hidden-
layer case) of the standard neural network model for classification tasks [5].

Jordan [6] has put together a number of useful results concerning this func-
tion. Most relevant for our purposes here is the fact that, if we model our
classification problem in the usual way?®, then the posterior probability of ei-
ther class can always be expressed as G o &(z) for some function &. It follows
that G(y) =1/ [1 + exp (—y)] is the most natural choice for our transformation
(which, while not bayesian, aims to provide estimated “posterior” probabilities).

Returning now to the LR paradigm, the key assumption is that the target
function

m(x) =P =1/X =x)

can be approximated by (some member of) the parametric form

h(x,w) =1/ [1 + exp (—f(x,w))].
It is then possible to formulate the likelihood function

M
L(w/D) = H hixj, @)1 — h(x;,w)]" %

j=1

and estimate w by the method of maximum-likelihood. The LR algorithm imple-
menting this method is well-studied and widely available [4]. While the resulting
estimate @ is not guaranteed to maximize L, it typically provides sensible an-
swers.

3 That is, incorporating a priori probabilities for the two classes and conditional den-
sities for the input vectors x

The above problem may also be viewed alternatively by noting that f(x, &)
aims to approximate the logistic transformation of 7(x), that is,

Ax) = logit(m) = log|n /(1 — 7)] € R.

This logit function A will also be the target for functions ¢ in our GP context.
Indeed, in our simulations we specify A and generate the response y associated
to x on the basis of G o A(x).

Fitted probabilities for individual x; € D are given by #; = h(x;,&). In
ordinary LR, however, each prediction y; € {0,1} simply reflects the sign of
the corresponding f(x;,@). Thus, following the terminology introduced earlier,
the LR paradigm typically behaves deterministically (just like the standard GP
approach).

As regards the practical aspects of the LR paradigm, it is clear that the an-
alyst will rarely carry out a single fit (or estimation of w). Upon examination of
the first fit, the analyst may remove some variables and incorporate others. More
often than not, however, we let the computing package carry out an automatic
exploration of the space of all linear combinations of a specified set of variables
along with their two-at-a-time products and squares [7]. For example, in S-PLUS
this exploration is carried out via the step command. The algorithm then selects
the “best-fitting” model and returns the associated vector of estimated coeffi-
cients @ together with some indication of their significance given the remaining
variables. This selection process is based on a scalar quantity that combines the
quality of fit itself (or deviance, see [4]) with the number of terms (or w’s) in
the model. However, this measure is less readily interpretable. Instead, the set
of fitted probabilities 7; can be used to validate the model as shown next.

The Chapman data refer to past occurrence of cardio-vascular disease (CVD)
amongst 200 males examined by certain hospital. There are six predictors includ-
ing weight, height, age, blood pressure, etc. The percentage of positive response
is only 13%; see [3] for further details. The preferred model is given in Table 1;
thus, the key equation is given by

f(x,&) = —9.255 + 0.053 AGE +0.018 WEIGHT +0.0071 CHOLESTFEROL.

The interpretation is immediate: the older and heavier the patient, the higher
the chance of having had CVD (and similarly for the cholesterol level, although
the latter’s coefficient is quite small). While the cholesterol variable is not over-
whelmingly significant, it is seen to contribute to a sensible model as follows.

variable |coefficient|t-value
Intercept —9.255| —4.49
Age 0.053 2.55
Weight 0.018 4.91
Cholesterol 0.007 0.79

Table 1. Selected model for the Chapman data, see [3].

Note first that the confusion matrix arising from this fit (given in Table 2)
might lead us to think that the model is not good: §; = 1 in only two occasions,
24 positive cases go unpredicted! The following argument shows that this is not
the case: the postulated model provides an excellent fit.

Zero one
zero| 174 0
one| 24| 2

Table 2. Confusion matrix for the training sample under the model shown in
Table 1. Columns are predicted values 7j;; rows are observed values y;.

Christensen [3] first groups individuals in categories according to their CVD
probabilities 7;, see Table 3. For example, the first category includes all indi-
viduals with #; € [0,0.1); we find 99 cases here!. Now, if the midpoint .05 is
selected as representative probability of this group, then we would naturally ex-
pect 99 x 0.05 = 4.95 positive cases. This figure is to be contrasted with the
true number of CVD occurrences in the group: out of the 99 individuals with
predicted probability below .1, we find 5 positive cases. Hence, the fit is very
good in this first group. Indeed, the fit is rather good through all 6 groups.

| Interval ||[.O,‘1)|[.1,.2)|[‘2,‘3)|[.3,.4)|[‘4,.5)|[.5,‘6)|
E; 495 9 5.5 | 3.5 | 3.15| 1.1
O; 5 10 2 5 2 2

Number of cases|| 99 60 22 10 7 2

Table 3. Groupwise expected (E;) and true (O;) number of CVD occurrences
for the Chapman data based on the model shown in Table 1.

The explanation of this phenomenon is as follows. Since the LR method is
based on a simple linear cut, the model can not tell whom exactly had CVD in
each subinterval or risk group. However, the observed behaviour of each group as
a whole is quite in line with the model’s probabilistic assessment. This validation
example is particularly interesting in that it refers to a case where the distribu-
tion of 0’s and 1’s is rather skewed. Skewed data sets (containing only a few (’s
or 1’s) are difficult for the conventional GP approach since any constant with
the right (dominant) sign will have high fitness. Letting the evaluation function
measure the overall fit in this way should be helpful to get rid of such free-riders.

We will return to Christensen’s idea at the end of Section 3. A basic observa-
tion is that the previous assessment of fit depends in no way on the LR paradigm
and can therefore be “exported” as soon as the analog of the 7;’s are provided.
It can also be used on test data as a validation tool.

4 Of course, the fit can also be measured with a higher or lower number of subintervals.

3 Empirical work

In this Section we present the bulk of our empirical results. We first describe the
basic experimental setting, then proceed to discuss some specific problems.

3.1 Experimental setup

We have extended the standard symbolic regression GP paradigm implemented
in the 1il-gp system [8]. Our modifications allow for more than one predictor
at a time (n > 1) and incorporate all details required to test the ideas described
above. The modified system currently runs on a LINUX-based PC; source code
is available from the authors.

Due to the exploratory nature of this research, we choose to keep the situation
as controlled as possible: all experiments reported below are based on simulated
data. In our runs, we always use the same system parameters, see Table 4.
Since the focus is on comparative results and not on optimal choices for these
parameters, we have simply adopted 1il-gp’s default options. In particular,
we always use a single population and maintain the same reproductive plan
throughout each run. We execute ten independent runs under each configuration;
a summary of the runs is often given in the standard box-plot form. Either
evaluation measure @, or 6y is based on the number of correct predictions on
the training sample as standardized fitness [2]:

M
=1

where §; = 7,(¢,%,) may be computed either deterministically or stochastically
as explained earlier.

System Parameter Value
Maximum number of generations 200
Population size 500
Training sample size 500
Test sample size 500
Initial population generation half-and-half]
Maximum tree depth 5-10
Ephimeral random constant Yes
Crossover /Reproduction 80/20
Mutation None

Table 4. Execution parameters. See 1il-gp’s documentation [8] for details.

Maximum tree depth is usually 10 but we sometimes switch to 5 in order to
reduce the complexity of the output functions. We experiment with two function
sets: I' contains the arithmetic operators alone, I' = {+, —, %, /}, where / stands

for protected division as usual. Function set I'™* contains also the protected loga-
rithm rlog(z), the exponential function exp(x), and the trigonometric functions
sin(x) and cos(x).

In our simulations, we work with n = 5 predictors; out of these, 2 or at
most 3 are relevant, the rest contribute noise. To create our training sets D,
we first draw, for each predictor, independent, uniformly distributed variates
in (—5,5). Then we specify the “true” logit function A\(x) and generate the
associated responses accordingly. Just like in the case of predictions ¢, these
responses can be generated either deterministically (the “no noise” situation) or
stochastically (the “noise” situation). The latter formulates a more realistic and
typically harder problem. Results from both options are presented below.

As usual, for each problem we create a second sample to test generaliza-
tion ability. This test sample itself can also be created either deterministically
or stochastically; deterministic test samples are used except where otherwise
noted. Lastly, test performance in turn can be determined in either of these two
ways. Because the alternative techniques that we study make their predictions
deterministically, so do we with our GP functions. This ensures the fairness of
our comparisons throughout.

The outline of the rest of this Section is as follows. We first illustrate the
“confusion of signs” problem mentioned in the introduction. Next, always under
©s and ©,4, we analyze two problems well-suited for other techniques. We also
approach these problems with their “natural” methods and discuss comparative
performance. Specifically, we try the logistic regression and recursive splitting
algorithms implemented in the S-PLUS system (V4.5), see [7]; all run parameters
are fixed to their default values in either case. We only use deterministic training
data so far. In Section 3.5 we introduce a third evaluation measure based on
overall fit. Finally, we explore performance with noisy training data.

3.2 A basic confounding problem

Consider the problem of learning the logit function A (x) = 21 — 2z9 + 5x12.
When both the generation of data D and the evaluation of functions ¢ are
done deterministically, a basic confounding problem arises during learning®. As
mentioned, this problem is due to the emergence of alternative functions which
partially or totally match the signs of Ay over D. The result is that learning is
impaired and we may end up with a totally mistaken function. For example, the
system converged once to
(/ (rlog (exp x2))
(x x1 0.86686)).
In another run, we found a function containing 10 instances of the “success-
ful” string (/ x1 x2). Likewise, some variations of the sign-matching function
x12z2 were discovered early and the system got stuck; this was the case of

5 Actually, training data for this problem were generated stochastically (as shown in
Fig. 1la). However, since the slopes near the axes are so sharp here, these data do
not differ much from deterministically generated data.

Training Data Performance on test data

90 0 Qo0 111 It h
0480 0 A1y e
**098 %0 003%%@11111141111 34
000000000%111 W
LY 1
o o® § 00 B)QB*’ 1;111 A 5
0 1
® 0 P R L L B I T
o000 © b, Q’no@g‘ 113‘1 jﬂm 1 8 e
Lol By, 0 ° PUCRRE SR —
11‘”11111111“‘101’3%8 008 ®
I TR e 000@ 2
a1t Ty 10
TR . J TH
1 |
- i }11 11111‘1 11111'1 % g@oo ‘%OBO ®
o 111 1, 00 O 0
1”11% M 1%008900 o] ;
4 2 0 2 4 1 2
X1 Evaluation type

Fig. 1. Learning A; with function set I'"* and maximum depth set to 10. (a) Training
data in the relevant z1 X z2 space. (b) Boxplots (each based on ten runs) of perfor-
mance results under the two evaluation measures ©4 and ©;. In this and the following
boxplots, standard GP (6©;) is identified as evaluation type 1. Recall that the box itself
runs from the lower to the upper quartile, thus capturing central or typical behaviour.
The white line represents the median. The “whiskers” stretch out to cover less typical
values, whereas atypical values are shown individually (see eg. Fig. 2). Note also that
the vertical scale changes from boxplot to boxplot.

(/ (x x2 x1)
(exp x4)),

found at initialization and never improved upon! Naturally, this behaviour under
©,4 does not persist under @,. In any case, performance on test data (see Fig.
1b) shows that @5 never declines below 95.8% and is thus more likely to prevent
a poor fit.

3.3 The logistic regression problem

Consider now the logit function \a(x) = 1 — 2x9 + 23 + 2w129 — 3waxs. This
reflects exactly the type of structure that logistic regression (LR) searches for;
it should therefore provide a nice basis for evaluation of the GP approach.

Training Data Performance on test data

000 o0, 0 Oggo 1 7
Lo mpdnga s we g =
By or IR s |

1
0 170 0 0 1
049 O RCE A ‘
N oo%}m% @O0 34 O o |
0%005 0 "b g7 4o b} 5 —
o |000® 001101:11‘91‘11“}0?‘131 g .
& o "%‘% o owﬁw 1"1;11\)) 1y §®,
0 ' 03 Qboq, E
0 hwmm 18, 1h 1My dot O o
R 11&1] o} i 11 @11% 1 <7
{od117d o 1‘@111)01110)18

L jgr g0 [=

91;01 1‘}5’1110 &9%01 1%09101

10, o Q%vqo 1 Oéﬁ 1 Pdy 9 w

4 2 0 2 4 ! 2
X1 Evaluation type

Fig. 2. Learning A2 with function set I" and maximum depth set to to 5. (a) Partial
view of the training data. (b) Boxplots of performance results (see Fig. 1). Recall that
©4 and O, are identified respectively with evaluation type 1 and 2.

variable|coeflicient |t-value
Intercept 1.18 1.56
o —0.44] —1.63
T 2.60 3.01
To —4.36| —-3.17
T3 2.12 3.21
T4 0.38 1.49
To X I3 —7.32] —3.33
T X X9 5.24 3.28
Lo X T4 —0.36] —2.57
o X T2 0.30 2.39
o X T1 0.12 1.52

Table 5. Logistic regression fit for Ay (similar to Table 1).

Fig. 2b shows the results on the test sample. It appears that this problem
is easy since the algorithm often finds the correct function (the median success
rate is 100% in both cases). However, the lower tail of the distribution is again
better for O,.

As regards performance by the LR approach, the best fit (produced by the
step command as discussed earlier) is summarized in Table 5. Note that we do
not recover the desired function exactly. In particular, noise variables x¢ and x4
show up several times. While the overall significance of such terms is not large in
general, the —2.57 t-value of x2 X x4 stands out. This is in contrast to the perfect
match often achieved by the GP approach. On the other hand, all key terms are
found significant, and indeed their coefficients are about 2.4 times their target
values. Accordingly, performance on test data is 97.2%. Hence, as expected, the

Contour plot Full set Reduced set

X2

0
95 100
95 100

85
85

% correct
90

% correct
90

80
80

X1 Evaluation type Evaluation type

Fig. 3. Learning A3. (a) Contour plot of G o A3. (b) Performance results for the full
function set I'"" and maximum depth set to 10. (c) Performance results for I" and
maximum depth set to 5.

model fits the data well, yet the GP approach under ©; does better.

3.4 The recursive splitting problem
Let us now switch to the problem of learning

1+ 22 + 23

o @y + 23
As(x) =15— exp{—%} + log(58).

This function illustrates one of the worst-case scenarios for the LR method: while
the basic structure is still a sum, summands comprise complicated functions of
the input variables. However, the problem is relatively easy for the recursive
splitting method. Indeed, the contour plot in Fig. 3a shows that parallel decision
boundaries should not be too hard to find. But let us look first at performance
by the GP algorithm.

To begin with, consider the case of I'* so that the exact target function can
be found in principle. The results in Fig. 3b show that ©, yields again better
results. Not only the best absolute result is achieved in this case, but the median
percentage is about 4 points higher. Now we repeat the previous experiment
with I instead of I'*; the system is thus somewhat handicapped but it is still
interesting to compare performance. As shown in Fig. 3¢, O, leads once again
to the best median, although the best overall individual was now evolved under
Og4.

Consider now performance by the recursive splitting method. We find a rel-
atively simple decision tree with 13 nodes achieving a 96.6% success rate on the
test sample. Note that GP performs slightly worse, but it does provide a function!
Obviously, things would be much harder for this method were the target region
tilted towards, say, the main diagonal. We will examine below performance in a
related problem of interest, namely, learning in the presence of noise.

No noise Noise

1 i IS i 31014011 g
<] 11 1 11 1‘111 W 3 PR <] 1 {‘1 11)11 1‘111 ﬁfj 31 18
1“111 1“111}1111 g g 1;2‘1
J 111 1 i1 111 i IPTEREL i 0 1011 114 %
1 14 10 1 1
I 3‘ % duzl t 11 R - 111" Y 016)1 {100 10111011111
90(90 001]Hfﬁ 9% 3000("0@00111%611 0 11)31133
1 & 1 o1 0y 0 1
.. B%WO e el : 0080?03@3@@00% #r
0 1 0 1
01 00,800 o 6})‘&3 Ogmﬁ 111 (00‘31 01,8 g 0 1%6’ 19711%& g?
o 011 0 %0 Qﬁ ﬁ 0090190 , 01)
11 ;111 1 1$9(ﬂ°1 111 1 ‘1 111101 1 011#)919 11
1 LR PE i 1)1 Q1o 00 1
1 ﬂ1 1 wﬁ; 1 19 0% \19 (g @ 11
¥ T DRELEY IR DREARN
1 11 1111111 1111111 i 1 ol 1 1% in 111#1 .M
SR R
X1 X1

Fig. 4. Training data from As.(a) Deterministic generation follows Fig. 3a closely. (b)
Stochastic generation eliminates rigid borders (0’s and 1’s may occur anywhere).

Test results Training results Tree complexity

100
100

90
90

% correct
80
% correct (training sample)
80
number of nodes
10 20 30 40 50 60

R — R4 —] —] =
s s =
3 34
1 2 1 2 1 2
Evaluation type Evaluation type Evaluation type

Fig. 5. Learning A3 with stochastically generated data (see Fig. 4b). (a) Performance
on the test sample. (b) (Final) performance on the training sample. (c) Size of the best
trees.

3.5 Measuring the overall fit

In the real world it is unlikely that we find perfectly separated classes as in
Fig. 4a. The situation in Fig. 4b should be far more common. Recall that, under
stochastic generation, we first compute the probabilities 7; and then obtain each
y; as a Bernoulli realization with probability 7;. There are at least two issues
of interest related to this type of training data. First, and most important, how
well do the GP algorithm and its competitors perform here? Some results are
reported in the next Section.

Second, we can naturally consider yet another evaluation measure, namely
that hinted at in Table 3 above. Specifically, define the overall fit of a given

Scores on test data Scores on test data

log(goodness of fit)
4 5
h I
log(goodness of fit)
4 5
h I

1 2 1 2

Evaluation type Evaluation type

Fig.6. O log-scores of individuals evolved earlier for logit functions A1 and As
respectively. These numbers are based on a second stochastic test sample. In contrast
to previous plots, the lower these values, the better.

individual ¢ as [3]

& Ei(¢)

Note that this measure is formally reminiscent of the standard x? test for good-
ness of fit. Nevertheless, the idea is clearly different here since not only O; but
also E; depend on ¢. Note also that ©f does not make sense when predictions
are deterministic. On the other hand, it is quite interesting for real data, par-
ticularly skewed data (see Section 2). However, unlike @,, @7 does introduce
an important computational overhead that needs careful assessment. Hence no
GP runs based on it are reported here. To get some intuition for @y, we have
evaluated some functions evolved under &, and &,; these will be discussed in
the next Section.

3.6 Learning in the presence of noise

We now return to Az(x) and consider learning based on a stochastic sample, see
Fig. 5. ©; provides once again slightly better results, although we now show that
it requires twice as many nodes on average (note also that relatively complex
functions emerge occasionally). To put these results in perspective, consider
performance of the recursive splitting method on the same training set. We find
a much bigger tree with 67 terminal nodes achieving a success rate of 86.4%
on the training set but only 65.6% on the test sample. Thus, the GP algorithm
does better in this case as well, particularly under @;. Note also that, unlike the
recursive splitting method, the GP algorithm generalizes correctly.

Finally, Fig. 6 shows (log) scores achieved under ©f by the 40 functions
depicted in Figs. 1 and 5. Looking first at Fig. 6a, it appears that ©; and Oy
are comparable as far as the median ©y is concerned. As usual, under @5 we get
a tighter distribution avoiding very poor fits. On the other hand, the best fit is
achieved by ©4 and corresponds to the very simple rlog(xs) — .665.

If we switch to Fig. 6b, the situation is markedly different: @4 can not compete
now with 64 as far as the overall fit is concerned. Curiously enough, the absolute
best fit is achieved by the nearly identical

(+ (rlog (cos (cos 0.59310)))
(rlog x2)).

The fit, shown in Table 6, is indeed uniformly good. Overall, however, it
would seem unlikely that the contribution of z; in either A; or Az could be
found using ©¢. On the other hand, @’s apparent built-in bias for parsimony is
worth investigating. We also note that the correlation between these @y scores
and the original performance scores (shown in Figs. 1 and 5) is low. Thus, the
underlying search is quite different in each case.

| Interval ||[.0,.1)|[.1,.2)|[.2,.3)|[.3,.4)|[.4,.5)|[.5,.6)|[.6,.7)|[.7,.8)|
E; 0 2 7 16 18 39 84 | 121
0O; 1 3 9 14 18 30 90 | 127

Number of cases|| 9 16 29 46 39 71 | 129 | 161

Table 6. Groupwise expected (E;) and true (O;) number of 1’s (analogous to
Table 3) for the best fit under O in problem As.

4 Some related research

The present approach concentrates on the quantitative nature of predictors and
outputs real-valued functions. A completely different idea is to dismiss part of
this detail and conduct the search over the space of boolean functions. The aim,
of course, is to simplify interpretation. For example, Eggermont, Eiben and van
Hemert [9] study a scheme based on “booleanization” of numeric predictors and
inclusion of logical and comparison operators only. Booleanization is achieved
by special functions A (zk,r) and A (g,), where r is some threshold, with
the obvious interpretation A.(x3,32.5) = TRUE <= x3 < 32.5. They use
specialized mutation operators to modify the arguments of these functions. The
overall results (based on several real data sets taken from [12]) are not quite
satisfactory though: “Giving up the flexibility of numeric operators for the sake
of transparency ... comes at costs of performance”. A similar idea is advocated
(although not tested) in [10].

Complexity in the resulting functions is indeed a recurrent area of research in
GP. Cavaretta and Chellapilla [11] retain the set of mathematical functions but
modify the usual fitness measure (@, in our notation, no-complexity-bias in their
terminology) by adding a term that penalizes functions with a large number of
nodes. This is certainly not the first time that this idea is put to work in the
GP context. Their results (based on a single test problem from the STATLOG

suite [12]) indicate that “the models generated from the no-complexity-bias al-
gorithm were very accurate, beating the best of the STATLOG algorithms, and
were statistically significantly more accurate than the low-complexity-bias algo-
rithm”. These results are in line with the evidence provided above: under @,
the returned functions are slightly more complex but perform more accurately
on (deterministic) test samples.

Interestingly, these authors do not apply @4 over the entire training sample.
As a basis for evaluation, they rather consider several subsamples from the train-
ing set, and they let these subsamples change with each generation. Although
their main motivation is to reduce the chance of overfitting, this stochastic fitness
measure can also be seen as an attempt to capture the overall fit of individual
functions. Unfortunately, however, it is not entirely clear how this idea was im-
plemented (see also below).

A different evaluation measure was tested out in [1]. If we label the entries
of the confusion table as follows (see Table 2)

ZEro one
zero| tn | fp
one| fn | tp

Table 7. Generic confusion matrix. Columns are predicted values, rows are
true values.

then their proposal is #‘,—% mt_ffp (instead of the traditional Wtzﬁ_}%ﬁ)' This
involves familiar quantities from the medical domain. The authors report that
some comprehensible rules of interest were discovered by this measure.

Resampling underlies also the work of Iba [13]. This author believes that the
new strategies called boosting and bagging may help to “control the bloating ef-
fect by means of the resampling techniques”. In these variants, the population is
divided into subpopulations and a different training sample is used in each sub-
population. Boosting places the emphasis on adaptive subsampling of hard cases,
see also the cited [9]. This approach is closely related to various co-evolutionary
schemes inspired by the seminal work of Hillis [14]. Bagging proceeds by simply
counting votes from the independently evolved solutions. These strategies have
proved useful in several machine learning tasks and show great potential in GP
(at the expense of some added computational effort).

5 Summary and concluding remarks

We have presented a number of ideas and preliminary empirical results concern-
ing the introduction of simple probabilistic machinery in the GP approach to
boolean classification. The main focus has been placed on the computation of
the predictive probabilities # and the associated stochastic evaluation of indi-
viduals ©,. The main ideas are central to the well-known method of logistic
regression (LR). The added computational cost with respect to the more usual
By is negligible and there is some indication that better results are obtained.

Endowed with this new evaluation method, the GP approach has been shown to
provide competitive results with respect to standard methods. Further, the GP
approach sometimes exhibits pleasant features that the alternative methods do
not (eg., it finds the correct function in the LR problem), and is much better in
the noisy recursive splitting problem.

We have also provided some insights into an alternative evaluation measure
(©f) based on the idea of overall fit. We believe that this is a promising alter-
native to tackle highly skewed data sets and we intend to investigate its perfor-
mance in this direction. We have discussed evaluations of some of the functions
found under &4 and 6,. As it turns out, the best-fitting functions under Oy
are crude but useful versions of the target functions. This is positive in that a
tendency towards parsimony may be in effect. On the other hand, it remains to
be seen that fine detail is within the reach of the GP algorithm trained with
O¢. In any case, further research is needed to ascertain its merit, to quantify the
effect of the number of subintervals, etc.

Extensive experimentation with real data, particularly from the STATLOG
project, should also be conducted to validate our findings. It would be equally
interesting to compare the previous results to other established methods such as
neural nets.

Finally, we have reviewed a number of recent developments in the GP lit-
erature. Our approach is based on maintaining quantitative detail throughout;
exclusive consideration of boolean functions just precludes computation of any
’s whatsoever. With this exception, we find it likely that portions of the present
framework may cross-fertilize with some previously advocated ideas. Overall, the
GP paradigm seems a worthwhile alternative for the problem of boolean clas-
sification. Extensions to deal with the general (k—leg) classification problem
deserve attention as well.

Acknowledgement. We are grateful to Bill Punch for assistance with 1il-gp.
The first author is supported by grants HID98-0379-C02-01 and TIC98-0272-
C02-01 from the spanish CICYT agency.

References

1. C. C. Bojarczuk, H. S. Lopes and A. A. Freitas (1999). Discovering Comprehensi-
ble Classification Rules Using Genetic Programming: A Case Study in a Medical
Domain. Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-99), Vol. 2.

. J. R. Koza (1992). Genetic Programming. MIT Press.

. R. Christensen (1997). Log-Linear Models and Logistic Regression (2™ Ed.).
Springer.

. McCullagh, P. and Nelder, J. A. (1983). Generalized Linear Models. Chapman &
Hall.

5. C. M. Bishop (1995). Neural Networks for Pattern Recognition. Oxford University

Press.

w N

=~

10.

11.

12.

13.

14.

. M. I. Jordan (1995). Why the Logistic Function? A Tutorial Discussion on Proba-

bilities and Neural Networks. Computational Cognitive Science Technical Report
9503. M. I. T.

. W. N. Venables and B. D. Ripley (1997). Modern Applied Statistics with S-PLUS

(2™ Ed.). Springer.

. See http://GARAGe.cps.msu.edu/software/1il-gp/lilgp-index.html.
. J. Eggermont, A. E. Eiben and J. I. van Hemert (1999). A Comparison of Genetic

Programming Variants for Data Classification. Proceedings of the Third Sympo-
sium on Intelligent Data Analysis (IDA-99).

A. A. Freitas (1997). A Genetic Programming Framework for Two Data Mining
Tasks: Classification and Generalized Rule Induction. Proceedings of the Second
Genetic Programming Conference (GP-97).

M. J. Cavaretta and K. Chellapilla (1999). Data Mining Using Genetic Program-
ming: the Implications of Parsimony on Generalization Error. Proceedings of the
1999 Conference on Evolutionary Computation (CEC-99).

D. Michie, D. J. Spiegelhalter and C. C. Taylor (1994). Machine Learning, Neural
and Statistical Classification. Ellis Horwood.

H. Iba (1999). Bagging, Boosting and Bloating in Genetic Programming. Proceed-
ings of GECCO-99, Vol. 2.

W. D. Hillis (1991). Co-Evolving Parasites Improve Simulated Evolution as an
Optimization Procedure. In Artificial Life II, SFI Studies in the Science of Com-
plexity, C. G. Langton, C. Taylor, J. D. Farmer and S. Rasmussen, Eds., Addison-
Wesley.

This article was processed using the I TEX macro package with LLNCS style

