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Abstract. In this paper, we introduce a novel objective function for the
hierarchical clustering of data from distance matrices, a very relevant
task in Bioinformatics. To test the robustness of the method, we test it
in two areas: (a) the problem of deriving a phylogeny of languages and
(b) subtype cancer classification from microarray data. For comparison
purposes, we also consider both the use of ultrametric trees (generated
via a two-phase evolutionary approach that creates a large number of
hypothesis trees, and then takes a consensus), and the best-known results
from the literature.
We used a dataset of measured ’separation time’ among 84 Indo-European
languages. The hierarchy we produce agrees very well with existing data
about these languages across a wide range of levels, and it helps to clarify
and raise new hypothesis about the evolution of these languages.
Our method also generated a classification tree for the different cancers
in the NCI60 microarray dataset (comprising gene expression data for
60 cancer cell lines). In this case, the method seems to support the cur-
rent belief about the heterogeneous nature of the ovarian, breast and
non-small-lung cancer, as opposed to the relative homogeneity of other
types of cancer. However, our method reveals a close relationship of the
melanoma and CNS cell-lines. This is in correspondence with the fact
that metastatic melanoma first appears in central nervous system (CNS).

1 Introduction

A large number of articles in bioinformatics use single-objective unsupervised
hierarchical clustering algorithms to identify “subtypes”. Biologically-oriented
journals, in general, have low requirements in terms of algorithmic reproducibil-
ity. The validation of the algorithms used in different problem scenarios is either
poor or non-existing. Working on a dataset of measured separation times be-
tween 84 Indo-European languages we started to notice the deficiencies of a
large number of hierarchical clustering schemes. The same problems occur when
analyzing datasets derived from mitochondrial DNA distances among species [1].



In this paper, we pose the clustering problem as a graph optimization problem
and propose a novel objective function which performs very well in diverse types
of datasets. We start with a distance matrix for a set of objects and compute
a weighted graph in which vertices represent objects and edges are weighted by
the distance between the corresponding vertices. Then our objective function
tries to obtain a solution whose fitness is maximal and proportional to the sum
of the weights on the edges between two sets of vertices, and to the sum of
the reciprocals of the weights on the edges inside the sets. We denote this as
arithmetic-harmonic cut . The recursive application of such cuts generates a tree-
based classification of the data. While our primary concern is the classification of
microarray data, we are also interested in testing the robustness of the approach,
validating it in other domains. For this purpose, we show results for two different
datasets: (a) a dataset for 84 Indo-European languages, and (b) a dataset for
60 cancerous cell-lines (NCI60). Next section will provide more details on the
algorithmic methods we have used.

2 Hierarchical Clustering Methods Considered

In addition to the clustering solutions available in the literature for the datasets
considered, we have used two unsupervised techniques for computing alternative
solutions. The first one is based on arithmetic-harmonic cuts, and the second
one relies on the utilization of ultrametric trees. These will be described below.

2.1 Arithmetic-Harmonic Cuts

The method of arithmetic-harmonic cuts approaches the construction of the
hierarchy in a top-down fashion. To be precise, it can be described as a recur-
sive process in which we solve a graph optimization problem at each step. Let
G(E, V,W ) be an undirected, complete weighted graph with no self-loops and
such that the weight of any edge is a positive integer number (i.e., w(e) > 0)
representing distance or some measure of dissimilarity between a pair of objects.
We first find a partition of the set V of vertices into {S, V \S}, which generates a
partition of the set E of edges in two sets Ein and Eout. The set Eout ⊂ E is the
set of edges that link a vertex in S and a vertex in V \S (similarly, Ein = E\Eout

is the set of edges connecting vertices in the same partition). Such a partition is
defined by maximizing the following objective function

F =

( ∑

e∈Eout

w(e)

)( ∑

e∈Ein

1/w(e)

)
(1)

We have implemented an exact backtracking algorithm and also a memetic al-
gorithm (similar to the work of Merz and Freisleben [2] for Graph Biparti-
tioning) as a meta-heuristic to calculate the best partitioning of the vertices
for a given graph. The difference with respect to [2] is that we remove the con-
straint of equal partitioning of the graph in our memetic algorithm. Thus, the



memetic algorithm uses (a) a differential greedy algorithm (similar to that in [3])
for initialization of a set of solutions for the problem, (b) a differential greedy
crossover (a modification of the algorithm in [2]) for evolution of the population,
and (c) a variable neighborhood local search (see [4]) to improve the newly gen-
erated solutions. Whenever the population stagnates, we keep the best solution
and re-initialize the rest of solutions in the set. We use this memetic algorithm
if the graph contains more than 25 vertices, and a backtracking enumeration
algorithm otherwise. Notice that even though backtracking gives us an optimal
solution, a memetic algorithm may not. However, in the considered datasets, the
memetic algorithm consistently generated the same solution in all runs (thus it
is presumably optimal). By applying this method (backtracking or memetic al-
gorithm depending on the number of vertices) recursively, we have at each step a
graph as input, and the two subgraphs induced by each of the sets of the vertex
partition as output; stopping when we arrive to a graph with just one vertex,
we generate a hierarchical clustering in a top-down fashion.

The rationale of the use of our objective function can be clear if we rearrange
its terms. We can write

F =
Aout

Hin
(|E| − |Eout|)|Eout| (2)

where Aout is the arithmetic mean of the weights that connect vertices of S
with V \ S (the cut); Hin is the harmonic mean of the weights of the edges not
in the cut, and |Eout| is the cardinality of the cut. Informally, maximizing F is
equivalent to try to find a cut that discriminates well the two groups, normalized
by the harmonic mean of the intra-cluster dissimilarity, and multiplied by a
factor that is maximum when the two groups have a similar number of elements.
Normalizing by the harmonic mean allows the denominator being more stable
to the presence of outlier samples when associated to either V or V \S. For this
reason, we denote this partition as arithmetic-harmonic cut.

Notice that maximizing the first part of the objective function, i.e.,∑
e∈Eout

w(e) (the total weights of edges across the two sets) is the same as
solving the Max-Cut problem for graph G, which is a NP -hard problem. How-
ever, it turns out that the hierarchy generated by partitions using Max-Cut
does not corroborate the previous knowledge about the datasets. This is prob-
ably due to the fact that no importance is given in Max-Cut to the similarity
of vertices within the sets. We also considered the objective function

F ′ =
∑

e∈Eout

w(e)−
∑

e∈Ein

w(e) (3)

However, the resulting partition by maximizing F ′ turns out to be no better
than the partition obtained from Max-Cut.

2.2 Ultrametric Trees

Ultrametric trees constitute a very amenable approach for fitting distance ma-
trices to trees. In essence, an ultrametric tree T is a weighted tree in which the



distance Dij between any two leaves i and j (measured as the sum of the weights
of the edges that have to be traversed to reach i from j inside T ) verifies that
Dij 6 max{Dik, Djk}, 1 6 i, j, k 6 n, where n is the number of leaves. This
equation implies that given any internal node h in T , it holds that Dhi = Dhj

for any leaves i, j having h as ancestor.
The use of ultrametric trees has several advantages in hierarchical classifica-

tion. First of all, edge weights are very easy to compute: given a distance matrix
M containing dissimilarity values for a collection of objects, and a candidate
tree T , the minimum weights such that Dij > Mij and T is ultrametric can be
computed in O(n2) [5]. Secondly, they adapt very well to dynamical processes
evolving at a more or less constant rate. Finally, even if the latter is not the case,
they provide a very good approximation to more relaxed criteria such as mere
additivity, that would be much more computationally expensive to calculate.
Notice also that finding the optimal topology T for a given distance matrix M
under the ultrametric assumption is NP-hard [5].

Ultrametric trees have been computed using an evolutionary two-phase pro-
cedure: firstly, a collection of high quality tentative trees are generated; subse-
quently, a consensus method is used to summarize this collection into a single
tree. Beginning with the former, the generation of high quality (i.e., minimum
weight) ultrametric trees has been approached using an evolutionary algorithm
based on the scatter search template. Starting from the solution provided by the
complete-link agglomerative algorithm, an initial population of trees is produced
by perturbation (internal exchanges of branches). Then, an evolutionary cycle
is performed using tree-based path relinking for recombination [6], and internal
rotations for local search (no mutation is used). Whenever the system stagnates,
the population is restarted by keeping the best solution and generating new trees
by exchanging branches among existing trees.

Once a collection of high quality trees has been found, the consensus method
is used to amalgamate them. This is done using the TreeRank measure [7] as
similarity metric among trees. This measure is based on counting the number of
times we have to traverse an edge upwards or downwards in order to go from a
certain leaf to another one. By computing how different these figures are for two
trees, we obtain a dissimilarity value. The TreeRank measure is currently being
used in TreeBASE4 –one of the most widely used phylogenetic databases– for
the purposes of handling queries for similar trees.

The consensus algorithm we have used is an evolutionary metaheuristic that
evolves tentative trees following [8]. Given the collection of trees we want to
summarize, the sum of dissimilarities to the tentative tree is used as the fitness
function (to be minimized). Evolution is performed using the prune-delete-graft
operator [9, 10] for recombination, no mutation, binary tournament selection,
and elitist replacement. In our experiments, we have considered all different
trees generated by the scatter search method in one hundred runs, and then
running the consensus algorithm one hundred times on this collection. The best
solution out of these latter 100 runs is kept as the final consensus tree.

4 http://www.treebase.org



3 Classifying Indo-European Languages

Two major hypotheses exist about the origin of Indo-European languages: the
‘Kurgan expansion’ and the ‘Anatolian farming’ hypotheses. Based on archae-
ological evidences, the Kurgan theory [11] says that Kurgan horsemen (near
current Russia) went to Europe and the Near East around 6000 years B.C. On
the other hand, the Anatolian theory [12] claims that Indo-European languages
expanded with the spread of agriculture from Anatolia (present Turkey) around
8000-9500 years B.C. Scientists have used genetic [13–15] and numerical [16, 17]
methods to complete the linguistic phylogeny of the Indo-European languages.
However, there are still some doubts about its exact topology.

The dataset we analyse is the distance-matrix for 84 Indo-European lan-
guages generated by Dyen et al. [18]. They used a list of basic vocabulary and
estimated historical relationships (similarity) between two languages by com-
puting the ratio of number of words (cognates) shared by them and the total
number of words. Furthermore, one also considers the replacement rates of each
word in the vocabulary. By considering the above ratio and replacement rates,
they generated the so-called “separation time” between pairs of languages, which
they provided as a distance-matrix of 84 languages. This dataset is the same that
was used in [17] where the neighbor-net analysis method provided some hints
on possible lateral information transfer while still provide an overall hierarchical
relationships among the languages.

Gray and Atkinson used a Bayesian Markov chain Monte Carlo method to
generate and analyze a large number of (10000) tentative trees [16]. Although
their method is in remarkable agreement with the timing of the Anatolian hy-
pothesis, the method also shows how much uncertainty still exists to validate
some subtrees. The posterior probability of some subtrees can be as low as 0.36
in some cases, e.g., in dividing a sub-tree into Indo-Iranian and Albanian lan-
guages, and 0.4 in dividing the Greek and Armenian groups from the most of the
languages (with the exception of the Tocharian and the Hittite, extinct languages
introduced by authors to the original dataset by Dyer et al.) [18].

We have applied our method of arithmetic-harmonic cut to Dyen et al.’s
dataset. The language tree we have obtained using this cut is shown in Fig. 1(a).
As it can be seen, this method separates the relatively older languages (a Greco-
Armenian-Albanian-Indo-Iranian group) from the relatively newer languages
(a Celtic-Slavic-Germanic-Romanic group). Unlike our tree, the tree in [16]
(see Fig. 1(b)) first separated the extinct Tocharians, Hittite, and the Greco-
Armenian group languages from the rest. Their tree had the Albanian branch
together with the Indo-Iranian group. We note that the resulting subtree of Indo-
Iranian-Albanian languages are divided with only 0.36 bayesian posterior prob-
ability. This raises a concern, as it may be the case that Indo-Iranian-Albanian
languages are older than what was claimed in [16] and they are more suited to
be temporally closer to the Greco-Armenian languages. In fact, the work in [17]
with neighbor-net analysis has produced a network with Albanians very close
to the Greco-Armenian languages. Thus, our topology for the main divisions
seem reasonable and is in closer relationship with the spread of farming from
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Fig. 1. Three proposed language-Trees: (a) tree using arithmetic-harmonic cuts, (b)
Gray-Atkinson’s tree [16], (c) consensus ultrametric tree.

the Middle East between 10,000 and 6,000 years ago, which also correlates well
with the first principal component of the genetic variation of 95 polymorphisms
[19], which solely accounts for 28 % of the total variation.



In addition to this fact, there are certain strange relations between languages
at the leaves of Gray’s tree. After checking the distance matrix, we find several
cases in which our tree seems to produce a more reasonable branching than Gray
and Atkinson’s. First of all, the closest neighbor of Czech and Slovak languages
are Lusatian languages. It is probably natural to have Czech, CzechE and Slo-
vak placed in a subtree closer to Lusatian languages. In the trees generated from
both arithmetic-harmonic cut (Fig. 1(a)) and the ultrametric trees (Fig. 1(c)),
we see that these languages are placed next to each other. However in Fig. 1(b)
generated by [16], Czech and Slovak are placed closer to Ukrainian, Byelorussian
and Russian. Secondly, Catalan is a language evolved from Latin, with strong
influences from French and Spanish. As a consequence of its Latin origin, Italian
is the closest language of Catalan in the dataset. The position of Catalan with
Italian and Ladin in our tree seems very natural, as hybridizations with French
and Spanish occurred later (note that the bayesian posterior probability is 0.83
for its link with the Spanish-Portuguese group). See [16] for the details of proba-
bilities in the Figure 1(b). Although Italian’s closest language is Ladin, the latter
was placed closer to RomanianList and Vlach with the posterior probability of
0.88. Also, notice the position of the Italian with 0.59 posterior probability. Fi-
nally, there are also small differences in the topology of small subtrees between
our hierarchy and Gray’s, namely, those regarding Dutchlist-Afrikaans-Flemish,
Greek languages, Albanian languages and the position of Bengali in the Aryan
languages among others. The differences seem to occur mainly where the poste-
rior probability of one or several branchings is low.

An important difference is that in our classification the Celtic languages
are considered closer to Baltic-Slavic languages. This goes against the current
belief of Celtic’s closeness to Romanic and Germanic languages. Note that in
Gray and Atkinson’s classification, the branchings of (Germanic,Romance) and
(Celtic,(Germanic,Romance)) have low posterior probabilities (0.46 and 0.67, re-
spectively). The minimum-weight ultrametric tree (see Fig. 1(c)) for this dataset
also considers Celtic and Slavic languages to be the closest ones as groups. How-
ever, this tree disagrees with our tree in the primary branches. For instance, it
first takes out Indo-Afghan languages as outliers, then considers Albanian and
Greco-Armenian languages as outliers successively. In the tree obtained by the
arithmetic-harmonic cut, all these outliers are grouped together. Notice that
even at the successive branchings, the consensus ultrametric tree often produces
a large number of outliers (see e.g., Indic and Iranian branches of Figure 1(c)).

4 A Molecular Classification of 60 Tumors

Validation of our methodology on the languages dataset has allowed us to have
confidence in applying it in our primary problem domain, classification of cancer
samples. In this section, we show how our partitioning algorithm finds subtypes
of human cancers. We study a dataset from 60 tumor cell-lines used in National
Cancer Institute’s (NCI) screen for anti-cancer drugs. We use the gene expression
of these cell lines given as a cDNA microarray with 6,830 genes for each cell-line.
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Fig. 2. (a) Classification of NCI60 dataset using arithmetic-harmonic cuts. Genetic
signatures with (b) 1101 genes for the first partition into Node 1 and Node 2, (c) 695
genes for the second partition into Node 3 and Node 4, and (d) 696 genes for the third
partition into Node 5 and Node 6.

The analysis of this dataset was done by Ross et al. in 2000 [20], where a result
of a hierarchical clustering for this dataset was first discussed. Their result shows
that the cell lines from same origin were grouped together in case of leukaemia,
melanoma, colon, renal and ovarian cancers, with a few exceptions. However, cell-
lines derived from non-small lung carcinoma and breast tumors were distributed
in multiple places suggesting a heterogeneous nature.

Fig. 2(a) shows the result of applying arithmetic-harmonic cut on this dataset.
In Fig. 2(b),(c) and (d), we show the genetic signatures (most differentially ex-
pressed genes in the two sides of the partition) of the first three partitions using
the cut with 1,101, 696 and 695 genes respectively. In the genetic signatures



(computed with the method described in [21] and [22]), each row corresponds to
a gene and each column corresponds to a tumor sample.

We will now compare the hierarchy generated by arithmetic-harmonic cuts
to Ross et al.’s classification tree and the consensus ultrametric tree, shown in
Fig. 3. All clustering methods agree in the fact that some of the tumors, (e.g.,
leukaemia, renal, melanoma, central nervous system) are relatively homogeneous,
i.e., most samples of these tumors are grouped together with a few exceptions.
However, in Ross et al.’s solution and in the ultrametric tree, all melanoma
samples except LOXIMVI are grouped with colon and leukaemia tumors (see the
lower branches of both trees in Figure 3), whereas arithmetic-harmonic cut shows
a marked difference in the first division. It groups all melanoma tumor samples
(including LOXIMVI) with CNS (Central Nervous System), renal, ovarian and
some of the breast and lung tumor samples (see Node 2 in Fig. 2(a)). Since
CNS is the closest group to the melanoma samples in this figure, we may infer
that this clustering supports the hypothesis that central nervous system (CNS)
and melanoma may share important genetic pathways with similar expression.
We note that CNS is a favorite site of metastasis in patients with advanced
melanoma and that it is the first site of relapse in 15− 20% of melanoma cases
[23, 24]. Also notice that CNS metastases from melanoma and renal tumors are
also often misdiagnosed as primary brain tumors [25]. However, our literature
survey did not reveal a close relationship of melanoma with colon or leukaemia,
as compared to its relation with CNS.

The three methods, however, behave slightly differently in clustering non-
small-lung, breast and ovarian tumors. First of all, all clustering methods applied
on NCI60 group together ovarian tumor samples OVCAR-3, OVCAR04 and
IGROV1. However, the positions of OVCAR-5, SK-OV-3 and OVCAR-8 differ
in the outcomes of the different methods suggesting a possible heterogeneity of
ovarian tumors. Also, it was suggested by Perou et al. [26] that there are 6 types
of breast-cancers. All clustering methods more or less agree with the fact that the
breast tumors (HS-578T, BT-549, MDA-MB-231, MCF7, T-47D, MDA-MB435,
MDAN) are scattered in 4-5 places. In all methods, breast tumors HS-578T,
BT-549 and MDA-MB231 are together with CNS/renal tumor samples; MCF7
and T-47D tumors are clustered with colon tumors; MDA-N and MDA-MB435
tumors are grouped with melanoma tumor samples. This is a definite indication
that the breast cancer is a heterogeneous disease. Similarly, small-lung-cancer
samples are distributed in all the three methods.

In the above comparison, we need to remember that ultrametric trees are
largely used in cladistics, and assume that all species evolve at a constant rate
(cf. Sect. 2). Such an assumption suits rather well the universe of languages
(they evolve according to mutual contact between sub-populations, assimilating
the words or phonemes from each other). However, unlike biological beings like
bacteria or more complex life forms, the tumor cell-lines do not have a common
ancestor. Tumors are defects in DNA, which cause malignant cell proliferation.
Thus, the ultrametric approach may be susceptible to errors in the classifica-
tion of cancer samples. Therefore, the position of melanoma samples in the tree
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Fig. 3. Classification of NCI60 Dataset from (a) Ross et al. and (b) ultrametric tree.

produced by the arithmetic-harmonic cut should not be considered incorrect.
Actually, the position of melanoma with CNS suggests an interesting quest, that
of finding common activated genetic pathways, as it is known that the brain is a
primary point of metastasis to an individual with melanoma condition [23, 24].

5 Conclusions

We proposed two new approaches for hierarchical clustering and showed the
result of applying these methods on two very diverse datasets. The hierarchies
we produce for both languages and cancer samples in this method agree very well
with existing data about these datasets. It also raises some interesting questions.
The arithmetic-harmonic cut seems to correlate well with the results of the
first component of the genetic variation provided by Cavalli-Sforza and his co-



authors [19]. It indicates a branching in two major groups, with an earlier group
“moving” towards Europe (actually, the advanced farming hypothesis at work),
later followed by another group moving in the same direction (evolving in Greek
and Albanian and Armenian languages) while another group “moved” south-
east and later differentiated in Iranian and Indic languages. It also suggest a
commonality of Celtic, Baltic and Slavic (a hypothesis also raised in the past,
and also supported by the consensus of the ultrametric trees). These differences,
as well as small others, with the solution provided by Gray and Atkinson’s
seem to be in branchings where the bayesian posterior probability is low, and
our methods agree where the posterior probability is high. The consensus of
the ultrametric trees seem to suggest a single wave towards Europe, but a first
branching in an Albanian group, followed by a second branching with the Greek
and Armenian in one subgroup seems less plausible to us.

Overall, our results seem to indicate that it is important to use several hier-
archical clustering algorithms and to analyze common subgroupings. In the case
of tumor samples, it is indeed the case that this is the most relevant outcome as
we do not have any guarantee that the samples “share” a common “ancestor”.
The question: “Which tree is the best one ?” might actually be highly irrele-
vant to the the real problem at hand, as it seems to be the consensus of these
trees the most important outcome. Results on a number of other clustering al-
gorithms on these datasets (which we were unable to show here for reasons of
space), indicates that more research in robust algorithm methods needs to be
done for molecular subtype classification in cancer and that validation of the
methodology with different problem settings is highly beneficial to develop it.
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