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Abstract. A hybrid approach for learning reactive behaviours is pre-
sented in this work. This approach is based on combining evolutionary al-
gorithms (EAs) with the A* algorithm. Such combination is done within
the framework of Dynastically Optimal Forma Recombination, and tries
to exploit the positive features of EAs and A* (e.g., implicit parallelism,
accuracy and use of domain knowledge) while avoiding their potential
drawbacks (e.g., premature convergence and combinatorial explosion).
The resulting hybrid algorithm is shown to provide better results, both
in terms of quality and in terms of generalisation.

1 Introduction

The control of autonomous mobile agents is a complex task to which great efforts
are devoted due to its practical applications. In general, such control is achieved
by means of both planning and reactive components [13]. Each of these compo-
nents has it own particularities, and can be examined in combination (e.g., [1,
2,7]) or in isolation (e.g., [11,12]). In line with the latter, this work focuses on
the acquisition of reactive behaviours in mobile agents.

Reactive behaviours are driven by a stimulus-to-response mapping, i.e., the
agent receives some information about its local environment and decides the
action(s) to carry on exclusively on the basis of such information. This kind of
behaviour has usually the advantage of not requiring any underlying global model
of the world in which the agent is located. The obvious drawback of reactive
systems is the fact that they can get stuck into dead-ends, situations in which
the correct action does not only depend on the locally available information but
also the structure of the world at a higher-level (hence the necessity of long-
term planning capabilities). Nevertheless, reactive systems have been shown to
provide a very good performance in a wide variety of scenarios and remain a
very suitable option when response-time is critical.

There exist several techniques for designing reactive systems. These can be
typically classified into reinforcement learning and optimisation techniques. Al-
gorithms such as Holland’s bucket brigade, Sutton’s temporal difference learning
or Watkins’s Q-learning lie in the first class. Within the second class, evolution-
ary algorithms deserve special attention because of their power and flexibility.



Regarding the use of these techniques for this purpose (e.g., [8,9,11]), a criti-
cal point is the use of as much domain knowledge as possible. Otherwise, the
user would be relying on a fortuitous matching between her algorithm and the
problem under consideration [14]. Such specialised algorithms are usually termed
hybrid evolutionary algorithms [6].

This work presents a hybrid evolutionary algorithm for acquiring reactive
behaviours. In the proposed algorithm, domain knowledge is included by using a
specialised technique (the A* algorithm) as an internal operator. The remainder
of the article is organised as follows. First, the agent and the worlds used in the
experiments are described (Sect. 2). Next, the classical A* approach for solving
the posed problem is shown (Sect. 3). Then, the hybrid algorithm is introduced
(Sect. 4). Subsequently, experimental results are presented (Sect. 5). Finally,
some conclusions are extracted and future work is outlined (Sect. 6).

2 The Agent and its World

The agent used in this work is located in a two-dimensional toroidal grid-world
in which several obstacles are distributed. The purpose of the agent is to reach
a certain target point from its initial location within an allowed time. To do so,
the agent is capable of making some elementary actions such as moving straight
ahead a single grid square, turning 90° to its left, or turning 90° to its right.
Obviously, the agent must avoid obstacles while navigating through its world.
For this purpose, it is equipped with proximate sensors that can inform of the
presence or absence of obstacles in front of the agent, 90° to its left, or 90° to
its right (see Fig. 1, left). In addition, these sensors can also detect whether the
target point is in any of these three locations or not.

- - " "% -
Zone 0 - " Lo "t Zone 1
" . . . H o

Head sensor - T Target point
Direction sensor e [ T R " [
. . = -
- - - -
O .= -
. . . . wa
L] H . . Agent . Tt oot
A . .. e
-
. s
- -
. . . T
Left sensor Right sensor . . "u - "t
. . . .

Zone 3
Zone 2

Fig. 1. (Left) Structure of the agent used in experiments. (Right) Example world and
regions into which it is divided according to the location of the target point.



The agent is equipped with a direction sensor as well. This sensor allows
determining in which of four imaginary regions of the world the target point is
located. These regions are illustrated in Fig. 1 (right). It must be noted that
these regions are not absolute but relative to the agent’s actual orientation. For
example, the agent is facing North in Fig. 1 and hence the target point is in zone
1. Now, if the agent turned 90° to its right, the target would be in zone 0. Notice
also that these regions are determined taking into account the toroidal shape of
the world. Thus, if the agent were a few positions South from the location shown
in the previous example, the target point might happen to be in zone 2.

According to this description, the goal is to design a reactive behaviour allow-
ing the agent reaching its target in as many situations as possible. Such reactive
behaviour can be defined in a variety of ways, e.g., using a neural network [15],
a fuzzy rule-base [8], a cellular automata [3], etc. This work is in line with the
latter approach. To be precise, a lookup-table is sought relating every possible
sensorial input with a primitive action. At each time-step, the agent must look
up the action that corresponds to the current inputs and carry it out. Since each
proximate sensor can provide three different inputs (OBSTACLE, NO-OBSTACLE,
TARGET), and the direction sensor can return four values, the resulting table has
33 .4 = 108 entries. Since three primitive actions — MOVE-AHEAD, TURN-LEFT,
TURN-RIGHT — are available, this implies a search space of 3198 ~ 3.10°! tables.

3 A Classical Approach: A*

A classical approach for finding the lookup-table mentioned above is the utili-
sation of the A* algorithm. Based on incrementally constructing solutions in an
intelligent fashion, this technique constitutes a powerful tool for solving search
problems to optimality. Before getting into the application of this technique to
the design of reactive behaviours, some notation details must be given.

Let W be the current world, and let a be the configuration of the agent
(position and orientation). Now, let Z(W, ) be the sensorial input of the agent
when configured according to a. Let M be a (possibly underspecified) function
relating sensorial inputs with actions, and let My D M, whenever M, provides
the same outputs that Ml does and ]\ng is defined in at least one case in which
M, is not. Finally, let 7 be the maximum allowed time for reaching the target
and let = be a function such that Z(W, a, M) = ({a1,- -, ax),n). This function
provides a trace of the agent trajectory across configuration space when behaving
according to M. The value 7 is an indication of the final status of the agent:
AT-TARGET, COLLISION, TIMED-OUT or UNKNOWN. This latter value is returned
whenever no action is specified in M for the current input.

Now, the application of the A* algorithm requires the availability of an op-
timistic evaluation function 9 such that (W, a, M ) provides a lower bound on
the number of steps necessary for reaching the target when the agent is con-
figured as « and behaves according to any M’, M > M. 1t is easy to see that
making ¥ return the Manhattan distance from the agent’s current location to



the target point fulfils this requirement. Having defined this function, the whole
process is as follows:

1. Let P{ = (av, Moy, 0, to), where ay is the initial configuration of the agent, M,
is a fully underspecified function, and ¢ty = (W, ap, Mo) Let P* = (J\}[O7 00)
be the current best solution. Insert P in the node queue.

2. If the node queue is empty, go to 3. Otherwise let P]? = (a, M, h,t) be the
first element in the queue.

(a) Let Z(W,a, M) = ({ag, -, ak),n).
(b) if 1 # UNKNOWN then
i. if » = COLLISION or = TIMED-OUT then P = (M,t + 7), where
t'=h+k+ vV, o, M).
ii. if » = AT-TARGET then P = (M, h + k).
ili. If P is better than P*, update the latter and purge nodes in the

queue.
iv. Go to 2. 4 ' ' _

(c) Create three nodes P;’fl'l, Pfjff, and Pﬂ’_ﬁ from P}. Each node is
P;’f{r = (ak,Mr,h’,tT), where M, is obtained by extending M to re-

turn the rth possible action when the input is Z(W, ay,), b’ = h+k, and
t. = YW, ay, MT) Insert these nodes in the queue keeping it ordered
according to the sum of the last two components of each node.

(d) Go to 2.

3. Return P*

This algorithm will thus return the lookup-table allowing the agent reach the
target in minimal time from the given starting point. Since the problem has been
posed with the goal of obtaining a generalisable reactive behaviour, the process
must be slightly modified. To be precise, a training set is selected and the A*
algorithm tries to find the table that minimises the sum of the times required
to reach the target in each training case or, if such a solution is not possible,
a table that firstly maximises the number of training cases solved and secondly
minimises the total time. Notice that no global model of the world (i.e., high-
level knowledge about the distribution of obstacles) is required. All information
used for finding the optimal solution is locally obtained through simulation.

This algorithm has been evaluated on a set of nine different worlds. These
worlds are named as Wxy, where x € {10,25,50} indicates the dimension of
the world (each world is a = x x grid), and y € {a, b, ¢} indicates the density of
obstacles (5%, 10% and 20% respectively). For each world, a training set of five
cases has been selected. Subsequently, the best solution found has been tested
for generality on a test set whose size depends on the dimension of the world
(50, 400 and 2000 cases respectively). The results are shown in Table 1.

These results are very indicative of the two main drawbacks of the A* algo-
rithm. On the one hand, it is very sensitive to the size of the task to be solved.
As it can be seen, the algorithm expended a high computational effort for solving
W25b and ran out of memory in three cases (W25¢c, W50b, and W50c). More-
over, it did not find any fully satisfactory solution for all training cases in W50b



Table 1. Results of the A* algorithm on nine different worlds. The cost values are
measured as the number of single simulation steps carried out.

Performance
World| Timeout|Optimal solution|Iterations Cost on test set
W10a 13.20 11615 289857 74%
W10b 25 13.80 19664 300391 88%
W10c 14.00 26429 281091 58%
W25a 32.40 75818 | 10352732 63%
W25b| 150 31.60 222788 | 29083614 48%
W25¢ [26.40, 51.00] | >300000 |>25000000 36%
W50a, 54.60 119864 | 36861614 66%
W50b| 400 [45.60, 479.40] | >150000 |>37000000 14%
W50c [34.80, 1629.80] | >110000 |>16000000 2%

and W50c (1 and 4 training cases were left unsolved!). On the other hand, the
solutions found are not very generalisable. This is a direct consequence of the
internal functioning of the A* algorithm. Assume that the final solution is found
when evaluating node P; This node was obtained as successive extensions of

P;i?’l, P;i%, -+, PY. Hence, it contains information regarding the best decisions
to be taken only in the situations found during this optimal path, i.e., the path
from the root node of the implicitly defined search tree to the optimal leaf node.
All that may have been learnt in solving other situations is discarded since these

situations do not take place in this optimal path.
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Fig. 2. Growth of the computational cost of the A* algorithm when the number of
training cases is increased.

! These results were not bad a priori since there might exist no better solution. How-
ever, further experimentation with the hybrid EA showed that this was not the case.



This generalisation problem could be solved by considering a larger training
set whose optimal solution covered all possible situations. However, the subse-
quent combinatorial explosion makes this approach unrealistic. This is illustrated
in Fig. 2. As it can be seen, the computational cost of the algorithm grows very
fast when the size of the training set is increased. For this reason, it is clear that
alternative approaches must be found. These will be discussed in next section.

4 The Hybrid EA-A* Approach

Evolutionary algorithms constitute a very suitable alternative to A* for finding
the lookup-table. A naive approach for applying EAs to this problem would
firstly consist of defining an encoding function for storing the lookup-table into
an individual, e.g., a linear chromosome in which the rows of the table are
consecutively arranged. Since this is an orthogonal representation [10] (i.e., all
combinations of genes are feasible), the next step would simply involve selecting
any of the standard genetic operators that can be found in the literature (e.g.,
single-point crossover — SPX —, uniform crossover — UX —, etc.).

However, such a simple approach is likely to provide very poor results. Recall
that this is highly epistatic problem in which the value of each gene (i.e., a spe-
cific action to be carried out when a certain sensorial input is received) does not
contribute with a fixed amount to the fitness of an individual. On the contrary,
the goodness of the reactive behaviour defined is determined by the interplay
between all genes. For this reason, a blind recombination operator that randomly
shuffles the genetic material of recombined solutions will provably produce solu-
tions with a phenotype (reactive behaviour) completely unrelated to the parents,
even when the latter are genotypically similar. In an extreme situation, it may
even reduce to macromutation.

The algorithm would be largely more effective if it were able to extract pos-
itive behavioural patterns from existing solutions and transmit them to the off-
spring. This can be achieved within the framework of Dynastically Optimal
Forma Recombination [4] (DOR). This framework comprises a family of recom-
bination operators of the form

DOR:S xS xS —[0,1], (1)

where S is the search space and DOR(z,y, z) is the probability of generating
z when recombining z and y. Besides the obvious ) s DOR(z,y,2) = 1, the
probability distribution induced by these operators verify that

DOR(z,y,2) > 0= {[z € I'({z,y})] A [Vw € T({z,y}) : p(w) = 6(2)]}  (2)

where ¢ is the fitness function (to be minimised without loss of generality) and
I'({z,y}) is the dynastic potential [10] of x and y, i.e., the set of solutions that
can be built using nothing but the information contained in z and y.

Thus, the solutions created by DOR are the best that can be constructed
using the genetic material of the parents. On the one hand, this implies that



DOR is a fully transmitting operator, i.e., no implicit mutation (genetic infor-
mation not present in any of the parents) is introduced in the offspring. On the
other hand, the fitness-oriented functioning of DOR makes valuable portions of
solutions be transmitted to offspring only if they contribute to a good resulting
behaviour. In other words, DOR is capable of identifying valuable high-order
formae, preventing their disruption. This intelligent combination of information
has provided very good results on epistatic problems [5].

In order to implement DOR, it is required to use an embedded A*-like mech-
anism so as to find the best solution in the dynastic potential of the parents. In
this case, the algorithm described in Sect. 3 can be used. It is only necessary to
modify step 2c¢ by considering that the possible actions to be taken in a given
situation Z are just those present in any of the parents for Z. Notice that the
search carried out by this subordinate A* algorithm is thus restricted to small
portions of the search space and hence its computational cost is largely reduced
with respect to the original unrestricted version. Moreover, individuals in the
population tend to be more similar as the EA converges and, subsequently, the
dynastic potential of selected solutions tends to be smaller and DOR is less
computationally expensive.

This combination of EAs and A* has an additional advantage. Each individ-
ual carries an information that reflects its past evolution (in fact, the evolution
of its ancestors). This way, things that were learnt in the past are retained as
long as they do not negatively affect the present behaviour. This “accumulated
history” effect is also present in a simple EA, but the learning capabilities of the
hybrid algorithm are larger. For this reason, solutions obtained with the hybrid
EA are expected to be more general than either the EA or the A* algorithm by
themselves. This will be studied in next section.

5 Experimental Results

Experiments have been done with a steady-state EA (popsize = 100, p. = .9,
Pm=1/chromosomeLength) using ranking selection (n* = 2.0,7~ = 0.0). This
algorithm has been run 40 times for each operator and test world. In order to
make a fair comparison between DOR and the other simpler operators, each run
is terminated when a fixed number of simulation steps (7 - 10° in these experi-
ments, where 7 is the timeout value) is reached. Thus, the internal calculations
performed by DOR are effectively accounted. As in Sect. 3, a training set of five
cases is used in the fitness function.

First of all, Fig. 3 shows how the hybrid EA is much more successful in solving
the training cases. As it can be seen, while standard operators only provide an
acceptable performance on the smallest instances and with the lowest obstacle
density, DOR consistently yields satisfactory results: above a 70% of the runs
provide a fully successful solution for the training set (the percentage is 100%
for 5 out of 9 test worlds). The exception is world W50c for which none of the
operators could find a full solution (it must be noted that such a solution may
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Fig. 3. Number of runs in which each operator provided a fully satisfactory solution
for the training set.

not exist). Nevertheless, DOR was capable of solving 3 out of the 5 training
cases while SPX could only solve one and UX could not solve any of them.

Table 2 shows a more detailed summary of the results. Notice that DOR
is not only more effective in finding satisfactory solutions, but also provides
higher-quality results. By comparing the median values? provided by DOR with
the optimal/best-known solutions (see Table 1), it can be seen that DOR yields
near-optimal solutions. Moreover, the lower variance of DOR results with respect
to SPX and UX indicates a more stable algorithm.

Table 2. Comparison of different genetic operators on nine different environments. All
results correspond to series of forty runs.

SPX UX DOR
World|Timeout| mean [ o [median mean [ o [median mean [ o [median
W10a 17.36 | 12.06 | 16.00 | 15.88 | 7.47 | 15.20 | 13.85 | 0.87 | 13.80
W10b 25 22.15 [ 25.96 | 16.20 | 18.10 | 9.26 | 16.20 | 14.35 | 0.74 | 14.20
W10c 51.49 | 38.39 | 59.60 | 53.85 [38.81| 59.60 | 18.75 | 10.75 | 14.00
W25a 176.70 |210.00| 45.60 | 121.63 |193.32| 40.00 | 33.17 | 2.14 | 32.40
W25b| 150 376.08 [285.43| 399.30 | 380.96 |272.08| 468.40 | 36.65 | 6.67 | 34.00
W25¢ 520.32 [179.07| 616.80 | 502.23 |218.40| 616.40 | 99.92 [107.70| 38.80
W50a 442.39 1348.27| 438.00 | 423.87 |335.45| 438.00 | 61.17 |11.72| 58.80
W50b| 400 [1532.52|554.56(1636.60| 457.65 [457.65|1636.60| 337.32 |506.03| 103.8
W50c¢ 2021.45| 60.77 {2031.20(|2031.20( 0.00 |{2031.20|1638.78|538.75|1650.60

2 The median value seems to be a more representative measure of the quality of the
results than the mean value since the former is much less sensitive to outliers. Fur-
thermore, it provides an reasonable alternative to averaging the fitness of solutions
that solve the whole training set with solutions that do not solve any training case.
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Fig. 4. Percentage of the test set solved for each of the techniques considered.

Finally, the results obtained with the EA are tested for generality. Fig. 4
shows the results. Firstly, notice the poor results of standard EAs. The solutions
provided by UX and SPX do not reach 50% success in 6 out of 9 worlds. The
A* algorithm performs better than standard EAs, but its performance quickly
drops when the density of obstacles is increased. The hybrid EA provide the
overall best results, outperforming both A* and standard EAs on all worlds.
Moreover, this improvement is larger on instances with higher obstacle densities.
It must be noted that the results on W50c are not satisfactory for any algorithm
(although the hybrid algorithm remains the best). This is a really hard instance
as mentioned before, and may require longer evolution times and/or a larger
training set to cope with such a tough environment.

6 Conclusions

This work has presented a hybrid approach for learning reactive rule-bases. By
combining EAs with the A* algorithm, a synergetic system has been achieved.
This hybrid algorithm has been shown to provide higher-quality results than
standard EAs. These results are also better than those of the A* algorithm in
terms of their generalisation to previously unseen test cases. Furthermore, the
hybrid EA is capable of tackling instances in which the A* algorithm would
suffer the effects of the combinatorial explosion.

Future work will try to extend these results to more sophisticated agents.
In this sense, notice that most details of the agent are encapsulated within the
simulation function = and hence they do not affect the presented algorithm
qualitatively. Nevertheless, it is clear that issues regarding simulations of higher
computational cost are worth studying. Work is in progress in this area. Addi-
tionally, new environments and tasks to be solved will be tackled as well.
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