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Abstract. This paper studies a self-organized framework for modeling dynamic 

topologies in spatially structured Evolutionary Algorithms (EAs). The model 

consists of a  -dimensional grid of nodes where the individuals interact and 

self-organize into clusters. During the search process, the individuals move 

through the grid, following a pre-defined simple rule. In order to evaluate the 

model, a dynamic cellular Genetic Algorithm (dcGA) is built over the proposed 

topology and four different movement rules are tested. The results show that 

when the ratio between the number of nodes in the grid and the population size 

is above 4:1, the individuals self-organize into highly dynamic clusters and sig-

nificantly improve results attained by standard cGAs with static topologies on a 

set of deceptive and multimodal functions.  

1   Introduction 

In panmictic populations, every individual is allowed to interact with every other 

individual. Standard Evolutionary Algorithms (EAs) mimic this strategy for parent 

selection and recombination, but large-scale problems or deceptive functions with 

multiple local optima may require other type of population structures. In recent years, 

non-panmictic EAs [10], which restrict the interaction according to a pre-defined or 

evolving structure, are gaining increasing attention by the community.  

In non-panmictic EAs, the population structure specifies a network of acquaintanc-

es over which individuals can interact (i.e., mating or selection is restricted to neigh-

borhoods within the network). These non-panmictic EAs are also known as spatially 

structured EAs [10], a category that includes fine-grained approaches such as cellular 

EAs (cEAs) [1] and coarse-grained approaches such as island models [2]. In cEAs, 

the population is distributed in a grid and the interaction is restricted to the individu-

als’ neighborhood. In island EAs, different subpopulations evolve isolated from each 

other and occasionally exchange individuals using a predefined strategy which speci-

fies the rate and quantity of information to transfer.  



The main disadvantage with island and cellular EAs is that their base-structures, 

which have a great influence on the algorithm performance, require extra designing 

and tuning effort. In the case of island models, this added complexity translates in 

deciding policies for the migration frequency, selection and replacement of migrants 

and the topology itself. As for traditional cEAs, they use static structures that impose 

a rigid connectivity between the individuals.  

Furthermore, even though cEAs may achieve a better management of the genetic 

diversity in the population when compared to panmictic EAs, the balance between 

exploration and exploitation may not be sufficient for problems with deceptive or 

epistatic fitness landscapes. Since the population is globally connected, information 

may spread quickly and local optima can easily take over the entire population. The 

investigation in this paper is an attempt to design a simple dynamic topology for 

cEAs, with a varying neighborhood degree and an intrinsic clustering behavior that 

approaches the cEA to an island model, keeps genetic diversity at a higher level and 

prevents sub-optimal solutions to take over the population. 

In the proposed topology,   individuals are distributed in a  -dimensional 

  nodes grid where it holds    . Every time-step, each individual tries to re-

combine with one of the individuals in its Moore neighborhood (if there are any). 

Furthermore, the structure is dynamic: in each time-step, every chromosome updates 

its position by moving to a neighboring node (if there are empty nodes in the individ-

ual’s neighborhood), according to a pre-defined rule that selects the destination. The 

position update rule, which is implemented locally and without any knowledge on the 

global state of the system, can be based on stigmergy [5] or Brownian movements.   

When stigmergic behavior is induced by a stigmergic rule (i.e., individuals com-

municate via the environment), different niches of individuals appear and disappear at 

run-time. This clustering behavior is an emergent property of the model, and the re-

sulting cEA has certain resemblance with an island model, with dynamic clusters (or 

sub-populations) of individuals with varying size. 

We hypothesize that with this scheme the population diversity decreases at a lower 

rate (when compared to a standard topology), and, as a consequence, the performance 

of the cEA on deceptive and hard problems is improved. In this paper, the dynamic 

topology is tested on a cellular Genetic Algorithm (cGA). Four different strategies are 

described for the position update rule and the resulting algorithms are tested with a set 

of deceptive and epistatic functions that challenge EAs’ abilities to combine building-

blocks. The results show that when the ratio between the number of nodes in the grid 

and population size is above 4:1, the dynamic cGAs converge more often to the global 

optimum and significantly improve the performance of standard cGAs.  

The remaining of the paper is structured as follows: Section 2 gives a background 

review on cEAs and on dynamic alternative topologies for cEAs; Section 3 describes 

the proposed system; Section 4 describes the experiments and discusses the results; 

Section 5 concludes the paper and outlines future lines of work. 



2   Background Review 

The initial objective of spatially structured EAs was to develop a framework for stud-

ying massive parallelization. However, the need to provide traditional EAs with a 

proper balance between exploration and exploitation and overcome standard EAs 

drawbacks, like synchronicity, rigid connectivity and strong dependence on the prob-

lem, motivated several lines of research that explore the potentiality of different popu-

lation structures in maintaining genetic diversity [10]. Additionally, complex popula-

tion structures have been studied, some of them under the knowledge provided by 

recent developments in network theory. 

In [1], Alba and Dorronsoro dynamically change the ratio that defines the neigh-

borhood of interaction. Since the ratio may affect selection pressure, the authors ana-

lyze the influence of its value on the balance between exploration and exploitation. 

However, the base-structure of the cellular EA is maintained throughout the run. In 

[11], Whitacre et al. focus on two important conditions missing in EA populations: a 

self-organized definition of locality and interaction epistasis. With that purpose in 

mind, they proposed a dynamic structure and concluded that the two features, when 

combined, provide behaviors not present in the traditional spatially structured EAs. 

The most noticeable change is an unprecedented capacity for sustainable coexistence 

of genetically distinct individuals within a single population. The authors state that the 

capacity for sustained genetic diversity is not imposed on the population; instead, it 

emerges as a natural consequence of the dynamics of the system. Laredo et al. [7] 

proposed a framework for EAs based on peer-to-peer networks [9]. Within a simulat-

ed network, they model the dynamics of real networks and conclude that their system 

is able to achieve better performance than traditional EAs on a wide range of prob-

lems, while being scalable and resilient to the volatility of nodes in the network. 

In order to deal with the specific issues that may affect the design and performance 

of spatially structured EAs, Fernandes et al. [3] devised a complex adaptive system to 

be used as a dynamic structure for populations. This model, which can be regarded as 

a cellular automaton [6] with short-term memory, uses stimergic communication and 

simple rules for movement on a grid of nodes, giving rise to self-organized clusters of 

particles. A noticeable feature of these clusters is that they keep evolving and chang-

ing shape, thus providing some kind of highly dynamic order. The authors demon-

strate that the proposed system has indeed emergent properties that may prove useful 

for spatially structured EAs, or other spatially structured population-based 

metaheuristics.  

In fact, this framework has been recently used to implement a spatially structured 

Particle Swarm Optimization (PSO) algorithm, in which the particles’ interaction is 

defined by their position on the grid [4]. In this case, the position update rule is based 

on Brownian movement. Recently, Nogueras et al. [8] adapted the model in [3] to a 

spatially structured multimemetic algorithm with dynamic topology. The authors 

show that the dynamic topology maintains genetic diversity at a higher level and 

reduces the rate of convergence to local optima.  

In this paper we take a different approach and test the framework as a dynamic to-

pology for cellular Genetic Algorithms (cGAs), using position update rules that model 

Brownian movement and stigmergic behavior. The base model and the proposed 

topology are described in the following section.  



3   Dynamic Topology 

This section gives a formal description of the network and the transition rules that 

define the proposed model for dynamic population structures. 

Let us consider a rectangular grid   of size      . Each cell     of the grid is 

a tuple          , where                 and              , for some 

domain  . The value     indicates the index of the individual that occupies the posi-

tion       in the grid. If        then the corresponding position is empty. However, 

that same position may still have information, namely a mark (or clue)    , that is 

placed by the individuals and provides a form of communication between them. If 

   =   then the position is empty and unmarked. Please note that when      , the 

topology is the standard static 2-dimensional structure.  

The marks are placed by individuals that occupied that position in the past and they 

consist of information about those individuals (captured by domain  ), like their 

fitness    
 

 or a copy of their genotype   , as well as a time stamp    
  that indicates the 

iteration in which the mark was placed. The marks have a lifespan of   iterations, 

after which they are deleted.  

Initially,           for all      . Then, individuals are placed randomly on the 

grid (only one individual per node). Afterwards, all individuals are subject to a 

movement phase (or position update), followed by an evolutionary phase. The process 

(position update and evolutionary phase) repeats until a stop criterion is met.  

The evolutionary phase is the standard iteration of a cEA, comprising selection, re-

combination mutation and replacement. The only difference to a cEA with static 

structure is that in this case an individual may find empty nodes in its neighborhood, 

and the selection pool is restricted to the individuals that occupy adjacent nodes. If at 

a given time-step an individual has no neighbors, then there is no recombination event 

for that individual in that specific iteration.  

In the position update phase, each individual moves to an adjacent empty node. 

Adjacency is defined by the Moore neighborhood of radius  , so an individual   at 

            can move to an empty node         for which            
        . 

If no empty position is available, the individual stays in the same node. Otherwise, it 

picks a neighboring empty node according to the marks on them. If there are no 

marks, the destination is chosen randomly amongst the free nodes.  
We consider two possibilities for the position update phase: stimergic, whereby the 

individual looks for a mark that is similar to itself; and Brownian, whereby the indi-
vidual selects an empty neighbor regardless of the marks. For the first option, let 

                               be the collection of empty neighboring nodes 

and let   be the individual to move. Then, the individual attempts to move to a node 
whose mark is as close as possible to its own corresponding trait (fitness or genotype) 
or to an adjacent cell picked at random if there are no marks in the neighborhood. 
This strategy leads to the self-organization of the population into dynamic clusters [3], 
[8]. In the alternative Brownian policy, the individual moves to an adjacent empty 
position picked at random. In either case, the process is repeated for the whole popu-
lation. The following section describes the results attained by dynamic cGAs with 
stigmergic and Brownian movement.  



4   Results and Discussion 

In order to investigate their performance, the proposed dynamic topologies were 

tested on a set of functions that challenge the EAs ability to combine building-blocks 

and demand a careful balance between exploration and exploitation: the near-

deceptive order-  trap, the recursive epistatic H-IFF and the needle in the haystack 

Trident problem. 

A trap function is a piecewise-linear function defined on unitation (number of ones 

in a string), with two distinct regions in the search space, one leading to the global 

optimum and the other leading to a local optimum. The trap in this test is defined by: 

       
             

                   
  (1) 

where u(  ) is the unitation function and   is the problem size (and also the fitness of 

the global optimum). With these definitions, order-  traps are in the region between 

deceptive and non-deceptive, while order-  are non-deceptive and order-4 are fully 

deceptive. For the experiments, an order-  trap function was constructed by juxtapos-

ing     subproblems, which corresponds to 300-bit string. The fitness of the best 

solution (a string of   s) is    .  

Trident functions are needle in the haystack problems that exploit the ability of 

EAs to mix good but significantly different solutions. The fitness function of the Tri-

dent used in this work has two components, base and contribution:       
                         . The base depends on unitation and is described by: 

                     (2) 

where   is the chromosome length and u(  ) is the unitation function. The contribution 

rewards certain configurations of strings that have an equal number of  ’s and  ’s. 

Let   be the first half of the binary string   of length   and   the second half. The 

contribution is described by Equation 5: 

                  
         
           

  (3) 

where    is the bitwise negation of  . The Trident accepts strings of length   , where 

   . For this paper,    -bit strings were used and the optimal fitness is    .  

Finally, the H-IFF function is a recursive epistatic problem with hierachical struc-

ture. The landscape requires a search for increasingly higher-order schemata, chal-

lenging the EAs’ abilities to identify and combine good building blocks. The problem 

is defined using a recursive function. If the bit string being considered consists of all 

zeros or all ones, the fitness of the string is equal to its length; otherwise it has a fit-

ness of  . This same criterion is then applied recursively on each half of the string, 

until it can be subdivided no further. Adding the fitness of all substrings together 

yields the fitness of the whole. Formally, the HIFF fitness function can be defined as: 

      

                                                    

                             

                                      

                             (4) 

where B is a block of bits        ,     is the size of the block (and therefore equal 

to  , which must be an integer power of 2),    is the ith element of B,    and    are 



the left and right halves of B. For the tests, a problem    -bit strings has been con-

structed. The best solution has a fitness value of     .  

With this set of functions it is possible to test the ability of the dynamic cGAs in 

combining the raw building blocks of the initial population and escape local optima 

traps. These functions challenge standard strategies, which converge very often to 

local optima, especially in the H-IFF and trap functions. If the proposed dynamic 

topology is effective in maintaining genetic diversity, then it is expected that the rate 

of convergence to global optima is improved.  

All the cEAs used in the experiments are synchronous (i.e., the offspring are placed 

in a temporal population and replacement is done after every individual generates one 

child). Parameterization was done after [1]: the population size was set to      ; 

the recombination operator is the double point crossover with       ; mutation is 

bit-flip with       , where   is the chromosome length; tournament selection. Only 

one offspring is placed in the temporary population (randomly chosen from the set of 

two children). In the replacement stage, the offspring replaces its parent if it is better.  

The stop criteria are: to find the global optimum or to achieve a maximum of 

          function evaluations. The number of evaluations required to meet the best 

solution is recorded and averaged over    runs. A success measure (successful runs) 

is defined as the number of runs in which the algorithm attains the global optimum. 

Four different strategies have been considered for the position update phase of the 

proposed algorithm. In the first one, which will be referred to as dynamic cGA with 

Brownian movement (       the individuals ignore the marks and chose randomly 

the destination cells amongst the empty ones in their neighborhood. In the dynamic 

cGA with fitness marks (     ), the individuals deposit marks with their fitness val-

ue. A similar strategy is used by the hierarchical dynamic cGA with fitness marks 

        , except that in this case the individual only considers a mark if the fitness 

value is better than its own fitness. Finally, in the dynamic cGA with genotype marks 

(      , the individuals leave copies of their genotypes in the cells, and when choos-

ing the destination cell, the individual computes the Hamming distance between its 

genotype and the marks. The destination cell is then the one that minimizes the dis-

tance. The radius   of the Moore neighborhood and marks lifespan   were set to 1. 

At every time-step, the individuals are ranked according to their fitness, so that the 

best individuals’ positions are updated first. This strategy has been devised for the 

      , but in order to make fair comparisons it has been implemented in every 

cGA. In fact, some preliminary tests showed that ranking the individuals tends to 

improve the performance of the algorithms.  

In order to evaluate the efficiency of the algorithms, the dynamic cGAs are com-

pared with static cGAs with Moore (cGAM) and von Neumann (cGAvN) neighbour-

hoods on a       grid. The evolutionary phase begins only when the average clus-

tering degree   (the number of neighbours of an individual, including the individual 

itself) rises above    . This ad hoc strategy is used for avoiding the initial distribution 

stage in which many individuals are still isolated (i.e., with none or only a few 

neighbours). Typically, the individuals start to cluster in a few generations and the 

evolutionary phase begins at a very early stage. Although the threshold is imposed 

here by a centralized decision, a local decentralized (self-organized) strategy is also 

possible. For instance, the evolutionary phase could be triggered individually, for  



Table 1.  Average best fitness values (plus standard deviation). 

 X×Y H-IFF Trident  -trap 

     20×20 877.17±90.95 243.20±38.79 296.58±2.07 

      20×20 915.84±91.86 243.20±38.79 297.70±1.71 

      

30×30 856.67±100.59 184.32±64.18 295.18±2.30 

40×40 905.33±99.92 235.52±47.40 296.58±1.95 

50×50 902.33±92.51 235.52±47.40 297.78±1.43 

60×60 926.67±102.08 232.96±49.68 297.76±1.70 

70×70 928.96±87.00 219.43±58.42 297.86±1.54 

      

30×30 871.68±109.82 194.56±64.60 294.42±2.82 

40×40 870.08±94.51 230.40±51.72 294.70±3.26 

50×50 917.76±94.67 250.88±25.34 296.54±2.19 

60×60 944.96±90.19 256.00±0.00 297.58±1.48 

70×70 954.88±85.37 256.00±0.00 298.16±1.45 

       

30×30 862.400±97.36 192.00±64.65 294.28±2.38 

40×40 884.80±112.17 235.52±47.40 294.76±2.60 

50×50 921.60±94.80 245.76±35.08 295.90±3.09 

60×60 940.80±93.24 253.44±18.10 296.56±2.55 

70×70 965.12±79.27 248.32±30.71 297.42±1.71 

      

30×30 875.84±92.10 222.72±56.72 295.88±2.16 

40×40 929.60±98.38 253.44±18.10 297.14±1.83 

50×50 924.48±92.86 250.88±25.34 297.86±1.52 

60×60 947.84±84.27 256.00±0.00 298.68±1.12 

70×70 979.84±77.28 256.00±0.00 298.74±1.28 

 

each chromosome. However, such strategy introduces a transitory phase in which the 

population only recombines partially (steady-state). This could make a comparison 

with static strategies more difficult and potentially unfair and therefore it has been left 

for future work.   

The objectives of the first experiment are to study the performance of the dynamic 

cGAs and the effects of the grid size on their behaviour. For that purpose, grids with 

different size have been tested, starting with a       grid. The averaged final fit-

ness value attained by each algorithm in each function is shown in Table 1. 

The first conclusion is that the Brownian version, in general, does not improve sig-

nificantly the performance of the cGAvN (the best static strategy). A dynamic topol-

ogy per se is not sufficient to overcome the drawbacks of standard cEAs. Some kind 

of organization must take place in order to generate a better interaction between the 

individuals. When stigmergy is introduced in the model, the results are clearly im-

proved, as seen in Table 1.  

The dynamic topologies with stigmergic-based movement rules increase standard 

cGAs performance when the grid is larger than      . In general, dynamic popula-

tions with stigmergic rule moving on        and        grids significantly im-

prove the standard cGAs. For instance, the       on a       grid is significantly 

better than the standard cGAs in every function (according to Kolmogorov-Smirnov 

statistical tests with a      level of significance). The fact that smaller grids do not 

necessarily improve the static cGA performance suggests that it is not the movement 

of the individuals that makes the algorithm better in this set of functions, but instead 

some kind of global island-like pattern that emerges when the grid is larger.  



    
                   

    
                        

Figure 1. Distribution of the individuals on the grid at different iterations of the 

search process.       and Trident function.       grid.  

Figure 1 shows the distribution of the individuals at different iterations ( ) of the 

search process for a grid with size 60×60. The evolutionary phase begins at     . 

Clusters of individuals emerge already at an early stage. Those clusters are highly 

dynamic and in a few generations the global pattern radically changes (please note the 

distributions between iteration       and      ). The topology self-organizes 

into a kind of dynamic island model, in which the communication between the clus-

ters is also an emergent property, arising from the global behavior of the system. 

After     , when the evolutionary phase is introduced (and therefore several fitness 

values and genotypes are changing in each time-step), the clusters are sparser, but this 

an expected outcome due to the variation introduced by the evolutionary process.  

Table 2 shows the number of successful runs attained by the cGAs. Again, under 

this criterion, the dynamic versions outperform the static topologies. The similarity-

based strategy is particularly efficient, attaining the best success rates.  

The previous results show that the dynamic cGAs are able to converge more often 

to global optimum. Therefore, they have a better balance between exploration and 

exploitation for these fitness functions: with the same raw building-blocks, the dy-

namic cGAs combine more efficiently the solutions. This is probably because the 

emergent structures, with their clustering degree and dynamical behaviour, are more 

efficient at maintaining genetic diversity. In order to investigate this hypothesis, the  

Table 2.  Number of successful runs.  

 H-IFF Trident  -trap 

     11 45 2 
      19 45 5 

             21 36 8 

             29 50 9 

              31 48 5 

             37 50 13 



  
Figure 2. Genetic diversity.  

algorithms were tested without mutation and the number of genes that converge (i.e., 

genes with alleles 0 or 1 in the entire population) during the run was computed and 

plotted. The results are in Figure 2. The diversity is in fact maintained at a higher 

level by the structures. Furthermore, increasing the grid increases the diversity (left-

hand graph in Figure 2).  As for the different strategies, the best strategy (similarity-

based) is also the one that maintains diversity at a higher level (right-hand graph).  

Finally, since the dynamic topologies maintain genetic diversity at a higher level, 

therefore increasing exploration and reducing the risk of convergence to local optima, 

it is expected that the convergence speed is reduced, a typical payoff for increasing 

robustness. Table 3 shows the averaged number of evaluations required by each algo-

rithm to reach the global optimum (only runs in which the global optimum has been 

found are considered). The static structures are faster, but as seen in Table 1 and Ta-

ble 2, at the expenses of a significant drop of the performance levels.  

5   Conclusions and Future Work 

This paper investigates a dynamic cellular Genetic Algorithms (cGA) in which the 

individuals communicate via a grid of nodes and self-organized its structure on that 

grid. The global behavioral patterns emerge from local interactions defined by simple 

rules. When compared to static topologies, the dynamic structure maintains genetic 

diversity at a higher level, resulting in an improvement of the convergence rates to 

global optimum on a set of functions that defy the GAs abilities to combine building-

blocks. Such behavior is attained when the ration between the number of nodes in the 

grid and the population size is above 4:1. With these settings, the distribution of indi-  

Table 3. Convergence speed (function evaluations).  

 H-IFF Trident  -trap 

     39600.00±9248.29 44035.56±5678.77 93000.00±3400.00 

      48191.30±15320.04 47377.78±5265.71 100560.00±13716.21 

      49808.57±9093.29 55168.47±13663.58 108822.75±4795.37 

      114608.86±36325.71 75936.81±12991.56 266100.11±48188.63 

       104568.00±27233.83 69546.29±9204.14 212348.20±20325.13 

      127981.38±41261.71 95204.48±15756.53 298350.47±20739.19 
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viduals in the grid emerges into a global island-like model, highly dynamic and with 

frequent communication between the clusters.  

Future work will be focused on the traits of the system and their effects on the be-

havior of the population and on the performance of the algorithm. Radius   of the 

neighborhood and marks’ lifespan   will be investigated. Different stigmergic strate-

gies will be tested, namely those that favor recombination between dissimilar individ-

uals. Finally, the experiments will be extended to other type of functions (unimodal 

and multimodal) in order to achieve a better comprehension of the structure’s working 

mechanism and potential as an alternative cGA network.  
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