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ABSTRACT 
 
This paper defends the use of evolutionary algorithms to 
generate (and evolve) strategies that manage the behavior of 
a team in simulated football videogames. The chosen 
framework to develop the experiments is Robocup, an 
internatonal project that promotes the use of Artificial 
Intelligence in socially significant areas. One of these areas is 
related to computer games in the form of a simulated soccer 
league that allows two teams of 11 simulated robotic 
autonomous players to play football without human 
intervention. This paper proposes to generate emergent 
behaviors for the teams, via an evolutionary  training 
process. The proposal is an alternative to implementing 
specific AI controllers for both players and teams in football 
videogames. 
 
 
INTRODUCTION  
 
The main aim of videogames (VG) is to provide 
entertainment to the player(s). In the past, research on 
commercial VGs was mainly focused on having more 
realistic games by improving graphics and sound (i.e., having 
higher resolution textures, more frames-per-second, ...etc). 
However, in recent years, hardware components have 
experienced exponential growth and players, with   higher 
processing power computers, demand higher quality 
opponents exhibiting intelligent behavior.  
 
In many simulated sports video games, the opposing team / 
the opponent (i.e., the enemy) is basically controlled by a 
fixed script. This is previously programmed and often 
comprises hundreds of rules,  in the form if the game is in 
state S  then execute action A, to control the behavior of the 
components (e.g.. members or players) of the team under 
specific conditions of the framework (i.e., a specific state of 
the game). This is quite a problem from both the developer 
and player point of view. For the former, it is a problem 
because these scripts are becoming more and more complex 
and thus it is not easy to program all the possible situations 
that  could potentially happen. In fact, most of the games 
contain ‘holes’ in the sense that the game stagnates or 
behaves incorrectly under very specific conditions. As a 

consequence, the reality of the simulation is drastically 
reduced and so too the interest of the player. This problem 
relies on the category of ‘artificial stupidity’ (Lidén 2004). 
Also, for players, these scripts that model the opponent 
behavior are pre-programmed schemas whose behavior can 
become predictable for the experienced player, again causing 
a decrease in player interest.  
 
To solve these problems, existing sports games employ some 
kind of artificial intelligence (AI) technique with the aim of 
making the opponents more intelligent, thereby making the 
game more attractive and increasing player satisfaction. 
However, even in these cases, the reality with respect to 
current sports videogames is that game AI is either not really 
AI and often consists of very specialized scripts (with the 
same problems as those already mentioned), or else game AI 
basically mimics a human player behavior. Nevertheless, 
even in this latter case, a problem remains: the AI controlled 
strategy rarely evolves according to the behavior of the 
player during the game. Again the reality is that most 
videogames are divided into levels, and the opponents are 
pre-programmed according to these. In the most complex 
levels the player faces high-quality opponents who behave 
like humans. Once the player is able to beat all the opponents 
in each level, they lose interest. In this context, the 
generation of opponents whose behavior evolves  in 
accordance with the player’s increasing abilities would be an 
appealing feature and would make the game more attractive. 
For instance, an amateur player expects an amateur opponent 
(not necessarily pre-programmed) whereas a very 
experienced player demands high-quality opponents. 
Moreover, the addition of emergent behavior in a football 
simulation game can make it more entertaining and less 
predictable in the sense that emergent behavior is not 
explictly programmed but simply happens (Holland 
2000;Sweetser 2007). 
 
This paper represents a step in this direction and deals with 
football simulation videogames. It proposes the use of 
genetic algorithms (GAs), to generate, in a dynamic way, 
opponents that depend on both the user skills and the game 
level. The main contributions of the paper are the natural 
encoding of the team strategies, that make our proposal very 
simple to manage, and  the definition of a fitness function 
based on two heterogeneous components to guide the 
processes of learning and improvement of the team strategies  
inside the genetic algorithm. We report our experience using 



Genetic Algorithms (GAs) in the context of Robocup, an 
international robot soccer simulation framework in which 
researchers can develop new ideas in the area of AI, and their 
developments can be evaluated via a competition mechanism 
in which any AI proposal is tested against another one. It 
should be observed that our experience can be extrapolated 
to commercial football simulation videogames.  
  
RELATED WORK 
 
AI can play an important role in the success or failure of a 
game and some major AI techniques have already been used 
in existing videogames (Johnson and Wiles 2001;  Millington 
2006). Traditionally, game developers have preferred 
standard AI techniques such as Artificial Life, Neural 
Networks, Finite State Machines, Fuzzy Logic, Learning and 
Expert Systems, among others (Bourg and Seemann 2004; 
Mikkulainen et al. 2006).  
 
Evolutionary algorithms (EAs) (we use this term in a broad 
sense to refer to any kind of evolutionary procedure, 
including genetic algorithms and genetic programming) offer 
interesting opportunities for creating intelligence in strategy 
or role-playing games and, on the Internet, it is possible to 
find a number of articles related to the use of evolutionary 
techniques in VGs. For instance, (Sweetser 2004) shows how 
EAs can be used in games for solving  pathfinding problems; 
also (Buckland 2002) focused on bot navigation (i.e., 
exploration and obstacle avoidance) and proposed the use of 
evolutionary techniques to evolve control sequences for 
game agents. However, in general, most of the work 
published on the use of EAs in games is aimed at showing 
the important role EAs play in Game Theory and, 
particularly, their use in solving decision-taking (mainly 
board) games. For example, (Kim and Cho 2007) presented 
several methods to incorporate domain knowledge into 
evolutionary board game frameworks and chose the board 
games checkers and Othello to experimentally validate the 
techniques. Also, it is worth mentioning the works of Fogel, 
which explored the possibility of learning how to play 
checkers without requiring the addition of human expertise 
via co-evolutionary techniques (Fogel 2000; Chellapilla and 
Fogel 2001).  Other decision-taking games that have been 
handled via evolutionary methods are for example poker 
(Barone and While 1999), Backgammon (Pollack and Blair 
1998) and Chinese Chess (Ong et al. 2007).   
 
Evolutionary techniques involve considerable computational 
cost and thus are rarely used in on-line games. One exception 
however, published in (Fernández and Jiménez 2004), 
describes how to implement a genetic algorithm used on-line 
in an action game (i.e. a first/third person shooter). In fact, 
the most successful proposals for using EAs in games 
correspond to off-line applications, that is to say, the EA 
works on the user’s computer (e.g., to improve the 
operational rules that guide the opponent’s actions) while the 
game is not being played and the results (e.g., improvements) 
can be used later online (i.e., during the playing of the game). 
Through offline evolutionary learning, the quality of 
opponent intelligence in commercial games can be improved, 
and this has been proven to be more effective than opponent-

based scripts (Spronck, Sprinkhuizen-Kuyper, and Postma 
2003). Also, genetic algorithms have been used to evolve 
combat strategies for agents or opponents in between games 
(i.e., offline learning) as was done in the classical Unreal 
Tournament (Dalgaard and  Holm 2002). Some realistic VGs 
that have used genetic algorithms are return Fire II, The 
Creatures Series,  Sigma and Cloak, Dagger and DNA, and 
Quake III. For more detailed information about the use of 
EA in games the reader is referred to (Fogel, Blair, and 
Miikkulainen 2005; Lucas and Kendall 2006).  
 
Regarding sports simulation VGs, readers can find some 
papers describing the evolutionary experiences mainly in 
simulated robot soccer frameworks. For instance, (Luke 
1998) reported his experience of applying genetic 
programming (GP) to evolve team strategies. The teams were 
represented by trees and the GP system used low-level 
atomic functions designed for the soccer environment to 
build the strategies. Also, (Agah and Yanie 1997) used a 
genetic algorithm to evolve a team of 5 robots in a simulated 
soccer setting. Here, the agents (i.e., the robots) were built 
based on the approach of the Tropism-Based control 
architecture. (Nakashima et al. 2005) proposed to encode the 
set of action rules for soccer agents into integer strings. 
Although this is similar to what we have done, the approach 
is radically different as Nakashima et al. divided the soccer 
field into 48 subareas, and the action of the agent is specified 
for each subarea. Also, the replacement policy in the 
evolutionary process was quite different and they used a 
standard evolution strategy-type generation replacement 
schema i.e., the (µ+λ)-strategy (Eiben and Smith 2003). 
 

 
GENETIC ALGORITHMS 
 

A genetic algorithm is a population-based optimization 
algorithm that uses techniques inspired by evolutionary 
biology such as selection, inheritance, mutation, and 
recombination. Genetic algorithms manipulate a population 
of candidate solutions (also known as individuals), 
traditionally represented by binary strings that evolve 
towards better solutions. A typical genetic algorithm schema  
is shown in Figure 1: 

 

 
Figure 1: Standard Schema of a Genetic Algorithm 

 



The basic process is as follows: initially a population of 
individuals is (often randomly) generated and the fitness of 
each member of this population is evaluated. Then the 
algorithm is executed until a termination condition is 
satisfied (e.g., a number of generations –iterations – or 
evaluations is reached, a solution is found, a desirable fitness 
value is obtained, etc).  In each generation, some individuals 
(i.e., parents) from the current population are selected 
stochastically (this selection is usually based on their fitness 
values) and recombined to produce an offspring. The newly 
generated individuals can be modified via a mutation 
process; then the new individuals are evaluated. Finally, the 
population for the next generation is constructed from the 
individuals belonging to the current population and the new 
ones, now referred to as the offspring. This new population is 
then used as the current population in the next iteration of the 
algorithm (Eiben and Smith 2003).  

 
ROBOCUP: THE SIMULATION LEAGUE 
 
Robocup is an international framework in which researchers 
can develop new ideas in the area of AI and their 
developments can be evaluated via a competition mechanism 
in which any AI proposal is tested against another one.  The 
basis of the research is robot soccer. Among the five leagues 
in RoboCup soccer, the simulation league is the most active 
research domain in terms of the development of 
computational intelligence techniques. This league is based 
on a simulator called “soccer server”, which is a software 
system that simulates a football match. The server is a real 
time system that provides support for the competition 
between multiple virtual players in a multi-agent framework. 
It eases the communication with the client program, manages 
the entire physical environment (i.e., communications, 
objects, and hardware issues), and allows the visualization of 
the match in an X-window system. Figure 2 shows an 
example of a simulated match. The advantage of using the 
soccer server is that developers can focus on conceptual tasks 
such cooperation and learning. We will not go into more 
details as it is preferible to concentrate on the artificial 
evolution of the team strategies. The reader is referred to 
(Noda and Stone 2003) for more information on the server. 
 

 
 
Figure 2: Soccer Server: An Example of a Simulated Match  

 
The rules of a simulated match - very similar to those of the 
FIFA – (Fédération Internationale de Football Association) - 

are imposed (e.g., kick-off, goal, off side, half-time, time-up, 
players must not block the movement of other players, etc. ). 
A Robocup agent (i.e., an autonomous player/bot)) receives, 
in real-time, information from the environment via three  
sensors: aural sensor (to detect the messages from the 
referee, trainers and the rest of the players); visual sensor (to 
detect information into a limited region, called the agent 
visual range; the information is about the current state of the 
match in the form of distance to and direction of the close 
objects i.e.,  players, balls, etc, all within a specific area of 
vision); and corporal sensor (to detect the physical state of 
the agent i.e., energy, velocity and direction).  
 
EVOLUTION OF TEAM STRATEGIES 
 
Our aim is to generate controllers to govern the behavior of 
an entire team (i.e., a set of 11 autonomours players/bots). A 
description of the technical issues (e.g., management of 
communication with soccer server or implementation of 
basic agent actions e.g., shot, pass, run, turn, etc., among 
others) of our proposal is beyond the scope of this paper. We 
concentrate thus on the process of developing controller 
behaviour.  
 
The first step consists of generating (and evolving) a set of 
rules that will control the reactions of the agents at each 
instant of the game. These reactions depend on the current 
state of play. As already mentioned, each agent is 
continuously informed about the ongoing state of the game 
through the communication with the soccer server (via the 
three sensors mentioned above). Depending on the situation, 
the agent executes a particular action that may modify the 
state of the agent itself. The global team strategy is then the 
result of the sum of the specific behavior of all the agents. 
 
However, the definition of specific strategies for each agent 
is complex, costly, requires  a profound knowledge of the 
required behavior of each agent, and results in predictable 
behavior. To avoid these problems, all the agents (except the 
goalkeeper, who is manually implemented) will be managed 
by the same evolved controller. This means that we have to 
produce just one controller (thereby making the evolution 
process very much cheaper) to devise a global team strategy. 
Note, this does not mean that all the agents execute the same 
action because this depends on the individual situation of the 
agent in the match.  
 
In the following we provide details of the genetic algorithm  
used to evolve team strategies. 
 
Chromosome Representation (encoding): each individual in 
the population represents a team strategy, that is to say, a 
common set of actions that each agent has to carry out under 
specific conditions of the environment. These conditions 
depend on the information that the agent receives in its 
specific visual range (this differs from one agent to another). 
The information comes in the form of parameters that can 
take values from a range of values. Then, an individual in the 
population is represented as a vector v of k cells where k is 
the number of different situations in which the agent can be, 
and v[i] contains the action to be taken in a specific 



situation. In other words, if there are m parameters, and the 
parameter pi (for 0 ≤ i ≤ m-1) can have ki possible values 
(numbered for 0 to ki-1), then the cell: 
 
v[em-1+em-2*km-1+em-3*(km-1*km-2)+em-4*(km-1*km-2*km-3)+…] 

 
contains the action to be executed when the parameters p0, 
p1,…, pm-1 take the values e0, e1,…, em-1 respectively. 
Managing a  large number of parameters (such as those 
provided by the server)  is complex. Thus to reduce 
complexity, in our experiments we have considered the 
following manageable set of parameters: 

• Advantage state (As): This paremeter can take two 
values that evaluate a possible advantage situation. 
0: if the agent is supported by more team mates  
than rival ones. 1: otherwise. 

• Ball kick (Bk): can the agent kick the ball? Two 
values. 0: the agent cannot; 1: the agent can. 

• Agent position in the field (Ap): three values. 
0:closer to its own goal area; 1: closer to rival goal 
area, 3: not defined. 

• Ball possession (Bp):  which agent is closer to the 
ball ? Four values. 0: the agent,  1: a team mate, 2: a 
rival agent, 3: not known. 

 
The encoding of an individual in the population consists of a 
vector of 48 genes i.e., all the possible conditions that can 
happen from the different combinations of these parameter 
values. An additional parameter was also considered: 

• Position of Ball (Pb). Three values depending on the 
proximity of the ball to the goal areas. 0: closer to 
agent goal area, 1: closer to the rival goal area, 2: 
not defined. 

 
Considering the addition of this parameter the representation 
is a vector of length 144.  We note that some combinations of 
values in the representations may make no sense  (e.g., The 
combination Ap = 0 and Pb = 1 makes no sense with Bk =1 
because the agent would never be able to kick the ball). The 
addition of this kind of knowledge can lead to a simplified 
representation but in  our experiments we did not limit any 
combination (in any case, this kind of optimization can be 
done at a later stage).  
 
Each cell of the vector encoding a candidate solution will 
contain an action. In our experiments, 9 actions were 
considered:  

• Go back: each agent has two positions by default: 
the starting position that corresponds to a fixed 
position in the field in which the agent is placed at 
the beginning of the match as well as after scoring a 
goal, and the required position that corresponds to a 
strategic position in which the agent can be placed 
during the game (e.g., forwards and defenders 
should be placed close to the rival area or team area 
respectively). 

• Look for the ball: turn the agent body to align it 
with the ball if this is visible, otherwise turn 15º (an 
arbitrary value) to the right to modify the 
environmental conditions received in the visual area 
of the agent. 

• Intercept ball: If ball is visible then the agent 
accelerates in that direction. 

• Look around. Turn 15º right. 
• Kick. Shoot in direction to the rival goal area. 
• Pass to closest team mate. 
• Pass to farthest team mate. 
• Kick out: try to put the ball as far as possible from 

the team goal area. 
• Drive ball: conduct the ball in the direction of the 

rival goal area. 
This means that the search space (i.e., the number of 
different strategies that can be generated from this 
representation) is 9144 = 3288 if we consider the second 
representation, and 948 = 396 if we consider the 48 length  
representation. Figure 3 displays an example of a possible 
encoding of length 48. The optimal solution (if it exists)  
would be that strategy which always select the best action to 
be executed for the agents under all possible environmental 
conditions. In fact, these vast search spaces make this 
problem impracticable for many exact methods and ideal for 
genetic algorithms. 
 

 
Figure 3: Example of Encoding for an Arbitrary Individual 

 
Fitness function evaluates the adequacy of a team strategy. 
Let pop be the population considered in the GA. Then, 
evaluating the fitness of an individual pop[i] (for 1 ≤ i ≤ 
population size) requires the simulation (in the soccer server) 
of the match between the opponent strategy (e.g., the one 
followed by a human in a previous game) and the strategy 
encoded in pop[i]. The fitness function depends on the 
statistical data collected at the end of the simulation (e.g., 
who won, goals scored by both teams, etc). The higher the 
number of statistical data to be collected, the higher the 
computational cost will be. A priori, it seems a good policy 
would be to consider a limited number of data. Five data 
were used in our experiments during the simulation of a 
match between pop[i] and the opponent. 

1. Ball closeness (ci): distance average from team 
players to the ball. 

2. Ball possession (pi): average time that the ball is in 
the rival field. 

3. Ball in area (ai): average time that the ball is in the 
rival area. 

4. Scored goals (sgi). 
5. Received goals (rgi). 



The fitness function to evaluate any individual pop[i] in the 
population is then defined as follows:: 
 

fitness(pop[i]) = f1(ci, pi ,ai) + f2(sgi ,rgi) 
where 

f1(c,p,a) = w1·c + w2·p + w3·a         (1) 
and 
                           0,                           if  sg = 0 

f2(sg,rg) =      w4·((sg - rg) + 1),  if ((sg ≥ rg)            (2) 
             (w4-1)/(rg-sg),       otherwise 

The higher the fitness value of a strategy is, the better the 
strategy. Observe that the fitness function is based on two 
very different components. The first, defined in (1), has the 
aim of teaching to the strategy pop[i] how to play according 
to the basic rules of football (note that initially the population 
is randomly initialized and thus most individuals will not 
even know how to play football). Weights were assigned as 
w1=0.01, w2=0.1, and w3=1; the reason for assigning these 
values was to promote the evolution towards strategies in 
which the ball is in play more time in the rival field (if 
possible near the goal  area) than in the team field (it seems 
reasonable to think that this policy will result in less 
“received” goals). The second component of the fitness 
function, defined in (2),  should help the strategy pop[i] to 
evolve towards better solutions (i.e., those able to beat the 
opponent). The weight w4 is assigned to 100 so that in the 
case of a victory or a draw, the function returns a number that 
is multiple of 100, thus giving priority to the higher 
difference of goals; otherwise (in the case of defeat), priority 
is given to a minor difference of goals.  

The fitness function is non-deterministic (i.e., different 
simulations of the same match can produce different results)  
as the simulation is affected by random factors that the 
soccer server adds to provide a greater sensation of realism. 
This fact, which can be viewed as another reason for not 
using complete solving techniques, is really an added 
incentive to use genetic algorithms as it is well-known that 
GAs incorporate a  certain degree of randomness that makes 
them suitable for handling this problem. 

Evolutionary operators: Our GA is a steady state algorithm 
that uses single point crossover, binary tournament for the 
parent selection, and elitism for the replacement policy. 
Mutation is done in the gene – i.e., action – level by 
changing an action to any other action. 

 
EXPERIMENTAL SECTION 
 
Extensive tests, varying the probability of mutation PM (i.e., 
0.1, 0.01, 0.001, 0.0001), the number of generations (i.e., 
150,300), offspring length (i.e., 1,2,3,4), and individual size 
(i.e., 48 and 144) were carried out. The population length 
and the crossover probability PX were set to 30 and 1.0, 
respectively in all the tests (i.e., instances) and the population 
was always initialized randomly. Ten runs per test instance 
were executed. In addition, two type of tests were conducted: 
one (mode 1) in which the GA was executed with the aim of 
finding one strategy (i.e., a winning strategy) to beat a 
manually implemented opponent; and another type (mode 2) 

in which each winning strategy obtained was incorporated 
into the objective function (i.e., the objective was not only to 
beat an opponent but to beat all the opponents in the 
objective function). The experiments demonstrated the 
validity of our proposal in the first mode. Due to the large 
number of experiments done, only some examples of 
evolutionary advances are shown in the following. 
 
For instance, Figure 4 displays the average fitness (from ten 
runs) resulting from one of the test instances executed. It is 
interesting to note that initially the team strategies encoded in 
the population as individuals play really very badly (in fact, 
they do not know how to play), but they evolve quickly 
within a few generations. This behaviour of the evolutionary 
process is common in all the tests. 
 

 
 

 
Figure 4: Pop size: 30, Offspring size: 1, PM = 0.001. 

Average Results for Fitness Value/Generations 
 
Figure 5 shows for the same instance, the evolution of the 
data values used to define the fitness function; one can 
observe for instance that the “received” goals decrease 
whereas the scored goals increase. Also, note the pressure to 
place  the ball close to the rival area.  

 
 
 
Figure 5. Evolution of Values Defining the Fitness Function 

 
Tests in mode 2 were also developed with poor results: the 
algorithm could be executed with two opponents in the 
objective function but not with three. The reason for this bad 
performance is the cost of evaluating the fitness values since 
for each individual, three simulations had to be carried out at 

 

Generation 

  Fitness average     Best Fitness     Best Fitness per Generation 

Generation 

Possesion     Closeness     Area        Average scored goals (Yellow)       
Average received goals 

 



considerable computational cost (note that the strategy 
encoded in the individual has to be evaluated against each of 
the three teams included in the objective function). Note 
however that this mode rarely has applications in simulated 
football games in which there is just one opponent (i.e., the 
human player). Mode 2 is interesting if one wants to produce 
strategies to be tested in a competitive environment such as 
for instance Robocup, but this was not the original 
motivation for this work.  
 
CONCLUSIONS AND FURTHER RESEARCH 
 
In this paper we have shown that genetic algorithms are a 
simple mechanism to obtain emergent behavior strategies to 
control teams in football simulation videogames (such as for 
example FIFA, Pro-evolution or Football Manager series). 
The genetic algorithm described in this paper has the 
particularity that is guided by a fitness function defined with 
two very heterogeneous components: one that guides the 
basic learning of the football principles, and the other that 
strives to find winning strategies. These two components, 
although radically different, are complementary however.  
Experiments were conducted to validate the feasibility of our 
approach with promising results. The evolutionary learning 
described in this paper could be used in existing football 
simulation games taking as opponent the player’s game 
strategy, which can be deduced by collecting statistical data 
during the game. In this sense, the evolutionary algorithm 
would produce player’s skills-based self-adaptive opponents. 
This, together with the randomness associated with GAs, 
would lead the evolutionary process towards the generation 
of opponents with non-predictable behavior. 
 
The main drawback of our technique is the computational 
cost associated to the simulation of matches that are 
necessary to execute in order to evaluate the fitness values of 
the evolved teams. This however can be minimized in our 
working framework as the soccer server provides facilities 
for parallel execution and therefore several matches can be 
running on different machines at the same time, thus 
reducing the computational cost. Nevertheless, this is an 
issue for further research.  
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