GENERATING EMERGENT TEAM STRATEGIES IN FOOTBALL SIM

ULATION

VIDEOGAMES VIA GENETIC ALGORITHMS

Antonio J. Fernandez, Carlos Cotta and Rafael Camgaballos
ETSI Informatica,
Departmento de Lenguajes y Ciencias de la Comprtaci
University of Malaga,
Méalaga, Spain
E-mails: {afdez,ccottap}@Icc.uma.es

KEYWORDS
Al, Evolutionary Algorithm, Simulation, Robot Ftiall.

ABSTRACT

This paper defends the use of evolutionary algmstito
generate (and evolve) strategies that manage tinevioe of

a team in simulated football videogames. The chosen
framework to develop the experiments is Robocup, an
internatonal project that promotes the use of isitf
Intelligence in socially significant areas. Oneladse areas is
related to computer games in the form of a simdlateccer
league that allows two teams of 11 simulated raboti
autonomous players to play football without human
intervention. This paper proposes to generate esmeérg
behaviors for the teams, via an evolutionary tregn
process. The proposal is an alternative to impleimgn
specific Al controllers for both players and teamsootball
videogames.

INTRODUCTION

The main aim of videogames (VG) is to provide
entertainment to the player(s). In the past, retean
commercial VGs was mainly focused on having more
realistic games by improving graphics and sourg, (having
higher resolution textures, more frames-per-seconekc).
However, in recent years, hardware components have
experienced exponential growth and players, withigher
processing power computers, demand higher quality
opponents exhibiting intelligent behavior.

In many simulated sports video games, the oppasiam /
the opponent (i.e., the enemy) is basically colgdoby a
fixed script. This is previously programmed and eoft
comprises hundreds of rules, in the faifnthe game is in
state S then execute action A, to control the behavior of the
components (e.g.. members or players) of the teaderu
specific conditions of the framework (i.e., a sfiecétate of
the game). This is quite a problem from both theettgper
and player point of view. For the former, it is eolplem
because these scripts are becoming more and momglexo
and thus it is not easy to program all the posssiileations
that could potentially happen. In fact, most o tipames
contain ‘holes’ in the sense that the game stagnate
behaves incorrectly under very specific conditioAs. a

consequence, the reality of the simulation is draky
reduced and so too the interest of the player. problem
relies on the category of ‘artificial stupidity’ idén 2004).
Also, for players, these scripts that model the cmmt
behavior are pre-programmed schemas whose beheaor
become predictable for the experienced player naggiising
a decrease in player interest.

To solve these problems, existing sports gamesangame
kind of artificial intelligence (Al) technique witthe aim of
making the opponents more intelligent, thereby mgkhe
game more attractive and increasing player satisfac
However, even in these cases, the reality with eetspo
current sports videogames is that game Al is eitlo¢rreally

Al and often consists of very specialized scriptdti the
same problems as those already mentioned), ogatse Al
basically mimics a human player behavior. Neveebs|
even in this latter case, a problem remains: thedhitrolled
strategy rarely evolves according to the behavibrthe
player during the game. Again the reality is thabsm
videogames are divided into levels, and the oppinare
pre-programmed according to these. In the most t®mp
levels the player faces high-quality opponents \blebave
like humans. Once the player is able to beat ellghponents

in each level, they lose interest. In this contettie
generation of opponents whose behavior evolves in
accordance with the player’s increasing abilitiesild be an
appealing feature and would make the game moractitte.

For instance, an amateur player expects an amapganent
(not necessarily pre-programmed) whereas a very
experienced player demands high-quality opponents.
Moreover, the addition of emergent behavior in athall
simulation game can make it more entertaining aagb |
predictable in the sense that emergent behavionois
explictly programmed but simply happens (Holland
2000;Sweetser 2007).

This paper represents a step in this directiondeads with
football simulation videogames. It proposes the ude
genetic algorithms (GAs), to generate, in a dynamdy,

opponents that depend on both the user skills aadjame
level. The main contributions of the paper are iagural

encoding of the team strategies, that make ourgsaprery
simple to manage, and the definition of a fithkssction

based on two heterogeneous components to guide
processes of learning and improvement of the taeategies
inside the genetic algorithm. We report our expargeusing

the

Genetic Algorithms (GAs) in the context of Robocugm
international robot soccer simulation framework vitich
researchers can develop new ideas in the area aihdltheir
developments can be evaluated via a competitiorhamésm
in which any Al proposal is tested against anothee. It
should be observed that our experience can bepakated
to commercial football simulation videogames.

RELATED WORK

Al can play an important role in the success dufaiof a
game and some major Al techniques have already b&eh

in existing videogames (Johnson and Wiles 2001jirigton
2006). Traditionally, game developers have preterre
standard Al techniques such as Artificial Life, Nau
Networks, Finite State Machines, Fuzzy Logic, Léagrand
Expert Systems, among others (Bourg and Seeman; 200
Mikkulainen et al. 2006).

Evolutionary algorithms (EAs) (we use this termairbroad
sense to refer to any kind of evolutionary procedur
including genetic algorithms and genetic progranghioffer
interesting opportunities for creating intelligencestrategy
or role-playing games and, on the Internet, it asgible to
find a number of articles related to the use oflai@nary
techniques in VGs. For instance, (Sweetser 200a\sHow
EAs can be used in games for solving pathfindiraplems;
also (Buckland 2002) focused on bot navigation.,(i.e
exploration and obstacle avoidance) and proposedish of
evolutionary techniques to evolve control sequenfogs
game agents. However, in general, most of the work
published on the use of EAs in games is aimed @visigy
the important role EAs play in Game Theory and,
particularly, their use in solving decision-takir{ghainly
board) games. For example, (Kim and Cho 2007) ptede
several methods to incorporate domain knowledg® int
evolutionary board game frameworks and chose thardbo
games checkers and Othello to experimentally vididhe
techniques. Also, it is worth mentioning the wodésFogel,
which explored the possibility of learning how tday
checkers without requiring the addition of humampextise
via co-evolutionary techniques (Fogel 2000; Chélamnd
Fogel 2001). Other decision-taking games that Haaen
handled via evolutionary methods are for exampl&epo
(Barone and While 1999), Backgammon (Pollack arairBI
1998) and Chinese Chess (Ong et al. 2007).

Evolutionary techniques involve considerable corapanal
cost and thus are rarely used in on-line games.eRoeption
however, published in (Fernandez and Jiménez 2004),
describes how to implement a genetic algorithm usetine

in an action game (i.e. a first/third person shgoti fact,

the most successful proposals for using EAs in game
correspond to off-line applications, that is to ,stye EA
works on the user's computer (e.g., to improve the
operational rules that guide the opponent’s ac}iersle the
game is not being played and the results (e.g.,dagments)
can be used later online (i.e., during the playihthe game).
Through offline evolutionary learning, the qualitpf
opponent intelligence in commercial games can lpgarred,
and this has been proven to be more effective dipponent-

based scripts (Spronck, Sprinkhuizen-Kuyper, andtrRa
2003). Also, genetic algorithms have been usedvtive
combat strategies for agents or opponents in betgaemes
(i.e., offline learning) as was done in the claaisidnreal
Tournament (Dalgaard and Holm 2002). Some realistic VGs
that have used genetic algorithms aeturn Fire Il, The
Creatures Series, Sigma and Cloak, Dagger and DNA, and
Quake I1I. For more detailed information about the use of
EA in games the reader is referred to (Fogel, Blaid
Miikkulainen 2005; Lucas and Kendall 2006).

Regarding sports simulation VGs, readers can fiothes
papers describing the evolutionary experiences Ignam
simulated robot soccer frameworks. For instanceykél
1998) reported his experience of applying genetic
programming (GP) to evolve team strategies. Theseaere
represented by trees and the GP system used lah-lev
atomic functions designed for the soccer envirorinten
build the strategies. Also, (Agah and Yanie 1993&dia
genetic algorithm to evolve a team of 5 robots ginaulated
soccer setting. Here, the agents (i.e., the robe¢se built
based on the approach of the Tropism-Based control
architecture. (Nakashima et al. 2005) proposettode the
set of action rules for soccer agents into integkeings.
Although this is similar to what we have done, #pproach

is radically different as Nakashima et al. dividbé soccer
field into 48 subareas, and the action of the agespecified

for each subarea. Also, the replacement policy he t
evolutionary process was quite different and thegdua
standard evolution strategy-type generation rephecs
schema i.e., theu)-strategy (Eiben and Smith 2003).

GENETIC ALGORITHMS

A genetic algorithm is a population-based optimaat
algorithm that uses techniques inspired by evahatip
biology such as selection, inheritance, mutatiomd a
recombination. Genetic algorithms manipulate a petjn

of candidate solutions (also known as individuals),
traditionally represented by binary strings thatoleg
towards better solutions. A typical genetic aldoritschema

is shown in Figure 1:

Initial Population

| Parent Selection |

| Crossover |

| Mutation |

Offspring

-+

.Xep] acement -
—

Evaluation
Fitness value

Figure 1: Standard Schema of a Genetic Algorithm

The basic process is as follows: initially a potioka of
individuals is (often randomly) generated and tireefs of
each member of this population is evaluated. Them t
algorithm is executed until a termination conditios
satisfied (e.g., a number of generations —iteratien or
evaluations is reached, a solution is found, ardel fithness
value is obtained, etc). In each generation, sioieiduals
(i.e., parents) from the current population areected
stochastically (this selection is usually basedtmir fithess
values) and recombined to produce an offspring. Adwely
generated individuals can be modified via a mutatio
process; then the new individuals are evaluatathllyj the
population for the next generation is constructexinf the
individuals belonging to the current population ahd new
ones, now referred to as the offspring. This neputetion is
then used as the current population in the nepdtiten of the
algorithm (Eiben and Smith 2003).

ROBOCUP: THE SIMULATION LEAGUE

Robocup is an international framework in which ezsbers
can develop new ideas in the area of Al and their
developments can be evaluated via a competitiorhamésm

in which any Al proposal is tested against anothrer. The
basis of the research is robot soccer. Among trelfiagues

in RoboCup soccer, the simulation league is thet mctive
research domain in terms of the development of
computational intelligence techniques. This leagubased

on a simulator called “soccer server”, which iscdtvgare
system that simulates a football match. The seiwver real
time system that provides support for the compmetiti
between multiple virtual players in a multi-agerstrhework.

It eases the communication with the client prograranages
the entire physical environment (i.e., communiazjo
objects, and hardware issues), and allows the lizstian of

the match in an X-window system. Figure 2 shows an
example of a simulated match. The advantage ofgutsia
soccer server is that developers can focus on ptunietasks
such cooperation and learning. We will not go intore
details as it is preferible to concentrate on thefical
evolution of the team strategies. The reader isrredl to
(Noda and Stone 2003) for more information on treey.

Figure 2: Soccer Server: An Example of a Simul&tedch

The rules of a simulated match - very similar tosen of the
FIFA — (Fédération Internationale de Football Asatian) -

are imposed (e.qg., kick-off, goal, off side, hadffi¢, time-up,
players must not block the movement of other playetc.).

A Robocup agent (i.e., an autonomous player/bepgives,

in real-time, information from the environment vihree
sensors:aural sensor (to detect the messages from the
referee, trainers and the rest of the playefs)al sensor (to
detect information into a limited region, calledethgent
visual range; the information is about the current state of the
match in the form of distance to and direction feé tlose
objects i.e., players, balls, etc, all within &afic area of
vision); andcorporal sensor (to detect the physical state of
the agent i.e., energy, velocity and direction).

EVOLUTION OF TEAM STRATEGIES

Our aim is to generate controllers to govern thiea®r of
an entire team (i.e., a set of 11 autonomours piéyets). A
description of the technical issues (e.g., managenoé
communication with soccer server or implementatimin
basic agent actions e.g., shot, pass, run, tum, among
others) of our proposal is beyond the scope offihjger. We
concentrate thus on the process of developing aibetr
behaviour.

The first step consists of generating (and evolvimget of
rules that will control the reactions of the ageatseach
instant of the game. These reactions depend omutrent
state of play. As already mentioned, each agent is
continuously informed about the ongoing state &f game
through the communication with the soccer servéa (ke
three sensors mentioned above). Depending on tilntien,

the agent executes a particular action that mayifyndlde
state of the agent itself. The global team straiedghen the
result of the sum of the specific behavior of B# tgents.

However, the definition of specific strategies &ach agent
is complex, costly, requires a profound knowleddethe
required behavior of each agent, and results inigtaEble
behavior. To avoid these problems, all the agessgpt the
goalkeeper, who is manually implemented) will benaged
by the same evolved controller. This means thahae to
produce just one controller (thereby making thelugian
process very much cheaper) to devise a global staategy.
Note, this does not mean that all the agents egebetsame
action because this depends on the individual tstu®f the
agent in the match.

In the following we provide details of the genedigorithm
used to evolve team strategies.

Chromosome Representation (encodiregch individual in
the population represents a team strategy, théd say, a
common set of actions that each agent has to oatrynder
specific conditions of the environment. These ctods
depend on the information that the agent receivests
specific visual range (this differs from one agenanother).
The information comes in the form of parameters ttem
take values from a range of values. Then, an iddaliin the
population is represented as a veata@f k cells wherek is
the number of different situations in which the rtgean be,
and v[i] contains the action to be taken in a specific

situation. In other words, if there are m parangtand the
parameter p(for 0 < i < m-1) can have ;kpossible values
(numbered for 0 to;k), then the cell:

V[em-1+em-2*k m—l"'em—S*(k m-l*k m—2)+em—4*(k m-l* m—2*k m-3)+ .]

contains the action to be executed when the paeamet
P1,---» Pny take the values oe e,..., €,.1 respectively.
Managing a large number of parameters (such asetho
provided by the server) is complex. Thus to reduce
complexity, in our experiments we have considerkd t
following manageable set of parameters:

e Advantage state ({x This paremeter can take two
values that evaluate a possible advantage situation
0: if the agent is supported by more team mates
than rival ones. 1: otherwise.

« Ball kick (By): can the agent kick the ball? Two
values. 0: the agent cannot; 1: the agent can.

* Agent position in the field (§: three values.
O:closer to its own goal area; 1: closer to rivalg
area, 3: not defined.

+ Ball possession (B: which agent is closer to the
ball ? Four values. 0: the agent, 1: a team n2ate,
rival agent, 3: not known.

The encoding of an individual in the population sists of a

vector of 48 genes i.e., all the possible cond#ittimt can

happen from the different combinations of theseapeter

values. An additional parameter was also considered

« Position of Ball (B). Three values depending on the

proximity of the ball to the goal areas. O: cloter
agent goal area, 1: closer to the rival goal aPea,
not defined.

Considering the addition of this parameter the espntation
is a vector of length 144. We note that some coatlins of
values in the representations may make no sengg, (de
combination A = 0 and B = 1 makes no sense with B1

because the agent would never be able to kickdhg Bhe
addition of this kind of knowledge can lead to mified

representation but in our experiments we did moit lany
combination (in any case, this kind of optimizatioan be
done at a later stage).

Each cell of the vector encoding a candidate smiutill
contain an action. In our experiments, 9 actiongewe
considered:

 Go back: each agent has two positions by default:
the starting position that corresponds to a fixed
position in the field in which the agent is placad
the beginning of the match as well as after scoaing
goal, and theequired position that corresponds to a
strategic position in which the agent can be placed
during the game (e.g., forwards and defenders
should be placed close to the rival area or teaa ar
respectively).

e Look for the ball: turn the agent body to align it
with the ball if this is visible, otherwise turn%gn
arbitrary value) to the right to modify the
environmental conditions received in the visuahare
of the agent.

* Intercept ball: If ball is visible then the agent
accelerates in that direction.
e Look around. Turn 15° right.
» Kick. Shoot in direction to the rival goal area.
+ Pass to closest team mate.
* Pass to farthest team mate.
e Kick out: try to put the ball as far as possiblenfr
the team goal area.
» Drive ball: conduct the ball in the direction ofeth
rival goal area.
This means that the search space (i.e., the nurober
different strategies that can be generated frons thi
representation) is % = F* if we consider the second
representation, and*®= 3% if we consider the 48 length
representation. Figure 3 displays an example obssiple
encoding of length 48. The optimal solution (ifekists)
would be that strategy which always select the besbn to
be executed for the agents under all possible emviental
conditions. In fact, these vast search spaces nthise
problem impracticable for many exact methods awealidor
genetic algorithms.

Ball possesion (B.)
ABLA, agent Team Rival Not Example: Execute
mate agent known action 7 (pass away) if
000 1 6 9 3 the player is not
001 S g 3 7 supported by team
mates, can kick the
002 5 1 2 4 ball, is positioned close
010 4 2 L5 6 to its lodge, and is the
o011 6) 3 5 player placed closest to
012 1 T) 7 the ball in the field.
100 7 4 9 2
101 1 2 3 5 T
ctions:
102 o 5 4 8 1. Go back default
110 3 6 1 7 position
111 7 2 3 1 2. Look for the ball
112 2) g 5 3. Intercept ball
4. Look around
5. Kick
Parameters: 6. Pass to friend
As: Advantage state 7. Pass away
Bk: ¢ can the player kick the ball ? 8. Kick out
Ap: ; Where is the player placed in the field? 9. Drive ball
Bp: ¢ Who is closer to the ball ?

Figure 3: Example of Encoding for an Arbitrary Ividiual

Fitness functiorevaluates the adequacy of a team strategy.
Let pop be the population considered in the GA. Then,
evaluating the fithess of an individupbp[i] (for 1 < i <
population size) requires the simulation (in thecgw server)
of the match between the opponent strategy (ehg.,ohe
followed by a human in a previous game) and thatedy
encoded inpop[i]. The fithess function depends on the
statistical data collected at the end of the sitata(e.g.,
who won, goals scored by both teams, etc). Theehigjne
number of statistical data to be collected, theh&igthe
computational cost will be. A priori, it seems aodagpolicy
would be to consider a limited number of data. Filsa
were used in our experiments during the simulatibra
match betweepop[i] and the opponent.

1. Ball closeness (¢ distance average from team

players to the ball.
2. Ball possession (p average time that the ball is in
the rival field.

3. Ball in area (8: average time that the ball is in the
rival area.
Scored goals ($9
Received goals (rg

o s

The fitness function to evaluate any individpap[i] in the
population is then defined as follows::

fitness(pop[i]) = fi(ci, pi.,&) + f2(STi .rg)

where
fi(c,p,a) = w-c + w:p + ws-a (1)
and
0, if sg=0
f2(sg,rg) w((sg - rg) + 1), if ((sg rg) (2)

(w-1)/(rg-sg), otherwise

The higher the fitness value of a strategy is, lib#er the
strategy. Observe that the fithess function is thame two
very different components. The first, defined i), (ias the
aim of teaching to the strategpp[i] how to play according
to the basic rules of football (note that initiathe population
is randomly initialized and thus most individualsll ot
even know how to play foothall). Weights were assid) as
w;=0.01, w=0.1, and w=1; the reason for assigning these
values was to promote the evolution towards stiaseq
which the ball is in play more time in the rivaklffi (if
possible near the goal area) than in the team {ieseems
reasonable to think that this policy will result iess
“received” goals). The second component of theefitn
function, defined in (2), should help the strat@op[i] to
evolve towards better solutions (i.e., those ablddaat the
opponent). The weight mis assigned to 100 so that in the
case of a victory or a draw, the function returmaienber that
is multiple of 100, thus giving priority to the Ihigr
difference of goals; otherwise (in the case of dferiority

is given to a minor difference of goals.

The fithess function is non-deterministic (i.e.,ffelient
simulations of the same match can produce differesults)
as the simulation is affected by random factors the
soccer server adds to provide a greater sensatioFalism.
This fact, which can be viewed as another reasoméa
using complete solving techniques, is really an eadd
incentive to use genetic algorithms as it is waelbkn that
GAs incorporate a certain degree of randomnessibkes
them suitable for handling this problem.

Evolutionary operatorsOur GA is a steady state algorithm
that uses single point crossover, binary tournanfienthe
parent selection, and elitism for the replacemeolicy.
Mutation is done in the gene — i.e., action — lebsl
changing an action to any other action.

EXPERIMENTAL SECTION

Extensive tests, varying the probability of mutatig, (i.e.,
0.1, 0.01, 0.001, 0.0001), the number of generatipm.,
150,300), offspring length (i.e., 1,2,3,4), andividual size
(i.e., 48 and 144) were carried out. The populatemgth
and the crossover probabilityy Rvere set to 30 and 1.0,
respectively in all the tests (i.e., instances) tawedpopulation
was always initialized randomly. Ten runs per iastance
were executed. In addition, two type of tests veemeducted:
one (mode 1) in which the GA was executed withaime of
finding one strategy (i.e., a winning strategy) lieat a
manually implemented opponent; and another typedén®)

in which each winning strategy obtained was incoaped

into the objective function (i.e., the objectivesa@ot only to
beat an opponent but to beat all the opponentshén t
objective function). The experiments demonstratéed t
validity of our proposal in the first mode. Due ttee large
number of experiments done, only some examples of
evolutionary advances are shown in the following.

For instance, Figure 4 displays the average fitifieem ten

runs) resulting from one of the test instances @ebezt It is

interesting to note that initially the team stragésgencoded in
the population as individuals play really very hatih fact,

they do not know how to play), but they evolve ¢lbic
within a few generations. This behaviour of thelationary

process is common in all the tests.

500 —_—
450 |
400 |

350 |
300 —

Valor

230 |

200
150 |

100 T TN

o 10 20 30 40 S0 60 70 &0 90 100 lle 120 130 140 150

Generation

Fitness average Best Fitness

Figure 4: Pop size: 30, Offspring size: 1, £0.001.
Average Results for Fitness Value/Generations

Figure 5 shows for the same instance, the evolutiothe
data values used to define the fitness functiore oan
observe for instance that the “received” goals elese
whereas the scored goals increase. Also, noterdssyre to
place the ball close to the rival area.

45
40
35
3,0

25

Valor

2,0
15 o

1,0 —

05 ——

0,0

Generation

Possesion Closeness Average scored goalsgllow)

Figure 5. Evolution of Values Defining the Fitnéasction

Tests in mode 2 were also developed with poor testile
algorithm could be executed with two opponents lie t
objective function but not with three. The reasonthis bad
performance is the cost of evaluating the fitheslsas since
for each individual, three simulations had to beied out at

considerable computational cost (note that thetegjya
encoded in the individual has to be evaluated atj@ach of
the three teams included in the objective functiaxpte
however that this mode rarely has applicationsirmukated
football games in which there is just one opporiest, the
human player). Mode 2 is interesting if one wantproduce
strategies to be tested in a competitive envirorireaoh as
for instance Robocup, but this was not the original
motivation for this work.

CONCLUSIONS AND FURTHER RESEARCH

In this paper we have shown that genetic algoritlames a
simple mechanism to obtain emergent behavior gfiegeto
control teams in football simulation videogamescfsas for
exampleFIFA, Pro-evolution or Football Manager series).
The genetic algorithm described in this paper Has t
particularity that is guided by a fitness functidefined with
two very heterogeneous components: one that guides
basic learning of the football principles, and titber that
strives to find winning strategies. These two congus,
although radically different, are complementary buer.
Experiments were conducted to validate the featsilmf our
approach with promising results. The evolutionagrhing
described in this paper could be used in existimotifall
simulation games taking as opponent the playersiega
strategy, which can be deduced by collecting siedisdata
during the game. In this sense, the evolutionagprithm
would produce player’s skills-based self-adaptippanents.
This, together with the randomness associated Gifts,
would lead the evolutionary process towards theegsion
of opponents with non-predictable behavior.

The main drawback of our technique is the compuntati
cost associated to the simulation of matches that a
necessary to execute in order to evaluate thesftmalues of
the evolved teams. This however can be minimizedun
working framework as the soccer server providedlitias

for parallel execution and therefore several matoten be
running on different machines at the same time,s thu
reducing the computational cost. Nevertheless, ihign
issue for further research.

ACKNOWLEDGMENTS

This work has been partially supported by proj@dté2007-
67134 and TIN2008-05941 (from Spanish Ministry of
Innovation and Science) and P06-TIC2250 (from Aasial
Regional Government).

REFERENCES

Agah, A. and Yanie, K. 1997. Robots Playing to Win:
Evolutionary Soccer Strategies’. In Proceedings of the 1997
IEEE International Conference on Robotics and Aut@mat
632-637.

Barone, L. and While, L. 1999 Ah Adaptive Learning Model for
Smplified Poker Using Evolutionary Algorithm”. In
Proceedings of the Congress on Evolutionary Compmumtati
IEEE Press, 153-160.

Bourg, D.M. and Seemann, G. 2004l. for Game Developers.
O'Reilly.

Buckland, M. 2002.Al Techniques for Game Programming.
Premier Press.

Chellapilla, K. and Fogel, D.B. 2001. “Evolving arpext checkers
playing program without using human expertise”. |EEE
Trans. Evolutionary Computation 5, No. 4, 422-428.

Dalgaard, J.and Holm, J. 2002. “Genetic Progrargrapplied to a
real time game domain”. Master Thesis, Aalborg @rsity -
Institute of Computer Science, Denmark.

Eiben, A.l.,, and Smith, J.E. 2008atroduction to Evolutionary
Computing. Springer.

Fernandez, A.J. and Jiménez, J. 2004. “Action Gargolutive
Experiences”. InComputational Intelligence: Theory and
Applications, Bernd Reusch (ed.), Springer, 487-501.

Fogel, D.B. 2000. “Evolving a checkers player withoelying on
human experience”. Imtelligence 11, No. 2, 20-27 (2000)

Fogel, D B; Blair, A; and Miikkulainen, R (eds). 200%pecial
Issue: Evolutionary Computation and Games”. IREE
Trans. Evolutionary Computation 9, No. 6,

Holland, J.H. 2000 Emergence: from Chaos to Order. Oxford
University Press.

Johnson, D. and Wiles, J. 2001. “Computer Games with
Intelligence”. InAustralian Journal of Intelligent Information
Processing Systems 7, 61-68.

Kim, K-J., and Cho, S-B. 2007. “Evolutionary Algoritis for
Board Game Players with Domain Knowledge” Aldvanced
Intelligent Paradigms in Computer Games, Baba, N, Jain
L.C. and Handa H. (eds), Springer, 71-89.

Lidén, L. 2004, “Artificial Stupidity: The Art of Mking Intentional
Mistakes”, In Al Game Programming Wisdom 2, S. Rabin,
ed., Charles River Media, Inc., pp. 41-48.

Lucas, S.M., and Kendall, G. 2006. “Evolutionary Quuation
and Games”. INEEE Computational Intelligence Magazine
1, No.1, 10-18.

Luke, S. 1998. Evolving Soccerbots: a Retrospective’”. In
Proceedings of 12th Annual Conference of the Jaganes
Society for Artificial Intelligence (JSAI). Invitegaper.

Miikkulainen, R; Bryant, B.D.; Cornelius, R.; KarpowVI;
Stanley, K.O.; and Yong, C.H. 2006. “Computational
Intelligence in Games”. InComputational Intelligence:
Principles and Practice, Yen, G. Y. and Fogel, D. B.
(editors), IEEE Computational Intelligence Socidfy5-191.

Millington, I: 2006. Artificial Intelligence for Games. Morgan
Kaufmann.

Nakashima, N; Takatani, M; Udo, M; Ishibuchi, H;daNii, M.
2005. ‘Performance Evaluation of an Evolutionary Method
for RoboCup Soccer Srategies’. In Proceedings of RoboCup
2005, LNCS 4020, Springer, 616-623.

Noda, I: and Stone P. 2003. “The RoboCup Soccer Bemwe
CMUnited Clients: Implemented Infrastructure for MAS
Research Autonomous Agents and Multi-Agent Systems 7,
No.1-2 (July-September), 101-120.

Ong, C.S.; Quek, H.Y.; Tan, K.C.; and Tay, A. 20(DJistovering
Chinese Chess Srategies through Coevolutionary
Approaches’. In Proceedings of the 2007 IEEE Symposium
on Computational Intelligence and Games, 360-367.

Pollack, J.B. and Blair, A.D.1998. “Co-Evolution iretsuccessful
Learning of Backgammon Strategy”. Machine Learning
32, No. 1, 22-240.

Spronck, P.; Sprinkhuizen-Kuyper, I.; and Postma, 2003.
“Improving Opponent Intelligence through Offline
Evolutionary Learning”. In International Journal of
Intelligent Games& Smulation 2, No. 1, 20-27.

Sweetser, P. 2004. “How to Build Evolutionary Alghms for
Games”. InAl Game Programming Wisdom 2, S. Rabin, ed.,
Charles River Media, Inc., pp. 627-638.

Sweetser, P. 200Emergencein Games. Charles River Media.

