
GENERATING EMERGENT TEAM STRATEGIES IN FOOTBALL SIM ULATION
VIDEOGAMES VIA GENETIC ALGORITHMS

Antonio J. Fernández, Carlos Cotta and Rafael Campaña Ceballos

ETSI Informática,
Departmento de Lenguajes y Ciencias de la Computación,

University of Málaga,
Málaga, Spain

E-mails: {afdez,ccottap}@lcc.uma.es

KEYWORDS
AI, Evolutionary Algorithm, Simulation, Robot Football.

ABSTRACT

This paper defends the use of evolutionary algorithms to
generate (and evolve) strategies that manage the behavior of
a team in simulated football videogames. The chosen
framework to develop the experiments is Robocup, an
internatonal project that promotes the use of Artificial
Intelligence in socially significant areas. One of these areas is
related to computer games in the form of a simulated soccer
league that allows two teams of 11 simulated robotic
autonomous players to play football without human
intervention. This paper proposes to generate emergent
behaviors for the teams, via an evolutionary training
process. The proposal is an alternative to implementing
specific AI controllers for both players and teams in football
videogames.

INTRODUCTION

The main aim of videogames (VG) is to provide
entertainment to the player(s). In the past, research on
commercial VGs was mainly focused on having more
realistic games by improving graphics and sound (i.e., having
higher resolution textures, more frames-per-second, ...etc).
However, in recent years, hardware components have
experienced exponential growth and players, with higher
processing power computers, demand higher quality
opponents exhibiting intelligent behavior.

In many simulated sports video games, the opposing team /
the opponent (i.e., the enemy) is basically controlled by a
fixed script. This is previously programmed and often
comprises hundreds of rules, in the form if the game is in
state S then execute action A, to control the behavior of the
components (e.g.. members or players) of the team under
specific conditions of the framework (i.e., a specific state of
the game). This is quite a problem from both the developer
and player point of view. For the former, it is a problem
because these scripts are becoming more and more complex
and thus it is not easy to program all the possible situations
that could potentially happen. In fact, most of the games
contain ‘holes’ in the sense that the game stagnates or
behaves incorrectly under very specific conditions. As a

consequence, the reality of the simulation is drastically
reduced and so too the interest of the player. This problem
relies on the category of ‘artificial stupidity’ (Lidén 2004).
Also, for players, these scripts that model the opponent
behavior are pre-programmed schemas whose behavior can
become predictable for the experienced player, again causing
a decrease in player interest.

To solve these problems, existing sports games employ some
kind of artificial intelligence (AI) technique with the aim of
making the opponents more intelligent, thereby making the
game more attractive and increasing player satisfaction.
However, even in these cases, the reality with respect to
current sports videogames is that game AI is either not really
AI and often consists of very specialized scripts (with the
same problems as those already mentioned), or else game AI
basically mimics a human player behavior. Nevertheless,
even in this latter case, a problem remains: the AI controlled
strategy rarely evolves according to the behavior of the
player during the game. Again the reality is that most
videogames are divided into levels, and the opponents are
pre-programmed according to these. In the most complex
levels the player faces high-quality opponents who behave
like humans. Once the player is able to beat all the opponents
in each level, they lose interest. In this context, the
generation of opponents whose behavior evolves in
accordance with the player’s increasing abilities would be an
appealing feature and would make the game more attractive.
For instance, an amateur player expects an amateur opponent
(not necessarily pre-programmed) whereas a very
experienced player demands high-quality opponents.
Moreover, the addition of emergent behavior in a football
simulation game can make it more entertaining and less
predictable in the sense that emergent behavior is not
explictly programmed but simply happens (Holland
2000;Sweetser 2007).

This paper represents a step in this direction and deals with
football simulation videogames. It proposes the use of
genetic algorithms (GAs), to generate, in a dynamic way,
opponents that depend on both the user skills and the game
level. The main contributions of the paper are the natural
encoding of the team strategies, that make our proposal very
simple to manage, and the definition of a fitness function
based on two heterogeneous components to guide the
processes of learning and improvement of the team strategies
inside the genetic algorithm. We report our experience using

Genetic Algorithms (GAs) in the context of Robocup, an
international robot soccer simulation framework in which
researchers can develop new ideas in the area of AI, and their
developments can be evaluated via a competition mechanism
in which any AI proposal is tested against another one. It
should be observed that our experience can be extrapolated
to commercial football simulation videogames.

RELATED WORK

AI can play an important role in the success or failure of a
game and some major AI techniques have already been used
in existing videogames (Johnson and Wiles 2001; Millington
2006). Traditionally, game developers have preferred
standard AI techniques such as Artificial Life, Neural
Networks, Finite State Machines, Fuzzy Logic, Learning and
Expert Systems, among others (Bourg and Seemann 2004;
Mikkulainen et al. 2006).

Evolutionary algorithms (EAs) (we use this term in a broad
sense to refer to any kind of evolutionary procedure,
including genetic algorithms and genetic programming) offer
interesting opportunities for creating intelligence in strategy
or role-playing games and, on the Internet, it is possible to
find a number of articles related to the use of evolutionary
techniques in VGs. For instance, (Sweetser 2004) shows how
EAs can be used in games for solving pathfinding problems;
also (Buckland 2002) focused on bot navigation (i.e.,
exploration and obstacle avoidance) and proposed the use of
evolutionary techniques to evolve control sequences for
game agents. However, in general, most of the work
published on the use of EAs in games is aimed at showing
the important role EAs play in Game Theory and,
particularly, their use in solving decision-taking (mainly
board) games. For example, (Kim and Cho 2007) presented
several methods to incorporate domain knowledge into
evolutionary board game frameworks and chose the board
games checkers and Othello to experimentally validate the
techniques. Also, it is worth mentioning the works of Fogel,
which explored the possibility of learning how to play
checkers without requiring the addition of human expertise
via co-evolutionary techniques (Fogel 2000; Chellapilla and
Fogel 2001). Other decision-taking games that have been
handled via evolutionary methods are for example poker
(Barone and While 1999), Backgammon (Pollack and Blair
1998) and Chinese Chess (Ong et al. 2007).

Evolutionary techniques involve considerable computational
cost and thus are rarely used in on-line games. One exception
however, published in (Fernández and Jiménez 2004),
describes how to implement a genetic algorithm used on-line
in an action game (i.e. a first/third person shooter). In fact,
the most successful proposals for using EAs in games
correspond to off-line applications, that is to say, the EA
works on the user’s computer (e.g., to improve the
operational rules that guide the opponent’s actions) while the
game is not being played and the results (e.g., improvements)
can be used later online (i.e., during the playing of the game).
Through offline evolutionary learning, the quality of
opponent intelligence in commercial games can be improved,
and this has been proven to be more effective than opponent-

based scripts (Spronck, Sprinkhuizen-Kuyper, and Postma
2003). Also, genetic algorithms have been used to evolve
combat strategies for agents or opponents in between games
(i.e., offline learning) as was done in the classical Unreal
Tournament (Dalgaard and Holm 2002). Some realistic VGs
that have used genetic algorithms are return Fire II, The
Creatures Series, Sigma and Cloak, Dagger and DNA, and
Quake III. For more detailed information about the use of
EA in games the reader is referred to (Fogel, Blair, and
Miikkulainen 2005; Lucas and Kendall 2006).

Regarding sports simulation VGs, readers can find some
papers describing the evolutionary experiences mainly in
simulated robot soccer frameworks. For instance, (Luke
1998) reported his experience of applying genetic
programming (GP) to evolve team strategies. The teams were
represented by trees and the GP system used low-level
atomic functions designed for the soccer environment to
build the strategies. Also, (Agah and Yanie 1997) used a
genetic algorithm to evolve a team of 5 robots in a simulated
soccer setting. Here, the agents (i.e., the robots) were built
based on the approach of the Tropism-Based control
architecture. (Nakashima et al. 2005) proposed to encode the
set of action rules for soccer agents into integer strings.
Although this is similar to what we have done, the approach
is radically different as Nakashima et al. divided the soccer
field into 48 subareas, and the action of the agent is specified
for each subarea. Also, the replacement policy in the
evolutionary process was quite different and they used a
standard evolution strategy-type generation replacement
schema i.e., the (µ+λ)-strategy (Eiben and Smith 2003).

GENETIC ALGORITHMS

A genetic algorithm is a population-based optimization
algorithm that uses techniques inspired by evolutionary
biology such as selection, inheritance, mutation, and
recombination. Genetic algorithms manipulate a population
of candidate solutions (also known as individuals),
traditionally represented by binary strings that evolve
towards better solutions. A typical genetic algorithm schema
is shown in Figure 1:

Figure 1: Standard Schema of a Genetic Algorithm

The basic process is as follows: initially a population of
individuals is (often randomly) generated and the fitness of
each member of this population is evaluated. Then the
algorithm is executed until a termination condition is
satisfied (e.g., a number of generations –iterations – or
evaluations is reached, a solution is found, a desirable fitness
value is obtained, etc). In each generation, some individuals
(i.e., parents) from the current population are selected
stochastically (this selection is usually based on their fitness
values) and recombined to produce an offspring. The newly
generated individuals can be modified via a mutation
process; then the new individuals are evaluated. Finally, the
population for the next generation is constructed from the
individuals belonging to the current population and the new
ones, now referred to as the offspring. This new population is
then used as the current population in the next iteration of the
algorithm (Eiben and Smith 2003).

ROBOCUP: THE SIMULATION LEAGUE

Robocup is an international framework in which researchers
can develop new ideas in the area of AI and their
developments can be evaluated via a competition mechanism
in which any AI proposal is tested against another one. The
basis of the research is robot soccer. Among the five leagues
in RoboCup soccer, the simulation league is the most active
research domain in terms of the development of
computational intelligence techniques. This league is based
on a simulator called “soccer server”, which is a software
system that simulates a football match. The server is a real
time system that provides support for the competition
between multiple virtual players in a multi-agent framework.
It eases the communication with the client program, manages
the entire physical environment (i.e., communications,
objects, and hardware issues), and allows the visualization of
the match in an X-window system. Figure 2 shows an
example of a simulated match. The advantage of using the
soccer server is that developers can focus on conceptual tasks
such cooperation and learning. We will not go into more
details as it is preferible to concentrate on the artificial
evolution of the team strategies. The reader is referred to
(Noda and Stone 2003) for more information on the server.

Figure 2: Soccer Server: An Example of a Simulated Match

The rules of a simulated match - very similar to those of the
FIFA – (Fédération Internationale de Football Association) -

are imposed (e.g., kick-off, goal, off side, half-time, time-up,
players must not block the movement of other players, etc.).
A Robocup agent (i.e., an autonomous player/bot)) receives,
in real-time, information from the environment via three
sensors: aural sensor (to detect the messages from the
referee, trainers and the rest of the players); visual sensor (to
detect information into a limited region, called the agent
visual range; the information is about the current state of the
match in the form of distance to and direction of the close
objects i.e., players, balls, etc, all within a specific area of
vision); and corporal sensor (to detect the physical state of
the agent i.e., energy, velocity and direction).

EVOLUTION OF TEAM STRATEGIES

Our aim is to generate controllers to govern the behavior of
an entire team (i.e., a set of 11 autonomours players/bots). A
description of the technical issues (e.g., management of
communication with soccer server or implementation of
basic agent actions e.g., shot, pass, run, turn, etc., among
others) of our proposal is beyond the scope of this paper. We
concentrate thus on the process of developing controller
behaviour.

The first step consists of generating (and evolving) a set of
rules that will control the reactions of the agents at each
instant of the game. These reactions depend on the current
state of play. As already mentioned, each agent is
continuously informed about the ongoing state of the game
through the communication with the soccer server (via the
three sensors mentioned above). Depending on the situation,
the agent executes a particular action that may modify the
state of the agent itself. The global team strategy is then the
result of the sum of the specific behavior of all the agents.

However, the definition of specific strategies for each agent
is complex, costly, requires a profound knowledge of the
required behavior of each agent, and results in predictable
behavior. To avoid these problems, all the agents (except the
goalkeeper, who is manually implemented) will be managed
by the same evolved controller. This means that we have to
produce just one controller (thereby making the evolution
process very much cheaper) to devise a global team strategy.
Note, this does not mean that all the agents execute the same
action because this depends on the individual situation of the
agent in the match.

In the following we provide details of the genetic algorithm
used to evolve team strategies.

Chromosome Representation (encoding): each individual in
the population represents a team strategy, that is to say, a
common set of actions that each agent has to carry out under
specific conditions of the environment. These conditions
depend on the information that the agent receives in its
specific visual range (this differs from one agent to another).
The information comes in the form of parameters that can
take values from a range of values. Then, an individual in the
population is represented as a vector v of k cells where k is
the number of different situations in which the agent can be,
and v[i] contains the action to be taken in a specific

situation. In other words, if there are m parameters, and the
parameter pi (for 0 ≤ i ≤ m-1) can have ki possible values
(numbered for 0 to ki-1), then the cell:

v[em-1+em-2*km-1+em-3*(km-1*km-2)+em-4*(km-1*km-2*km-3)+…]

contains the action to be executed when the parameters p0,
p1,…, pm-1 take the values e0, e1,…, em-1 respectively.
Managing a large number of parameters (such as those
provided by the server) is complex. Thus to reduce
complexity, in our experiments we have considered the
following manageable set of parameters:

• Advantage state (As): This paremeter can take two
values that evaluate a possible advantage situation.
0: if the agent is supported by more team mates
than rival ones. 1: otherwise.

• Ball kick (Bk): can the agent kick the ball? Two
values. 0: the agent cannot; 1: the agent can.

• Agent position in the field (Ap): three values.
0:closer to its own goal area; 1: closer to rival goal
area, 3: not defined.

• Ball possession (Bp): which agent is closer to the
ball ? Four values. 0: the agent, 1: a team mate, 2: a
rival agent, 3: not known.

The encoding of an individual in the population consists of a
vector of 48 genes i.e., all the possible conditions that can
happen from the different combinations of these parameter
values. An additional parameter was also considered:

• Position of Ball (Pb). Three values depending on the
proximity of the ball to the goal areas. 0: closer to
agent goal area, 1: closer to the rival goal area, 2:
not defined.

Considering the addition of this parameter the representation
is a vector of length 144. We note that some combinations of
values in the representations may make no sense (e.g., The
combination Ap = 0 and Pb = 1 makes no sense with Bk =1
because the agent would never be able to kick the ball). The
addition of this kind of knowledge can lead to a simplified
representation but in our experiments we did not limit any
combination (in any case, this kind of optimization can be
done at a later stage).

Each cell of the vector encoding a candidate solution will
contain an action. In our experiments, 9 actions were
considered:

• Go back: each agent has two positions by default:
the starting position that corresponds to a fixed
position in the field in which the agent is placed at
the beginning of the match as well as after scoring a
goal, and the required position that corresponds to a
strategic position in which the agent can be placed
during the game (e.g., forwards and defenders
should be placed close to the rival area or team area
respectively).

• Look for the ball: turn the agent body to align it
with the ball if this is visible, otherwise turn 15º (an
arbitrary value) to the right to modify the
environmental conditions received in the visual area
of the agent.

• Intercept ball: If ball is visible then the agent
accelerates in that direction.

• Look around. Turn 15º right.
• Kick. Shoot in direction to the rival goal area.
• Pass to closest team mate.
• Pass to farthest team mate.
• Kick out: try to put the ball as far as possible from

the team goal area.
• Drive ball: conduct the ball in the direction of the

rival goal area.
This means that the search space (i.e., the number of
different strategies that can be generated from this
representation) is 9144 = 3288 if we consider the second
representation, and 948 = 396 if we consider the 48 length
representation. Figure 3 displays an example of a possible
encoding of length 48. The optimal solution (if it exists)
would be that strategy which always select the best action to
be executed for the agents under all possible environmental
conditions. In fact, these vast search spaces make this
problem impracticable for many exact methods and ideal for
genetic algorithms.

Figure 3: Example of Encoding for an Arbitrary Individual

Fitness function evaluates the adequacy of a team strategy.
Let pop be the population considered in the GA. Then,
evaluating the fitness of an individual pop[i] (for 1 ≤ i ≤
population size) requires the simulation (in the soccer server)
of the match between the opponent strategy (e.g., the one
followed by a human in a previous game) and the strategy
encoded in pop[i]. The fitness function depends on the
statistical data collected at the end of the simulation (e.g.,
who won, goals scored by both teams, etc). The higher the
number of statistical data to be collected, the higher the
computational cost will be. A priori, it seems a good policy
would be to consider a limited number of data. Five data
were used in our experiments during the simulation of a
match between pop[i] and the opponent.

1. Ball closeness (ci): distance average from team
players to the ball.

2. Ball possession (pi): average time that the ball is in
the rival field.

3. Ball in area (ai): average time that the ball is in the
rival area.

4. Scored goals (sgi).
5. Received goals (rgi).

The fitness function to evaluate any individual pop[i] in the
population is then defined as follows::

fitness(pop[i]) = f1(ci, pi ,ai) + f2(sgi ,rgi)
where

f1(c,p,a) = w1·c + w2·p + w3·a (1)
and
 0, if sg = 0

f2(sg,rg) = w4·((sg - rg) + 1), if ((sg ≥ rg) (2)
 (w4-1)/(rg-sg), otherwise

The higher the fitness value of a strategy is, the better the
strategy. Observe that the fitness function is based on two
very different components. The first, defined in (1), has the
aim of teaching to the strategy pop[i] how to play according
to the basic rules of football (note that initially the population
is randomly initialized and thus most individuals will not
even know how to play football). Weights were assigned as
w1=0.01, w2=0.1, and w3=1; the reason for assigning these
values was to promote the evolution towards strategies in
which the ball is in play more time in the rival field (if
possible near the goal area) than in the team field (it seems
reasonable to think that this policy will result in less
“received” goals). The second component of the fitness
function, defined in (2), should help the strategy pop[i] to
evolve towards better solutions (i.e., those able to beat the
opponent). The weight w4 is assigned to 100 so that in the
case of a victory or a draw, the function returns a number that
is multiple of 100, thus giving priority to the higher
difference of goals; otherwise (in the case of defeat), priority
is given to a minor difference of goals.

The fitness function is non-deterministic (i.e., different
simulations of the same match can produce different results)
as the simulation is affected by random factors that the
soccer server adds to provide a greater sensation of realism.
This fact, which can be viewed as another reason for not
using complete solving techniques, is really an added
incentive to use genetic algorithms as it is well-known that
GAs incorporate a certain degree of randomness that makes
them suitable for handling this problem.

Evolutionary operators: Our GA is a steady state algorithm
that uses single point crossover, binary tournament for the
parent selection, and elitism for the replacement policy.
Mutation is done in the gene – i.e., action – level by
changing an action to any other action.

EXPERIMENTAL SECTION

Extensive tests, varying the probability of mutation PM (i.e.,
0.1, 0.01, 0.001, 0.0001), the number of generations (i.e.,
150,300), offspring length (i.e., 1,2,3,4), and individual size
(i.e., 48 and 144) were carried out. The population length
and the crossover probability PX were set to 30 and 1.0,
respectively in all the tests (i.e., instances) and the population
was always initialized randomly. Ten runs per test instance
were executed. In addition, two type of tests were conducted:
one (mode 1) in which the GA was executed with the aim of
finding one strategy (i.e., a winning strategy) to beat a
manually implemented opponent; and another type (mode 2)

in which each winning strategy obtained was incorporated
into the objective function (i.e., the objective was not only to
beat an opponent but to beat all the opponents in the
objective function). The experiments demonstrated the
validity of our proposal in the first mode. Due to the large
number of experiments done, only some examples of
evolutionary advances are shown in the following.

For instance, Figure 4 displays the average fitness (from ten
runs) resulting from one of the test instances executed. It is
interesting to note that initially the team strategies encoded in
the population as individuals play really very badly (in fact,
they do not know how to play), but they evolve quickly
within a few generations. This behaviour of the evolutionary
process is common in all the tests.

Figure 4: Pop size: 30, Offspring size: 1, PM = 0.001.

Average Results for Fitness Value/Generations

Figure 5 shows for the same instance, the evolution of the
data values used to define the fitness function; one can
observe for instance that the “received” goals decrease
whereas the scored goals increase. Also, note the pressure to
place the ball close to the rival area.

Figure 5. Evolution of Values Defining the Fitness Function

Tests in mode 2 were also developed with poor results: the
algorithm could be executed with two opponents in the
objective function but not with three. The reason for this bad
performance is the cost of evaluating the fitness values since
for each individual, three simulations had to be carried out at

Generation

 Fitness average Best Fitness Best Fitness per Generation

Generation

Possesion Closeness Area Average scored goals (Yellow)
Average received goals

considerable computational cost (note that the strategy
encoded in the individual has to be evaluated against each of
the three teams included in the objective function). Note
however that this mode rarely has applications in simulated
football games in which there is just one opponent (i.e., the
human player). Mode 2 is interesting if one wants to produce
strategies to be tested in a competitive environment such as
for instance Robocup, but this was not the original
motivation for this work.

CONCLUSIONS AND FURTHER RESEARCH

In this paper we have shown that genetic algorithms are a
simple mechanism to obtain emergent behavior strategies to
control teams in football simulation videogames (such as for
example FIFA, Pro-evolution or Football Manager series).
The genetic algorithm described in this paper has the
particularity that is guided by a fitness function defined with
two very heterogeneous components: one that guides the
basic learning of the football principles, and the other that
strives to find winning strategies. These two components,
although radically different, are complementary however.
Experiments were conducted to validate the feasibility of our
approach with promising results. The evolutionary learning
described in this paper could be used in existing football
simulation games taking as opponent the player’s game
strategy, which can be deduced by collecting statistical data
during the game. In this sense, the evolutionary algorithm
would produce player’s skills-based self-adaptive opponents.
This, together with the randomness associated with GAs,
would lead the evolutionary process towards the generation
of opponents with non-predictable behavior.

The main drawback of our technique is the computational
cost associated to the simulation of matches that are
necessary to execute in order to evaluate the fitness values of
the evolved teams. This however can be minimized in our
working framework as the soccer server provides facilities
for parallel execution and therefore several matches can be
running on different machines at the same time, thus
reducing the computational cost. Nevertheless, this is an
issue for further research.

ACKNOWLEDGMENTS

This work has been partially supported by projects TIN2007-
67134 and TIN2008-05941 (from Spanish Ministry of
Innovation and Science) and P06-TIC2250 (from Andalusia
Regional Government).

REFERENCES

Agah, A. and Yanie, K. 1997. “Robots Playing to Win:
Evolutionary Soccer Strategies”. In Proceedings of the 1997
IEEE lnternational Conference on Robotics and Automation,
632-637.

Barone, L. and While, L. 1999. “An Adaptive Learning Model for
Simplified Poker Using Evolutionary Algorithm”. In
Proceedings of the Congress on Evolutionary Computation,
IEEE Press, 153-160.

Bourg, D.M. and Seemann, G. 2004. AI for Game Developers.
O’Reilly.

Buckland, M. 2002. AI Techniques for Game Programming.
Premier Press.

Chellapilla, K. and Fogel, D.B. 2001. “Evolving an expert checkers
playing program without using human expertise”. In IEEE
Trans. Evolutionary Computation 5, No. 4, 422-428.

Dalgaard, J.and Holm, J. 2002. “Genetic Programming applied to a
real time game domain”. Master Thesis, Aalborg University -
Institute of Computer Science, Denmark.

Eiben, A.I., and Smith, J.E. 2003. Introduction to Evolutionary
Computing. Springer.

Fernández, A.J. and Jiménez, J. 2004. “Action Games: Evolutive
Experiences”. In Computational Intelligence: Theory and
Applications, Bernd Reusch (ed.), Springer, 487-501.

Fogel, D.B. 2000. “Evolving a checkers player without relying on
human experience”. In Intelligence 11, No. 2, 20-27 (2000)

Fogel, D B; Blair, A; and Miikkulainen, R (eds). 2005. “Special
Issue: Evolutionary Computation and Games”. In. IEEE
Trans. Evolutionary Computation 9, No. 6,

Holland, J.H. 2000. Emergence: from Chaos to Order. Oxford
University Press.

Johnson, D. and Wiles, J. 2001. “Computer Games with
Intelligence”. In Australian Journal of Intelligent Information
Processing Systems 7, 61-68.

Kim, K-J., and Cho, S-B. 2007. “Evolutionary Algorithms for
Board Game Players with Domain Knowledge”. In Advanced
Intelligent Paradigms in Computer Games, Baba, N, Jain
L.C. and Handa H. (eds), Springer, 71-89.

Lidén, L. 2004, “Artificial Stupidity: The Art of Making Intentional
Mistakes”, In AI Game Programming Wisdom 2, S. Rabin,
ed., Charles River Media, Inc., pp. 41-48.

Lucas, S.M., and Kendall, G. 2006. “Evolutionary Computation
and Games”. In IEEE Computational Intelligence Magazine
1, No.1, 10-18.

Luke, S. 1998. “Evolving Soccerbots: a Retrospective”. In
Proceedings of 12th Annual Conference of the Japanese
Society for Artificial Intelligence (JSAI). Invited paper.

Miikkulainen, R; Bryant, B.D.; Cornelius, R.; Karpov I.V.;
Stanley, K.O.; and Yong, C.H. 2006. “Computational
Intelligence in Games”. In Computational Intelligence:
Principles and Practice, Yen, G. Y. and Fogel, D. B.
(editors), IEEE Computational Intelligence Society, 155-191.

Millington, I: 2006. Artificial Intelligence for Games. Morgan
Kaufmann.

Nakashima, N; Takatani, M; Udo, M; Ishibuchi, H; and Nii, M.
2005. “Performance Evaluation of an Evolutionary Method
for RoboCup Soccer Strategies”. In Proceedings of RoboCup
2005, LNCS 4020, Springer, 616-623.

Noda, I: and Stone P. 2003. “The RoboCup Soccer Server and
CMUnited Clients: Implemented Infrastructure for MAS
Research”. Autonomous Agents and Multi-Agent Systems 7 ,
No.1-2 (July-September), 101-120.

Ong, C.S.; Quek, H.Y.; Tan, K.C.; and Tay, A. 2007. “Discovering
Chinese Chess Strategies through Coevolutionary
Approaches”. In Proceedings of the 2007 IEEE Symposium
on Computational Intelligence and Games, 360-367.

Pollack, J.B. and Blair, A.D.1998. “Co-Evolution in the Successful
Learning of Backgammon Strategy”. In Machine Learning
32, No. 1, 22-240.

Spronck, P.; Sprinkhuizen-Kuyper, I.; and Postma, E. 2003.
“Improving Opponent Intelligence through Offline
Evolutionary Learning”. In International Journal of
Intelligent Games&Simulation 2, No. 1, 20-27.

Sweetser, P. 2004. “How to Build Evolutionary Algorithms for
Games”. In AI Game Programming Wisdom 2, S. Rabin, ed.,
Charles River Media, Inc., pp. 627-638.

Sweetser, P. 2007. Emergence in Games. Charles River Media.

