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Abstract. This paper addresses the problem of Load-balancing when Parallel 
Genetic Programming is employed.   Although load-balancing techniques are 
regularly applied in parallel and distributed systems for reducing makespan, 
their impact on the performance of different structured Evolutionary 
Algorithms, and particularly in Genetic Programming, have been scarcely 
studied.  This paper presents a preliminary study and simulation of some 
recently proposed load balancing techniques when applied to Parallel Genetic 
Programming, with conclusions that may be extended to any Parallel or 
Distributed Evolutionary Algorithm. 
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1 Introduction 

Evolutionary Algorithms are nowadays routinely applied for solving search and 
optimization problems.  They are based in Darwinian principles:  By means of 
progressive refinement of candidate solutions, evolution can provide useful solutions 
in a number of generations. 

Nevertheless, EAs and, particularly those employing variable size chromosomes, 
such as GP, have a problem when facing hard optimization problems:  they require 
large computing resources and time to reach a solution.  Researchers have 
demonstrated for GP, that individuals tend to grow progressively as generations are 
computed, thus featuring the well known bloat phenomenon [4].  Therefore, a number 
of factors have led researchers to making use of some degree of parallelism:  the large 



    

number of candidate solutions -individuals from the population- that must be 
evaluated every generation; the large number of generations frequently required to 
reach a solution, and the high computing cost due to fitness evaluations. 

Although researchers have deeply studied parallel models when applied to EAs 
[7][2], few have considered the need of specifically designed Load Balancing 
techniques.  This could be particularly relevant for GP, given the differences in 
complexity and time required for evaluating each of the individuals of the population 
-featuring different sizes and structures [4]. 

This paper addresses these questions for GP using the well known Master Slave 
model.  Using standard tests problems for GP, and by means of simulations, we 
analyze different load-balancing techniques and their usefulness when running GP on 
parallel or distributed infrastructures. 

The rest of the paper is organized as follows:  Section 2 presents Parallel Genetic 
Programming and Load Balancing principles.  Section 3 describes our methodology 
and Section 4 presents the simulations and results obtained.  Finally, Section 5 
includes the conclusions. 

2 Parallel Genetic Programming and Load Balancing 

Genetic Programming was popularized by John Koza in the nineties [3], and rapidly 
grew with the work of researchers that not only employed it for solving problems, but 
also developed their mathematical foundations [4].   

The main difference with GAs also leads to one of their main drawbacks:  the 
variable size of chromosomes encoding candidate solutions.  The size increase that 
usually happens when the evolutionary process takes place, as well as the difficulty of 
problems usually addressed, makes frequently necessary the use of some degree of 
parallelization.  

Among the parallel models described in the literature, and analyzed for GAs and 
GP [7], we are particularly interested in the Master-Slave model.  Basically, It tries to 
simultaneously compute the fitness function for a number of individuals of the 
population -tasks assigned to slaves- and then evolve the next generation in the 
master, so that the distribution of new fitness evaluations can proceed.  The advantage 
of this parallel model is that it doesn't introduce any change in the main algorithm.  
The distribution of tasks -fitness evaluations- must follow some load-balancing 
policy. 

Load Balancing aims at properly distributing computing tasks among processors, 
so that all of them employ similar time when computing their assigned tasks, 
therefore reducing makespan, i.e., time elapsed from the beginning of the first task to 
the completion of the last one.  It is not always easy to reach that goal:  differences in 
processor architectures and uncertainty in task sizes are some of the factors that 
influences the problem.  

If we refer to Parallel GP, some detailed analysis of Parallel GP has been published 
in the last decade, particularly for the Island models [2], but no specific study on load-
balancing techniques has been recently published.  We must go back to 1997 to find  
the first papers considering the importance of Load-Balancing when using Master-



slave versions of Parallel GP [1].  Usually authors have considered the application of 
Load Balancing techniques when addressing other problems [8], [9].   

This paper tries to continue this area of research, by analyzing new load-balancing 
techniques that has been successfully developed recently.  In this context, it is 
relevant the work by Yang and Casanova, that defines new load-balancing policies 
that are based in task sizes and different ordering principles [11], [12].  Next section 
considers the application of the proposed tasks ordering to GP. 

3 Methodology 

In our study, we will consider the use of a Master-Slave GP model.  Tasks to be 
distributed and run simultaneously will consist of the fitness evaluation for each of 
the individuals.  Therefore, we will have as many tasks as individuals in the 
population.    The main goal is to analyze the application of different load-balancing 
policies.  We must be aware that in GP two individuals with the same size may 
feature different complexities:  this is due to the use of different functions within the 
program structure [3].  Measuring sizes or complexities may thus lead to different 
results when using load-balancing techniques. 

When evaluating load-balancing techniques, a number of factors must be 
considered.  As described by Yang and Casanova [11], [12], equation (1) describes 
the communication time for the master with a given slave i: 
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where nLati refers to the time required for beginning the communication, chunki  is 
the amount of information including in task i, Bi is the communication rate, and tLati 
is the time elapsed since the master finishes the sending of chunki   until slave i 
receives the last byte.  In the meanwhile, the master can begun another 
communication with a different slave.  Both nLati and Bi are independent on the data 
size that is sent. On the other hand, computing time for a given slave (Tcompi) can be 
evaluated as described in equation 2: 
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where cLati is the time required for the slave to begin the running of the task, and Si 
the speed of the processor. These values do not depend on the size of data to be 
processed.  

As described below, some simplifications will be considered for this preliminary 
analysis.  Specifically, we will focus on computing time, given that all the simulations 
and analysis will be performed on a single processor.  The processor speed will be 
used as the basis for a simulated homogeneous distributed system, with all of the 
processors sharing the same features. 

We have employed for the simulation two well-known GP problems:  the artificial 
ant on the Santa Fe trail, and the even parity-12.  A complete description of both 
problems can be found in [3][5][6].  The experiments have been run using 



    

Evolutionary Computation in Java  (ECJ), and the basic parameter configuration 
included in the tool.   ECJ has been developed by ECLab1 (Evolutionary Computation 
Laboratory),  George Mason University, Washington DC.  

As stated above, all the simulations have been run on a single computer:   Intel 
Centrino Duo 1,7 Ghz.  For both problems 100 individuals have been employed in the 
population, and 50 generations have been computed.  All the remaining parameters 
have been employed as defined in ECJ for both problems, so that the replication of 
the experiments can be easily performed.  Some changes in the source code have been 
applied so that the computing time -the only information of interest for the 
simulation- can be computed.  Therefore, we obtain the computing time for each  
individual evaluation.  This basic information obtained in a run, is then considered 
when evaluating the performance that a given load-balancing policy will obtain in a 
parallel or distributed infrastructure, whose processors would share exactly the same 
features as the one employed for the simulation.  Of course, with the data obtained, 
conclusions that may be drawn could be easily extrapolated to other infrastructures 
whose features are known. 

4 Simulation and Results 

We have computed the evaluation time for each of the individuals, and then the 
evaluation time per generation.  This is the total computing time required for running 
experiments in a single processors.  Moreover, given that task completion time in a 
single processors heavily depends on other tasks that are run on the background -due 
to the operating system, cron tasks, etc- we have performed each of the experiments 
10 times using the same random seed, so that we know that exactly the same 
individuals are generated every generation, every run.  We have then computed the 
average time per individual, which provides a good approximation for their actual 
computing time. 

Figure 1 shows computing time required for each of the experiments along the 50 
runs.  First of all, we notice that Even Parity-12 is harder than the Ant problem.  
Although this is not new, this information is relevant when considering the effect of 
load balancing policies for task distribution.  The Figure also shows the maximum 
depth of individuals.  We see that the Ant problem quickly reaches the maximum 
depth allowed (17 levels, as described in the literature).  Again, this information is of 
interest if a relationship between size, depth and computing time is to be used for 
deciding tasks distribution and the load balancing technique to be used.   

4.1 Analysis of Different Load-Balancing Policies 

Let us consider now the situation on a homogeneous distributed system when the 
Master-Slave topology for Parallel GP is employed.  We will analyze the results that 
would be obtained for different Load-Balancing policies when the main goal is 
avoiding processors idle time, consequently improving makespan.  

                                                           
1  http://cs.gmu.edu/~eclab/projects/ecj/ 



Figure 2 shows a typical diagram with different steps required for sending 
individuals, computing fitness in the slaves, and returning back results.  This is useful 
to see how communication and computing time can overlap, thus reducing makespan.  
The relationship between communication time and computing time is also relevant 
when deciding the policy to be used. 

Some preliminary conclusions can be drawn from the figure.  When the total time 
required for evaluating the whole generation is short -this happens when fitness is 
computed quickly-, when compared with the latencies and total communication times 
of tasks (see the case of the ant problem, with low computing time per individual) the 
best choice would be to send as much individuals as possible in a single task.  This 
way communication time is reduced. 

 

Fig. 1. Evaluation time and maximum depth per generation. 

 



    

On the other hand, if fitness evaluation takes long time, it is better to send 
individuals to processors in a round-robin fashion, so that communication time 
overlaps as much as possible with computing time.   In this case, the decision about 
the size of tasks, and therefore the number of individuals to be included in every task 
has to be decided.  A number of alternatives are available for generating tasks: (i)   
Balanced Tasks: All of the task will require the same computing effort and time. (ii)  
Unbalanced Tasks: according to Yang and Casanova [11] and [12], unbalanced tasks 
may be of interest in some circumstances for reducing makespan.   

We will now analyze the computing time obtained for each of the individuals in 
both problems considered, ant and even-parity-12, and considering that the same 
number of individuals are sent to every processor.  We consider a distributed system 
with 5 slave processors. We have 100 individuals per generation, so 20 rounds are 
required, sending 1 individual per round per slave.  Of course, other possibilities are 
available. 

If we compute the total time required for all the fitness evaluations, we obtain 
1,9130 milliseconds for the ant problem and 58,6960 milliseconds for the Even Parity 
12.   This is the time employed by a sequential system, and the basis for the analysis. 

4.2 Analyzing Task Ordering and Submission 

When all the tasks are balanced -requiring the same computing effort-, a round-robin 
mechanism will send tasks in the following way: the first round task 1 -first individual 
from the population- is sent to slave 1, task 2 -second individual- to slave 2, and so 
on.  Second round will proceed again by sending task n+1 to slave 1, n+2 to slave 2, 
etc.  Every chunk submitted -task- requires initiating a communication operation with 
a slave.  Therefore, the total communication time will strongly depend on the number 
of rounds and the number of slaves.  

Regarding GP, notice that communication time of a task will be influenced by 
individuals size, while computing time by both size and complexity of individuals.  If 
this complexity is low, then total computing time will be dominated by 
communication time.  Processors will be idle long time.  In this case, an infrastructure 
with low communication latencies will be a must:  both supercomputer platforms or 

 

Fig. 2. Transmission and evaluation times in a parallel infrastructure. 

 



commodity clusters using optimized network connections will be required.   
Researchers could also consider the possibility of increasing population size, so that 
more individuals are available, larger tasks can be conformed and processors will thus 
spent more time computing.  Given that there are idle processors, no reason for using 
larger populations should keep us from using the resources available. 

The second possibility is that computing time is much longer than communication 
time.  Processors would never be idle.  In this case, other kind of distributed platforms 
could be used, such as Grids and Desktop Grids and Cloud Computing infrastructure. 

4.3 Applying ordering 

Another important factor is the order in which individual are sent. Several 
possibilities exist: 

Random ordering:  If we randomly pack individuals in tasks every generation, 
then, there will be random differences among completion time of tasks every round.  
The total time for a round is given by the task that takes longer.  After considering the 
computed time for each of the individuals in the experiment, and computing the total 
time for every task in a round (5 tasks per round, given that 5 processors are 
considered), we have computing the total time of the experiment as the addition of all 
the rounds' largest task.  We have thus obtained 0,4746 milliseconds for the ant 
problem and 17,6341 for the even-parity-12.  This is better than the sequential time, 
but in can be even improved with better balancing techniques, as described below. 

Weighted Factoring:  Hummel et al. describe in [10] Weighted Factoring model.  
They consider task sizes and apply a descending ordering when submitting them to 
slaves.  Therefore, we will consider first that the most complex tasks are is sent 
firstly.  The advantage of this model is that for each of the rounds, all the tasks are 
similar, so the differences between computing time will be smaller.  In the case of GP, 
this is only useful if we allow the algorithm to perform several rounds per generation.  
If a single round is to be performed per generation, the algorithm cannot work.  

If we perform a simulation using the computing time for each of the individuals in 
both problems tested -5 processors, 20 rounds per generation, 1 individual sent to 
each processor per round- ordering them and computing the time for the largest 
individual in the round- we obtained for the ant problem 0,4082 milliseconds and 
12,1201 milliseconds for the even-parity-12 problem.  Nevertheless, if we use the size 
of individuals for the ordering instead of computing time, we would obtain 0,4715 
and  14,6687 respectively.  This confirms that even when using size for balancing is 
positive, it is better to use complexity – a kind of computing time estimation.  Table 1 
summarizes results and shows the differences obtained with each of the models. 

5 Conclusions 

This paper has presented a preliminary analysis on the application Load-balancing 
techniques to Parallel Genetic Programming.  By analyzing the time required for 
evaluating each of the individuals in a population, we have studied differences 
between load-balancing methods that could be applied when using the master-slave 



    

model.  This preliminary analysis allows us to reach some conclusions of interest.  
Firstly, problems with short fitness evaluation time must be run on supercomputers or 
commodity clusters with optimized network connections, and should never be run on 
Grid infrastructures.  Second, weighted factoring approach allows to reduce makespan 
when compared to previously employed more standard Load Balancing Techniques.    
Results are sensitive to the use of Complexity or Size during the ordering process. 

Table 1.  Comparing Load Balancing Techniques.  

Model Ant – Computing Time EP-12 Comp. Time. 
Sequential 1,9130 58,6960 
Random distribution 0,4746 17,6341 
Weight. Fact. Cmpx. 0,4082 12,1201 
Weight. Fact. Size 0.4715 14.6687 
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