A Preliminary Analysisand Simulation of L oad
Balancing Techniques Applied to Parallel Genetic
Programming

F. Fernandez de Velal. G. Abengdzar SancHeg. Cottd

!Universidad de Extremadura
Mérida, Espafia
fcofdez@unex.es

2Junta de Extremadura
Mérida, Espafia
jg.abengozar@extremadura.es

®Universidad de Méalaga
Mélaga, Espafia
ccottap@lcc.uma.es

Abstract. This paper addresses the problem of Load-balansimen Parallel

Genetic Programming is employed. Although loalidheing techniques are
regularly applied in parallel and distributed syssefor reducing makespan,
their impact on the performance of different stwetl Evolutionary

Algorithms, and particularly in Genetic Programmingave been scarcely
studied. This paper presents a preliminary studg simulation of some
recently proposed load balancing techniques whetliemhbto Parallel Genetic
Programming, with conclusions that may be extentedany Parallel or

Distributed Evolutionary Algorithm.

Keywords: Parallel Genetic Programming, Load Balancing, iikisted
Computing.

1 Introduction

Evolutionary Algorithms are nowadays routinely apgl for solving search and
optimization problems. They are based in Darwin@inciples: By means of
progressive refinement of candidate solutions, wiarh can provide useful solutions
in a number of generations.

Nevertheless, EAs and, particularly those employiagable size chromosomes,
such as GP, have a problem when facing hard ogtioiz problems: they require
large computing resources and time to reach a isnlut Researchers have
demonstrated for GP, that individuals tend to gpragressively as generations are
computed, thus featuring the well known bloat ptreeoon [4]. Therefore, a number
of factors have led researchers to making useroestegree of parallelism: the large

number of candidate solutions -individuals from thepulation- that must be
evaluated every generation; the large number otggions frequently required to
reach a solution, and the high computing cost ddirtess evaluations.

Although researchers have deeply studied paraldats when applied to EAs
[71[2], few have considered the need of specificallesigned Load Balancing
techniques. This could be particularly relevant @P, given the differences in
complexity and time required for evaluating eachhef individuals of the population
-featuring different sizes and structures [4].

This paper addresses these questions for GP uUséngiell known Master Slave
model. Using standard tests problems for GP, andnbans of simulations, we
analyze different load-balancing techniques and tieefulness when running GP on
parallel or distributed infrastructures.

The rest of the paper is organized as follows: ti8e@ presents Parallel Genetic
Programming and Load Balancing principles. Sec8ahescribes our methodology
and Section 4 presents the simulations and reslitained. Finally, Section 5
includes the conclusions.

2 Parallel Genetic Programming and L oad Balancing

Genetic Programming was popularized by John Kozhénnineties [3], and rapidly
grew with the work of researchers that not only Eygd it for solving problems, but
also developed their mathematical foundations [4].

The main difference with GAs also leads to one Idirt main drawbacks: the
variable size of chromosomes encoding candidatatisns. The size increase that
usually happens when the evolutionary process talee®, as well as the difficulty of
problems usually addressed, makes frequently nage$ise use of some degree of
parallelization.

Among the parallel models described in the litegtand analyzed for GAs and
GP [7], we are patrticularly interested in the Magtave model. Basically, It tries to
simultaneously compute the fitness function for wmhber of individuals of the
population -tasks assigned to slaves- and thenvewtile next generation in the
master, so that the distribution of new fitnesd#stions can proceed. The advantage
of this parallel model is that it doesn't introdu@y change in the main algorithm.
The distribution of tasks -fitness evaluations- midlow some load-balancing
policy.

Load Balancing aims at properly distributing comipgttasks among processors,
so that all of them employ similar time when conipgttheir assigned tasks,
therefore reducingmakespani.e.,time elapsed from the beginning of the first task t
the completion of the last one. It is not alwagsyeto reach that goal: differences in
processor architectures and uncertainty in taskssare some of the factors that
influences the problem.

If we refer to Parallel GP, some detailed analg$iBarallel GP has been published
in the last decade, particularly for the Island #led2], but no specific study on load-
balancing techniques has been recently publisiv#d. must go back to 1997 to find
the first papers considering the importance of LBathncing when using Master-

slave versions of Parallel GP [1]. Usually authaase considered the application of
Load Balancing techniques when addressing othdaigmts [8], [9].

This paper tries to continue this area of resedrglgnalyzing new load-balancing
techniques that has been successfully developeehttgc In this context, it is
relevant the work by Yang and Casanova, that defmew load-balancing policies
that are based in task sizes and different ordgriimiples [11], [12]. Next section
considers the application of the proposed tasksrorg to GP.

3 Methodology

In our study, we will consider the use of a Masst&ave GP model. Tasks to be
distributed and run simultaneously will consisttbé fithess evaluation for each of
the individuals. Therefore, we will have as mamgks as individuals in the
population. The main goal is to analyze the igpfibn of different load-balancing
policies. We must be aware that in GP two indigiduwith the same size may
feature different complexities: this is due to tiee of different functions within the
program structure [3]. Measuring sizes or compiesimay thus lead to different
results when using load-balancing techniques.
When evaluating load-balancing techniques, a numtierfactors must be

considered. As described by Yang and Casanova [12], equation (1) describes
the communication time for the master with a gistavei:

chunk . . (@]

Tcomm=nlLat +
wherenlLat refers to the time required for beginning the camivation,chunk is
the amount of information including in tagkB; is the communication rate, atidat;
is the time elapsed since the master finishes émelisg ofchunk until slavei
receives the last byte. In the meanwhile, the master cagub another
communication with a different slave. Bathat andB; are independent on the data
size that is sent. On the other hand, computing fon a given slavéTcomp) can be
evaluated as described in equation 2:

chunk %)

~I

Tcomp=cLat +

wherecLay is the time required for the slave to begin thening of the task, an§
the speed of the processor. These values do na@ndepn the size of data to be
processed.

As described below, some simplifications will bensinlered for this preliminary
analysis. Specifically, we will focus on computitigpe, given that all the simulations
and analysis will be performed on a single processthe processor speed will be
used as the basis for a simulated homogeneousbdisti system, with all of the
processors sharing the same features.

We have employed for the simulation two well-kno@R problems: the artificial
ant on the Santa Fe trail, and the even parity-B2complete description of both
problems can be found in [3][5][6]. The experinertave been run using

Evolutionary Computation in Java ECJ), and the basic parameter configuration
included in the tool. ECJ has been developed®lydt: (Evolutionary Computation
Laboratory), George Mason University, Washingtdd. D

As stated above, all the simulations have beenoru@a single computer: Intel
Centrino Duo 1,7 Ghz. For both problems 100 irdiieils have been employed in the
population, and 50 generations have been compufddthe remaining parameters
have been employed as defined in ECJ for both prokl so that the replication of
the experiments can be easily performed. Somegelsin the source code have been
applied so that the computing time -the only infatimn of interest for the
simulation- can be computed. Therefore, we obth& computing time for each
individual evaluation. This basic information ab&d in a run, is then considered
when evaluating the performance that a given la@dszing policy will obtain in a
parallel or distributed infrastructure, whose pssms would share exactly the same
features as the one employed for the simulatio.cddrse, with the data obtained,
conclusions that may be drawn could be easily pgteded to other infrastructures
whose features are known.

4 Simulation and Results

We have computed the evaluation time for each efitidividuals, and then the
evaluation time per generation. This is the totahputing time required for running
experiments in a single processors. Moreover,gibat task completion time in a
single processors heavily depends on other tasitsatie run on the background -due
to the operating system, cron tasks, etc- we haviopned each of the experiments
10 times using the same random seed, so that wes khat exactly the same
individuals are generated every generation, eveny rWe have then computed the
average time per individual, which provides a gagmpbroximation for their actual
computing time.

Figure 1 shows computing time required for eackhefexperiments along the 50
runs. First of all, we notice that Even Parity-52harder than the Ant problem.
Although this is not new, this information is redx when considering the effect of
load balancing policies for task distribution. TRigure also shows the maximum
depth of individuals. We see that the Ant problguickly reaches the maximum
depth allowed (17 levels, as described in theditee). Again, this information is of
interest if a relationship between size, depth emchputing time is to be used for
deciding tasks distribution and the load balant#&ainique to be used.

4.1 Analysis of Different Load-Balancing Policies

Let us consider now the situation on a homogenatstsibuted system when the
Master-Slave topology for Parallel GP is employ&tle will analyze the results that
would be obtained for different Load-Balancing pi@s when the main goal is
avoiding processors idle time, consequently imprgvihakespan.

1 http://cs.gmu.edu/~eclab/projects/ecj/

Evaluation time of population

Time in miliseconds {msec.)
2

Generations

—— At —s— Even parity-12

Maximum depth of individuals

0

Maximum depth

(=R RPN F T
T T R R R B

Generations

|+Ant —s— Even parity-12 |

Fig. 1. Evaluation time and maximum depth per generation.

Figure 2 shows a typical diagram with differentpsterequired for sending
individuals, computing fitness in the slaves, agidiming back results. This is useful
to see how communication and computing time camlawethus reducing makespan.
The relationship between communication time and pugting time is also relevant
when deciding the policy to be used.

Some preliminary conclusions can be drawn fronfidnere. When the total time
required for evaluating the whole generation isrshihis happens when fitness is
computed quickly-, when compared with the lateneied total communication times
of tasks (see the case of the ant problem, withdomiputing time per individual) the
best choice would be to send as much individualgassible in a single task. This
way communication time is reduced.

Masier commnnication
nlat) chunk)/B; tlat)

\ l: TeompRy

Sendingl [N i [IBEERRRARRRREE|
Sendingd g g

Sending3 | N IR
Sendingp | T i

TrommBy | ‘ TeommBy
claty chunlg, 3,

Sime evaluaiion

Fig. 2. Transmission and evaluation times in a parallebstfucture.

On the other hand, if fitness evaluation takes ldinge, it is better to send
individuals to processors in a round-robin fashign, that communication time
overlaps as much as possible with computing tinia.this case, the decision about
the size of tasks, and therefore the number o¥iddals to be included in every task
has to be decided. A number of alternatives agglable for generating tasks: (i)
Balanced TasksAll of the task will require the same computinfgoet and time. (ii)
Unbalanced Tasksaccording to Yang and Casanova [11] and [12]alariced tasks
may be of interest in some circumstances for redugiakespan.

We will now analyze the computing time obtained éach of the individuals in
both problems considered, ant and even-parity-b#@, eonsidering that the same
number of individuals are sent to every procesdbie consider a distributed system
with 5 slave processors. We have 100 individualsgaemeration, so 20 rounds are
required, sending 1 individual per round per sla@. course, other possibilities are
available.

If we compute the total time required for all thendss evaluations, we obtain
1,9130 milliseconds for the ant problem and 58,6880seconds for the Even Parity
12. This is the time employed by a sequentialesysand the basis for the analysis.

4.2 Analyzing Task Ordering and Submission

When all the tasks are balanced -requiring the seonguting effort-, a round-robin
mechanism will send tasks in the following way: tinst round task 1 -first individual
from the population- is sent to slave 1, task Zesd individual- to slave 2, and so
on. Second round will proceed again by sending a4 to slave 1, n+2 to slave 2,
etc. Every chunk submitted -task- requires iritgita communication operation with
a slave. Therefore, the total communication tinilé strongly depend on the number
of rounds and the number of slaves.

Regarding GP, notice that communication time ofigktwill be influenced by
individuals size, while computing time by both s@&d complexity of individuals. If
this complexity is low, then total computing timeillwbe dominated by
communication time. Processors will be idle loimget In this case, an infrastructure
with low communication latencies will be a mustotto supercomputer platforms or

commodity clusters using optimized network conrawi will be required.
Researchers could also consider the possibilitn@iasing population size, so that
more individuals are available, larger tasks cand#dormed and processors will thus
spent more time computing. Given that there ale pdocessors, no reason for using
larger populations should keep us from using tBeueces available.

The second possibility is that computing time isclmlonger than communication
time. Processors would never be idle. In thigcather kind of distributed platforms
could be used, such as Grids and Desktop Grid€émdl Computing infrastructure.

4.3 Applying ordering

Another important factor is the order in which widual are sent. Several
possibilities exist:

Random ordering: If we randomly pack individuals in tasks every gatien,
then, there will be random differences among cotiietime of tasks every round.
The total time for a round is given by the task th#es longer. After considering the
computed time for each of the individuals in thperiment, and computing the total
time for every task in a round (5 tasks per rougiden that 5 processors are
considered), we have computing the total time efakperiment as the addition of all
the rounds' largest task. We have thus obtaind@4®, milliseconds for the ant
problem and 17,6341 for the even-parity-12. Thideétter than the sequential time,
but in can be even improved with better balancauhiques, as described below.

Weighted Factoring: Hummel et al. describe in [18)eighted Factoringnodel.
They consider task sizes and apply a descendingringdwhen submitting them to
slaves. Therefore, we will consider first that tlnest complex tasks are is sent
firstly. The advantage of this model is that faclk of the rounds, all the tasks are
similar, so the differences between computing timiebe smaller. In the case of GP,
this is only useful if we allow the algorithm torferm several rounds per generation.
If a single round is to be performed per generatiba algorithm cannot work.

If we perform a simulation using the computing tifoe each of the individuals in
both problems tested -5 processors, 20 rounds @eergtion, 1 individual sent to
each processor per round- ordering them and computie time for the largest
individual in the round- we obtained for the anblgem 0,4082 milliseconds and
12,1201 milliseconds for the even-parity-12 prohleRevertheless, if we use the size
of individuals for the ordering instead of compagtitime, we would obtain 0,4715
and 14,6687 respectively. This confirms that ewien using size for balancing is
positive, it is better to use complexity — a kirffdcomputing time estimation. Table 1
summarizes results and shows the differences autaiith each of the models.

5 Conclusions

This paper has presented a preliminary analysishenapplication Load-balancing
techniques to Parallel Genetic Programming. Bylyairag the time required for

evaluating each of the individuals in a populatiove have studied differences
between load-balancing methods that could be applieen using the master-slave

model. This preliminary analysis allows us to te@ome conclusions of interest.
Firstly, problems with short fitness evaluationdimust be run on supercomputers or
commaodity clusters with optimized network conneasioand should never be run on
Grid infrastructures. Second, weighted factoripgraach allows to reduce makespan
when compared to previously employed more stantlaedl Balancing Techniques.
Results are sensitive to the use of Complexityipe 8uring the ordering process.

Tablel. Comparing Load Balancing Techniques.

Model Ant — Computing Time EP-12 Comp. Time.
Sequential 1,9130 58,6960

Random distribution 0,4746 17,6341

Weight. Fact. Cmpx. 0,4082 12,1201

Weight. Fact. Size 0.4715 14.6687

Acknowledgments. Spanish Ministry of Science and Technology, prbjEIN2008-
05941, and Junta de Extremadura project GR10029 EBEuawpean Regional
Development Fund.

References

1. M. Oussaidéne, B. Chopard, O. V. Pictet, y M. Tonmss‘Parallel Genetic
Programming: an application to Trading Models Etioly,” MIT Press pags. 357-362,
1996.

2. F. Fernandez, M. Tomassini, y L. Vanneschi, “An @&iogl study of multipopulation
genetic programmingGPEM, vol. 4, n° 1, pags. 21-51, 2003.

3. J. R. KozaGenetic programming Ill.Morgan Kaufmann, 1999.

4. R. Poli, W. B. Langdon, N. McPhee, y J. KoZafield guide to genetic programming
Lulu Enterprises Uk Ltd, 2008.

5. J. R. Koza, “Evolution and co-evolution of compupeograms to control independently-
acting agents,” irFirst International Conference on Simulation of Atle@ Behavior.
MIT Press, Cambridge, MAvag. 11 pp., 1991.

6. J. R. KozaGenetic programming: on the programming of computsr means of natural
selection MIT Press, 1992.

7. E. Cantd-Paz, “A survey of parallel genetic algarigly’ Calculateurs Paralleles,
Reseaux et Systems Repastad. 10, n°. 2, pags. 141-171, 1998.

8. G. Folino, C. Pizzuti, G. Spezzano, A scalableutatlimplementation of parallel genetic
programming. IEEE Transactions on Evolutionary Cotapon. Vol. 7 No.1, pp. 37-53.
2003.

9. N. Wang, A parallel computing application of thenggc algorithm for lubrication
optimization. Tribology Letters, Vol. 18, No. 1p.p105-112. 2005

10. S. F. Hummel, J. Schmidt, R. N. Uma, y J. Wein, ‘d:aharing in heterogeneous
systems via weighted factoring,” 8th annual ACM Symposium on Parallel Algorithms
and Architecturespags. 318-328, 1996.

11. Y. Yang y H. Casanova, “UMR: a multi-round algorithfor scheduling divisible
workloads” in17th IEEE (IPDPS) pp 24, 2003.

12. Y. Yang y H. Casanova, “RUMR: Robust Scheduling for iflble Workloads,” in
Proceeding42th IEEE HDPC'03pp. 114, 2003.

