
Adding Zoom Feature to Terrain Programmes
Miguel Frade1, F. Fernandez de Vega2 and Carlos Cotta3

1Instituto Politécnico de Leiria, Portugal, mfrade@estg.ipleiria.pt
2Universidad de Extremadura, Mérida, Spain, fcofdez@unex.es
3Universidad de Málaga, Málaga, Spain, ccottap@lcc.uma.es

Abstract— The Genetic Terrain Programming tech-
nique is an evolutionary approach for the generation
of artificial terrains. It is based on evolutionary de-
sign with Genetic Programming and allows designers
to evolve terrains according to their aesthetic feel-
ings or desired features. This technique evolves Ter-
rain Programmes (TPs) that are mathematical ex-
pressions that can be executed as a procedural tech-
nique. This kind of techniques have two important
traits which are their ability to compute a terrain
with the desired zoom level and resolution. How-
ever, the present implementation of TPs only allows
to choose the resolution. This paper discusses the
hurdles that prevent the zoom feature in TPs and
proposes a solution to them. To sustain the feasibil-
ity of our solution some results were obtained as a
proof of concept.

Key words— genetic terrain programming, evolu-
tionary systems, terrain program, zoom

I. Introduction

Artificial terrain generation techniques are an im-
portant facet of graphical applications that attempt
to represent a real or an imaginary world. Among
those applications are computer animation, archi-
tecture and virtual reality. However, video games
is the field where artificial terrain generation tech-
niques are probably more prominent.

There are several traditional terrain generation
techniques that can be divided into measuring, mod-
eling and procedural techniques. The procedu-
ral techniques are based on programmatic gener-
ation and offer several advantages over the other
ones [1]. Its representation is extremely compact
and can be measured in Kilobytes, while others re-
quire Megabytes of storage. The procedural land-
scapes are unlimited in extent and can cover an ar-
bitrarily large area without seams or unwanted pat-
tern repetition. Some offer mathematical advantages
that make them friendly for rendering and allow ray
intersections to be calculated in a straightforward
way [1]. They are also parameterised, which allow
the generation of a family of related terrains. Fi-
nally they have no fixed resolution and can compute
a terrain to be viewable at any zoom scale with the
desired resolution. Some of the most popular pro-
cedural techniques are fractal algorithms, which are
a sub-category of procedural techniques. These al-
gorithms are the favourite ones by game’s designers,
mainly due to their speed and simplicity of imple-
mentation, in addition to the zoom and resolution
features.

Procedural techniques have also their own limita-
tions [1]. One disadvantage is their evaluation. This

operation requires intense computations and can be
very expensive (this is the classic trade-off of time
versus space). But the main disadvantage of proce-
dural techniques is the difficulty of modelling with
them. It is very difficult or impossible to know how
to modify them to achieve a certain local effect.

Frade et al. [2] proposed a new evolutionary ap-
proach designated GTP (Genetic Terrain Program-
ming). This technique allows to overcome the model-
ing problem of procedural techniques as well as lim-
itations of other traditional generation techniques.
This approach consists of the combination of evolu-
tionary art systems with GP to evolve mathematical
expressions, designated TPs (Terrain Programmes),
to generate artificial terrains as height maps. TPs
can be executed as any other procedural technique.
However, unlike other procedural techniques, TPs’
current implementation does not allow to choose the
desired zoom level [3]. This paper discusses the ob-
stacles that prevent the zoom feature implementa-
tion and presents a solution to surpass them.

Section II introduces some background about res-
olution and zoom features of procedural techniques
and the following section details the GTP technique.
Section IV discusses the current limitation of TPs
and presents some results of the proof of concept for
the proposed solution. Finally, the conclusions and
future work are presented on Section V.

II. Background

An important characteristic of procedural tech-
niques is their ability to generate a scene with the
required resolution and zoom level - in fact this is
probably the main advantage of the procedural tech-
niques over the other types of techniques.

Due to computers’ digital nature they cannot truly
represent continuous data. So, all continuous data
must be sampled to discrete values. The amount of
samples per unit determines the resolution, which is
perceived by the user as the quality of the digitalised
function. Fig. 1 and 2 represent a continuous func-
tion with two different samples rates and the cor-
respondent result of that sampling. The higher the
sampling rate, the better is the quality of the digi-
talised function. However, after a certain point there
is no use to increase the amount of sampling because
of the display medium limitation, or ultimately, due
to the biological limitations of the human eyes. For
instance, many LCD monitors can only display im-
ages up to 72 dpi (dots per inch). So, increasing the
sampling rate beyond this limit will require more

x

 y

0 1 2 3 4 5 6 7 8

1

2

3

Fig. 1.

Example of a continuous function sampling, where
the grid lines represent the sampling points.

x

 y

1

2

3

0 1 2 3 4 5 6 7 8

Fig. 2.

Example of the sampling of the same continuous
function as in Fig. 1, but now with twice the

samples - twice the resolution

storage space but does not improve user’s perceived
quality.

If it is required to view more details than the ones
allowed by the display medium limitations it is pos-
sible to resort to zoom. The zoom feature consists
of narrowing the apparent angle of view of a scene,
giving the sense of approximation. This feature can
be achieved in procedural techniques by scaling and
increasing the sampling rate. For example, Fig. 3
represents continuous function where the sampling
rate is 2 (shown by the grid lines). To enlarge three
times the area bounded by the zoom box, the sam-
pling rate must be increased three times and the out-
put must be scaled for the same resolution, as shown
in Fig. 4. Notice the distance between each sam-
ple before and after the zoom, 0.5 units and 0.166
units respectively. However, they are represented in
the output medium with the same distance between
them due to the scaling. For easier illustration the
examples used a function with just one input vari-
able. Nonetheless, the same principles apply to any
function independently of how many input variables
it has.

It is thanks to the resolution and zoom properties
present in procedural techniques, that computers
can better simulate and represent continuous data.

III. Genetic Terrain Programming

The Genetic Terrain Programming (GTP) [2]
technique is based on Aesthetic Evolutionary De-
sign and was developed to address the weaknesses
of existing terrain generation methods, allowing also
the generation of aesthetic terrains. This technique

x

 y

0 1 2 3 4 5 6 7 8

1

2

3
Zoom box

Fig. 3.

Sampling grid of a continuous functions before
zoom

x5,33 5,66 6,00 6,33 6,66 7,00 7,33 7,66 8,00
1,33

1,66

2,00

2,33

Fig. 4.

Sampling grid after a 3× zoom of the zoom box
shown in Fig. 3

lies in the combination of interactive evolutionary
art systems with GP to evolve mathematical expres-
sions, designated TPs, to generate artificial terrains
as height maps. Those TPs can be used, like a pro-
cedural technique, to automatically generate differ-
ent terrains with different resolutions with the same
consistent features.

GTP relies on GP as evolutionary algorithm where
the initial population is created randomly, with trees
depth size limited initially to 6 and a fixed popula-
tion size of 12 (see Table I). The number of gener-
ations is decided by the designer, who can stop the
algorithm at any time. The designer can select one
or two individuals to create the next population and
the genetic operators used depend upon the number
of selected individuals. If one individual is selected
only the mutation operator will be used. In case the
designer chooses to select two individuals both the
standard crossover and mutation operators [4] will
be applied. Like in others IEC systems, the fitness
function relies exclusively on designers’ decision, ei-
ther based on his aesthetic appeal or on desired fea-
tures.

Accordingly to Bentley [5] the designer is likely to
score individuals highly inconsistently as he might
adapt his requirements along with the evolved re-
sults. So, the continuous generation of new forms
based on the fittest from the previous generation is
essential. Consequently, non-convergence of the EA
is a requirement. Evolutionary art systems do not
usually use crossover operators on their algorithms,
because EAs are used as a continuous novelty gen-
erators, not as optimisers. Therefore, in our algo-
rithm, the use of two individuals for breeding the

TABLA I

Parameters for a GTP run

Objective: Generate realistic or aesthetic terrains
Function set: Functions from Table II, all operating on matrices with float numbers
Terminal set: Terminals from Table III chosen randomly
Selection and Fit-
ness:

Decided by the designer accordingly to desired terrain features or aesthetic
appeal

Population: Fixed size with 12 individuals; initial depth limit 6, after there are no tree
size or depth limits; random initialisation

Parameters: If 2 individuals are selected: 90% subtree crossover and 10% mutation; if
just one individual is selected: 50% mutation (without crossover)

Operators: Three mutation operators are used with equal prabability: (1) Replace mu-
tation where a random node is replaced with a new random tree generated
by the grow method; (2) Shrink mutation where a random subtree (S) is
chosen from the parent tree and replaced by a random subtree of S; (3) Swap
mutation where two random subtrees are chosen from the parent tree and
swapped, whenever possible the two subtrees do not intersect. One crossover
operator is used: subtree crossover where random nodes are chosen from
both parent trees, and the respective branches are swapped creating two
offspring.

Termination: Can be stopped at any time by the designer, the “best” individual is chosen
by the designer

sin

0.125
gauss

2.0
fftGen

myDivide

Fig. 5.

Example of a GP tree individual with two RECs, in
grey ellipses

next generation should be limited. The extensive
use of the crossover operator will make the popu-
lation converge to a few solutions, thus leading to
the loss of diversity of individuals and limiting the
designer to explore further terrains.

Each GP individual is a tree composed by func-
tions, listed in Table II, and height maps as termi-
nals (see Table III). Most terminals depend upon a
Random Ephemeral Constant (REC) to define some
characteristics, such as the spectrum value of fftGen.
All terminals have some form of randomness, which
means that consecutive calls of the same terminal
will always generate a slightly different height map.
This is a desired characteristic because we want to
be able to create different terrains by each TP, but
we want them to share the same features. All termi-
nals generate surfaces that are proportional to the
side size of the height map. This ensures that the
terrain features of a TP are scale invariant. Fig. 5
presents an example of a TP in tree form with two
REC values represented in grey ellipses within the
terminals.

While in [6], [7] the mathematical equations are
used to calculate both the pixel value and its coor-

TABLA II

GP Function Set

Name Description
plus(h1, h2)

arithmetical functionsminus(h1, h2)
multiply(h1, h2)

sin(h)

trigonometric functionscos(h)
tan(h)
atan(h)

myLog(h) returns 0 if h = 0 and
log(abs(h)) otherwise

myPower(h1, h2)
returns 0 if hh2

1 is NaN
or Inf , or has imaginary
part, otherwise returns hh2

1

myDivide(h1, h2) returns h1 if h2 = 0 and
h1 ÷ h2 otherwise

myMod(h1, h2) returns 0 if h2 = 0 and
mod(h1, h2) otherwise

mySqrt(h) returns sqrt(abs(h))
negative(h) returns −h

FFT (h) 2-D discrete Fast Fourier
Transform

smooth(h) circular averaging filter
with r = 5

gradientX(h)
returns the gradient (dh/dx

gradientY (h)
or dh/dy) of a height map h.
Spacing between points is
assumed to be 1

TABLA III

GP Terminal Set

Name Description

rand map with random heights
between 0 and 1

fftGen
spectral synthesis based height map,
whose spectrum depends on a REC:
1/(fREC)

gauss gaussian bell shape height map, whose
wideness depends on a REC

plane
flat inclined plane height map whose
orientation depends on a REC
within 8 values

step step shape height map whose orientation
depends on a REC within 4 values

sphere
semi-sphere height map whose centre
location is random and the radius
depends on a REC

dinates, in GTP only the height will be calculated.
The (x, y) coordinates will be dictated by the matrix
position occupied by the height value.

The experiments conducted on [2] showed that
to obtain aesthetic appealing terrains (regardless of
their realism) it was required about 30 to 70 gener-
ations. However, to obtain TPs to generate terrains
with specific features, such as mountains or cliffs the
number of necessary generations varies widely until
an acceptable result was obtained. The number of
generations is highly dependent on the initial popu-
lation and could vary between 10 to more than 100
generations. If, after a number of generations, an
interesting result was not obtained the experiment
was canceled and began again to avoid this way a
long run.

IV. Terrain Programmes

In spite of the procedural nature of the TPs, the
current implementation only allows to choose terrain
resolution, but not zoom level [3]. This is a limi-
tation that runs against the procedural advantages
which we want to eliminate.

First, it is necessary to understand why this lim-
itation exists. If we take a closer look to the GTP
technique we can verify that the terminal set, shown
in Table III, does not depend directly on (x, y) input
variables. Each terminal generates a matrix of val-
ues, that represent a height map, whose coordinates
will be dictated by the matrix position occupied by
the height value. Without direct control over the
(x, y) coordinates it is not possible to implement the
zoom feature. The terminals gauss, plane, step and
sphere can be easily rewritten to be directly depen-
dent of (x, y). But the same does not hold for the
rand and fftGen terminals.

As the name suggests, the rand terminal generates
random numbers. Although we can fixate the ran-

Fig. 6.

Two terrains generated by the same TP with
different resolutions that show the problem of

random numbers in the current implementation

dom number seed to ensure the same values can be
obtained as many times as desired, that behaviour
is not enough to allow the implementations of the
zoom feature. This happens for two reasons, first the
random number function is not continuous. Second,
the output of that function depends on the number
of times it is called and not on an input variable. Fig.
6 shows the consequences of random numbers in the
current TP implementation. When we increase the
terrain resolution the resulting terrain is different, in
spite of their similarities.

The fftGen terminal is more complex, it is based
on the Fourier transform. The theory of Fourier
states that any function can be represented as a sum
of sinusoidal terms. The Fourier transform takes a
function from the spatial or time domain into the
frequency domain, where it is represented by the
amplitude and phase of a series of sinusoidal waves.
Summing together the series of sinusoidal waves re-
produces the original function - this is called the
inverse Fourier transform [8] . The fftGen terminal
starts by generating random frequency components
(amplitude values), then a low band filter is applied
to eliminate high frequency components. Finally the
inverse Fast Fourier Transform (FFT) - an efficient
algorithm to compute the discrete Fourier transform
- is computed to convert the frequency components
into altitudes [9]. The outcome of this terminal is
a height map whose surface roughness can be con-
trolled by the low band filter. The lower the filter
value, the smoothest the surface is. This terminal
presents two problems for the zoom implementation:
first it is based on a random number generator thus

suffering from the same problems of the rand ter-
minal. Additionally, even if we solve the random
number issue, this terminal would still be an obsta-
cle to the zoom feature due to the fact of working
initially with components in the frequency domain.
The inverse FFT algorithm requires a large set of
points to convert them to the space domain, it does
not allow the computation of a single point which is
required to implement the zoom feature.

A. Proposed Solution

The main obstacle to implement the zoom feature
are the rand and fftGen terminals. They must be
replaced by terminals that depend directly from the
(x, y) input coordinates, or simply eliminated. For
the rand terminal we believe that it should be re-
placed, otherwise we would lost one important char-
acteristic of a single TP to be able to produce a fam-
ily of terrains - different terrains that share the same
morphological characteristics. To replace the rand
terminal we propose the use of noise functions, these
kind of functions have been widely used in procedu-
ral textures for several years. Noise functions are
stochastic functions whose ideal properties are [1]:
• the noise function must have a repeatable pseudo-
random output, based on its inputs variables;
• the output range is known, namely from −1 to 1;
• the output is band-limited, with a maximum fre-
quency of about 1;
• the noise function should not exhibit obvious pe-
riodicities or regular patterns. Pseudorandom func-
tions are always periodic, but the period can be
made very long and therefore the periodicity is not
notable.
• the noise function is stationary, that is, its statis-
tical character should be translationally invariant.
• the noise function is isotropic, that is, its statisti-
cal character should be rotationally invariant.

There are several noise functions available, such
as: Voronoi, Cell Noise, Perlin, Blender Noise,
among others. Although these functions share the
statistical behaviour previously described, they pro-
duce different outputs. So, the question that arises
is: which one should replace our rand terminal? In-
stead of replacing the rand terminal by a specific
noise function, we propose to add all the noise func-
tions, or at least the ones that differ more on their
output, to our GP terminal set. This way we do
not have to decide which noise function is the best
for our propose, but also will alllow our technique to
produce more diverse and hopefully more interest-
ing TPs. All the noise functions depend on (x, y, z),
but TPs only need two input coordinates. This can
be easily solved by fixating the third coordinate to
a value, such as z = 0.

Regarding the fftGen terminal its simple elimina-
tion is not desirable because most of the interest-
ing TPs produced by the GTP have this terminal
present at least once. The problem is to know which
new terminal, or terminals, should replace it. We

Fig. 7.

Sample output of the fftGen terminal

started our search by comparing the output of the
fftGen terminal (see Fig. 7) to possible candidates.
The best candidates we found to replace fftGen were
procedural fractals for terrains [1]. Like the noise,
there are also several procedural fractals:
• distorted noise
• hetero-terrain
• multifractal
• hybrid multifractal
• ridged multifractal
• fBm (fractal Brownian motion)
• turbulence
• voronoi

None of the analysed fractals produced the same
output of our fftGen terminal, but fBm was one that
showed more similar results. The procedural fractals
have many input variables, such as: H, Lacunar-
ity and Octaves among others. These parameters
could also be evolved, so it will be more beneficial to
add them to the function set instead of the terminal
set. Again, we believe that adding all the fractals to
our function set will increase the diversity and the
chances to produce more interesting TPs. However,
this approach will break the compatibility with pre-
viously generated TPs. This means that changing
the nodes from the previous TPs by new ones will
produce different results. Anyhow, we believe that
the advantages of the zoom feature brought by this
approach will largely overcome the disadvantage of
breaking retro-compatibility. Besides, we hope to
easily produce many new interesting TPs with these
changes on the GTP technique.

The solution we propose consists of changing the
terminal set, shown on Table III, to the ones in Ta-
ble IV. The rand terminal is replaced by the several
new terminals discussed previously and the remain-
ing terminals will be rewritten to depend directly
from (x, y) input coordinates. The fftGen will be
removed from the terminal set and the procedural
fractal functions will be added to the function set to
compensate its lost.

These changes have other implications on the
GP function set shown in Table II. The
functions FFT (h), smooth(h), gradientX(h) and
gradientY (h) depend upon a large set of points.

TABLA IV

Proposed GP Terminal Set

Name Description
gauss gaussian bell shape
plane flat inclined plane
step step shape

sphere semi-sphere shape
blender-noise

noise functions

o-perlin
i-perlin

voronoi-F1
voronoi-F2
voronoi-F3
voronoi-F4

voronoi-F2-F1
voronoi-crackle

cell-noise

They cannot operate over a single (x, y) point and,
to the best of our knowledge, there are no alternative
implementations. As a first approach to this prob-
lem we will remove those functions from the func-
tions set and see if the the new procedural fractal
functions can, somehow, compensate them. Table V
shows the changed function set. All the new pro-
cedural fractal functions have (x, y) input variables,
but we do not count them for the n-arity. For now
we want to preserve these input variables, so we will
not allow the GP system to manipulate them.

B. Proof of concept

The proposed changes require the implementation
of many new terminals and functions. In order to
test the new ideas we decided to make a simple proof
of concept. We choose Blender 1, an open source
3D modeling tool, because it has a Python 2 API
which has interfaces for the new noise terminals and
procedural fractal functions 3.

The next step was to chose one of the previous
TPs and adapt it for the new terminal set and
check both the aesthetic of the outcome and the
zoom feature. Due to the lack of compatibility be-
tween some old and new terminals, the adaptation
of most previous TPs resulted in non interesting ter-
rains. The TP shown in Eq. (1) was an exception
– see Fig. 8. We changed the fftGen(3 .00) by the
fBm(x , y , 0 , 1 .0 , 1 .97 , 2) function. The input pa-
rameters of fBm were manually fine tuned to gener-
ate aesthetic terrains more similar to the ones pro-
duced prior to the modification.

TP = myLog(myLog(myLog(myLog(myLog(

myLog(fftGen(3 .00))))))) . (1)

1http://www.blender.org
2http://www.python.org
3http://www.blender.org/documentation/248PythonDoc/

Noise-module.html

TABLA V

Proposed GP Function Set

Name Description
plus(a, b)

arithmetical functionsminus(a, b)
multiply(a, b)

sin(a)

trigonometric functionscos(a)
tan(a)
atan(a)

myLog(a) returns 0 if h = 0 and
log(abs(a)) otherwise

myPower(a, b)
returns 0 if ab is NaN
or Inf , or has imaginary
part, otherwise returns ab

myDivide(a, b) returns a if b = 0 and
a÷ b otherwise

myMod(a, b) returns 0 if b = 0 and
mod(a, b) otherwise

mySqrt(a) returns sqrt(abs(a))
negative(a) returns −a
distorted3

procedural fractal terrains

heteroTerrain4

(the subindices are the

multiFractal3

functions’ n-arities)

hybridMFracta5

ridgedMFractal5
fBm3

turbulence5

voronoi2

Fig. 8.

Sample of a terrain generated by TP in Eq. (1)

TP = myLog(myLog(myLog(myLog(myLog(

myLog(fBm(x , y, 0 , 1 .0 , 1 .97 , 2))))))) . (2)

Fig. 9 and 10 show two different terrains gener-
ated by the TP shown in Eq. (2), with three zoom
levels 50%, 100% and 200% (from top to bottom).
Like the noise functions, the procedural fractal func-
tions will give always the same output for the same
(x, y) input values. So, in order to obtain a different
terrain from the same TP, we change the starting
values of (x, y) input range. Fig. 11 shows the last
image of Fig. 9 with eight times less resolution. All
these images show the top view of the terrains gener-
ated within Blender 3D and rendered with YafRay.

Fig. 9.

First sample of a terrain generated by TP in Eq.
(2) with three zoom scales: 50%, 100% and 200%

Fig. 10.

Second sample of a terrain generated by TP in Eq.
(2) with three zoom scales: 50%, 100% and 200%

Fig. 11.

Image of the last terrain from Fig. 9, but generated
with eight times less resolution

V. Conclusions

The GTP techniques evolves TPs which are math-
ematical expressions and can be executed as any
other procedural technique. However, TPs did not
allow the implementation of the zoom feature, which
is one of the most important traits of procedural
techniques. The obstacles to its implementation
were identified and a solution to surpass them was
proposed. A proof of concept was built to bring some
insight to the feasibility of the proposed solution.

The obtained results encourage us to pursue the
full implementation of the proposed solution. With
this approach we expect to create many new TPs
for both real looking and aesthetic terrains. These
changes will allow the direct integration of TPs on a
video game to automatically generate terrains. Nev-
ertheless, the proposed solution brings some impor-
tant modifications to our technique. The new TPs
will not be compatible with the ones generated pre-
viously. Also the GP terminals will not be matri-
ces and the image processing functions will be elim-
inated form the function set.

VI. Future Work

To continue the improvement of the GTP tech-
nique several future lines of investigation are sug-
gested. One of them is the composition of a terrain
through the use of several TPs, where the generated
terrains will be joined on a credibly and smooth way.
Another one is to add more features to GTP so that
whole scenarios, including vegetation and buildings,
can be generated by the same technique. Finally it
will be also desirable to develop a fitness function
to allow the automatic evolution of TP’s and avoid
designers fatigue, a common problem of interactive
evolutionary applications [5].

Acknowledgements

The third author acknowledges the support of
MICINN under project TIN2008-05941.

References

[1] David Ebert, Kenton Musgrave, Darwyn Peachey, Ken
Perlin, and Steven Worley, Texturing and Modeling: A
Procedural Approach, Morgan Kaufmann, 3rd edition,
2003.

[2] Miguel Frade, F. Fernandez de Vega, and Carlos Cotta,
“Modelling video games’ landscapes by means of genetic
terrain programming - a new approach for improving
users’ experience,” in Applications of Evolutionary Com-
puting, Mario Giacobini et al., Ed., Napoli, Italy, 2008,
vol. 4974 of LNCS, pp. 485–490, Springer.

[3] Miguel Frade, F. Fernandez de Vega, and Carlos Cotta,
“Genetic terrain programming - an aesthetic approach to
terrain generation,” in Computer Games and Allied Tech-
nology 08, Singapore, 2008, pp. 1–8.

[4] J. R. Koza, “Genetic programming. on the programming
of computers by means of natural selection,” Cambridge
MA: The MIT Press., 1992.

[5] Peter Bentley, Evolutionary Design by Computers, Mor-
gan Kaufmann Publishers, Inc., CA, USA, 1999.

[6] Tatsuo Unemi, “SBART 2.4: breeding 2D CG images
and movies and creating a type of collage,” in The Third
International Conference on Knowledge-based Intelligent
Information Engineering Systems, Adelaide, Australia,
1999, pp. 288–291, IEEE.

[7] Tatsuo Unemi, “SBART 2.4: an IEC tool for creating 2D
images, movies, and collage,” in Proceedings of 2000 Ge-
netic and Evolutionary Computational Conference, NV,
USA, 2000, p. 153.

[8] Ronald N. Bracewell, The Fourier Transform & Its Appli-
cations, McGraw-Hill Science/Engineering/Math, 3 edi-
tion, 1999.

[9] Jacob Olsen, “Realtime procedural terrain generation - re-
altime synthesis of eroded fractal terrain for use in com-
puter games,” Department of Mathematics And Com-
puter Science (IMADA), University of Southern Den-
mark, 2004.

