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Abstract—To speed up content creation video game industry is
increasingly turning to procedural content generation methods.
However, creating and fine tuning procedural algorithms is a
time consuming task. To address this issue several Search-Based
Procedural Content Generation (SBPCG) techniques have been
devised. They propose to automatically search the right input
parameters or to generate the procedure itself to produce content
with the desired characteristics. In this paper we present a
database with 17 820 procedures generated by Genetic Terrain
Programming (GTP), a SBPCG technique. Those procedures
were evolved using the weighted sum of two morphological
metrics to generate terrains with aesthetic appeal for video
games. With this database we aim to establish a comparison base
for future research regarding creativity of GTP and aesthetic
terrains diversity.

I. INTRODUCTION

The video game industry is increasingly turning to proce-
dural content generation methods to automate content cre-
ation [1]. However, coming up with good results from a
procedure often degenerates into an authoring process of trial
and error. Procedural algorithms present a certain degree of
unpredictability, so designers might end up performing a lot
of tests and simulations until they learn how the procedural
system behaves to tune it [2]. The search for the right input
parameters and algorithm tune is time consuming. To address
this issue several Search-Based Procedural Content Generation
(SBPCG) techniques [3] have been devised. Techniques in
this category propose to automatically search the right input
parameters or to generate the procedure itself that will produce
content with the desired characteristics.

One kind of video game content that can take advantage
of SBPCG techniques is terrain. For instance, Stachniak and
Stuerzlinge [4] use a stochastic local search algorithm that
finds an acceptable set of deformation operations to apply to
a base terrain in order to obtain a map that approximately
adheres to the specified constraints. An evolutionary approach
was proposed by Ong et al. [5], where genetic algorithms are
used to transform height maps in order to conform them to
the required features. The 2D terrain silhouette and a database
of representative height map samples are the only form of
control. Ashlock et al. [6] propose co-evolution of L-systems
parameters and grammar to fit a specific terrain shape, which
has some resemblance to symbolic regression. A different
perspective is proposed by Togelius et al. [7]. They apply
multi-objective EAs to evolve height maps that fit some user
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predicted entertainment metrics to hopefully increase players
interest on the game. This concept is further developed and
applied to StarCraft video game [8]. However, none of these
approaches addresses aesthetic appeal or creativity of the
generated terrains. Automated fitness assignment based on
aesthetic measures is new and emerging field of research,
some examples of evolutionary art systems that use automated
fitness assignment to images can be found in [9], [10].

We developed Automated Genetic Terrain Programing
(GTPa), a SBPCG technique, to generate procedural ter-
rains for video games. GTPa utilizes Genetic Programing
(GP) as an automated evolutionary search tool for procedural
terrains, designated Terrain Programs (TPs). This approach
allows the generation of new terrain types with aesthetic
appeal. However, unlike other evolutionary techniques where
aesthetic evaluation is performed by humans, our technique
relies only on geomorphological metrics. Those metrics are
accessibility score [11] and obstacles edge length score [12].
The evolutionary search of terrains with these metrics produces
TPs that do not require any parameter input to control its
look. Therefore, TPs can be integrated in video games without
a human performing parameter tuning, thus allowing to save
time.

Although we have successfully tested the technique in previ-
ous papers [11], [12], the question about GTPa creativeness
remains open. One of the most influential research on how
to assess software creativity comes from Ritchie [13]. He
proposes a set of criteria to assess programs’ creativity based
on the artifacts they produce. Pereira et al. [14] apply Ritchie’s
criteria to a set of systems and suggest also that if a program
repeats itself later on it is a sign of less creativity. Still,
Colton [15] argues that creativity assessment based only on
produced artifacts is not enough. He suggests that creativity
assessment should account also for the process the software
performs and assess its functionality. In this paper we present
a database of TPs (the artifacts) that are the result of a series
of tests preformed with GTPa with both accessibility and
obstacles edge length metrics combined. We aim to establish
a comparison base for future research regarding creativity of
GTPa and aesthetic terrain diversity.

Section II details the GTPa technique and the used geomor-
phological metrics. The applied test methodology is presented
in Section III, the resulting TPs and preliminary analysis are
discussed in Section IV. Some sample terrains are displayed
in Section V and finally, conclusions and future work are laid
out in Section VI.



TABLE I
GP FUNCTION SET

Name Description
plus(a, b), minus(a, b),

arithmetical functions
multiply(a, b)

sin(a), cos(a),
trigonometric functions

tan(a), atan(a)
exp(a) returns ea

myLog(a)
returns 0 if a = 0 and
log(|a|) otherwise

myPower(a, b)
returns 1 if b = 0, 0 if
a = 0 and |a|b otherwise

myDivide(a, b)
returns a if b = 0

and a÷ b otherwise
mySqrt(a) returns

√
|a|

negative(a) returns −a
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Fig. 1. Terrain view area

II. BACKGROUND

GTPa, our SBPCG technique, consists on the application of
GP [16] to evolve mathematical expressions, designated TPs,
that will generate artificial terrains. The function set used in
GTPa is described in Table I and three different terminal sets
were used during our tests: T1 = { myNoise(x, y), ERC},
T2 = { X , Y , ERC} and T3 = { myNoise(x, y), X , Y ,
ERC}. ERC stands for Ephemeral Random Constant [16]
and ERC ∈ [0, 10]. The terminal myNoise(x, y) is a lattice
noise function based on Blender 3D lattice noise primitive
orgBlenderNoise1, see Eq. (1). The ideal properties and
mathematical details of a noise function are presented by [17],
[18].

myNoise(x, y) = 2× orgBlenderNoise(x, y, 0)− 1 (1)

To evaluate TPs it is required to convert them to an height
map. The altitude values h, where h = f(x, y), h, x, y ∈ R,
are stored in matrix H = {hr,c}r6nr

c6nc
, whose size nr × nc

defines the height map resolution. Equation (2) shows the rela-
tionship between the height map matrix H and TPs continuous
functions. The value hr,c represents the elevation value for row
r and column c, and Dx, Dy are the terrain dimensions. Sx, Sy

allow the control of the zoom level and Lx, Ly allow us to
localize the origin of the terrain view area (see Fig. 1).

1Source code available at http://www.blender.org/

hr,c =f

(
c× Dx

nc−1

Sx
+ Lx,

r × Dy

nr−1

Sy
+ Ly

)
(2)

TPs are evaluated by the weighted sum of two morphologi-
cal metrics: accessibility score [11] and obstacles edge length
score [12]. The accessibility score aims to generate terrains
were a certain percentage of the terrain area is accessible,
which means, its slope is under a certain threshold. Therefore,
the slope map S = {sr,c}r6nr

c6nc
is created to store the declina-

tion for each cell r, c of the height map H . The slope values are
calculated using B. Horn [19] method. Then, to determine the
cells that are accessible the accessibility map A = {ar,c}r6nr

c6nc

is created, with either 0 (not accessible) or 1 (accessible)
in each cell depending on the selected slope threshold. To
allow player units to move around the accessible cells should
be connected in an large area, which is determined by a
component labeling algorithm. Finally the accessibility score
is determined by Eq. (3), where pa ∈ [0, 1] is a threshold to
avoid the appearance of completely flat terrains and represents
the percentage of desired accessible area. More details about
this metric can be found in [11].

υs =

∣∣∣∣∣∣∣∣
nrnc

nr∑
r=1

nc∑
c=1

ar,c

− nrnc

dpanrnce

∣∣∣∣∣∣∣∣ , pa 6= 0 (3)

The edge length score aims to increase the amount of terrain
obstacles and its edge complexity [12]. To calculate this score
the binary edge map E = {er,c}r6nr

c6nc
must be created. This

is achieved with the Laplacian operator [20], which returns a
positive value when a cell ar,c belongs to the edge line and
the correspondent cell er,c, is filled with value 1. Based on the
amount of cells that belong to the edge, we classify the terrain
by the edge score εs defined in Eq. (4), where pe ∈ [0, 1] is a
threshold to allow the formation of large accessible areas and
represents the desired percentage of edge length in relation to
the total terrain area. More details about this metric can be
found in [12].

εs =

∣∣∣∣∣∣∣∣
nrnc

nr∑
r=1

nc∑
c=1

er,c

− nrnc

dpenrnce

∣∣∣∣∣∣∣∣ , pe 6= 0 (4)

The fitness function to evaluate TPs is the weighted sum of
the two previous metrics, as shown in Eq. (5), where wa +
we = 1 (due to this relation, from now on, we will refer only
to wa).

fitness = waυs + weεs (5)

Although the GTPa technique has been presented in previ-
ous publications [11], [12], only a small amount of TPs have
been generated and the fitness function included only a single
metric. Our aim is to generate a large set of TPs to assess the
creativeness of the used technique and serve as base for future
comparisons.



TABLE II
TEST PARAMETERS AND THEIR VALUES

Par. Value Par. Value
T1 {ERC,myNoise} s1 18%

T2 {ERC,X, Y } s2 27%

T3 {ERC,X, Y,myNoise} s3 36%

pa1 70% pe1 20%

pa2 80% pe2 25%

pa3 90% pe3 30%

wa 0.0, 0.1, ..., 1.0 seed run = {1, 2, ..., 20}

TABLE III
GP PARAMETERS

GP Value
maximum generations 50

population size 500

initialization method half and half
ramped from 2 to 6

max. depth 17

selection operator tournament, size 7

crossover operator rate 70%

mutation operator subtree, rate 30%

III. TESTS

Evaluation of TPs depends on: slope threshold (from now
on represented by s), percentage of accessibility area pa,
percentage of the edge length pe and weights wa and we. Table
II presents a set of parameters, designated as Test Parameters,
whose influence we want to study. To assess the creativity
and diversity of terrains produced by GTPa we preformed a
series of tests that included all combinations between the test
parameters Ti, sj , pak, pel and wm. For each combination,
20 runs (r = 1, 2, .., 20) were performed with different seeds,
which sums to 17 820 different executions [21].

Table III presents the used GP parameters, which were
fixed during all runs. The search stops whenever the fitness
reaches the value of zero or the amount of generations reaches
the value of 50, whichever comes first. Both crossover and
mutation operators are the same as the ones used by Koza
[16]. Table IV shows the Height Map Parameters required to
convert TPs to high maps (also fixed across all runs).

IV. DATABASE

To establish a comparison base for future research regarding
creativity of GTPa as well as aesthetic terrains diversity, we
decided to release a TPs database. This database, formated

TABLE IV
HEIGHT MAP PARAMETERS

Height map Value
nr and nc 128

Lx and Ly 0

Sx and Sy 1

Dx and Dy 10
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Fig. 2. Percentage of repeated TPs versus wa.
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Fig. 3. Average fitness values versus wa. Error bars represent the standard
error of the mean.

as comma separated values (CSV) file, contains the results
from our 17 820 different executions, with the following fields:
terminal; slope(%); pa(%); pe(%); wa; run; fitness; TP ;.
The fitness value is standardized, so lower values are better.
Although the fitness value does not give any information
regarding the creativity of our system, it is included to indicate
how feasible/unfeasible a given TP is regarding our metric.
The amount of TPs that reached the perfect fitness value (zero)
was 45.22%. Bellow is an example line of the CSV file:
T3; 18; 70; 20; 0.0; 09; 0.00000000;
myPower(cos(myNoise(X,Y)),exp(myNoise(X,Y)));

Due to the large amount of results, we decided to split our
database by terminal set: TPs_T1.csv, TPs_T2.csv and
TPs_T3.csv. The database is available to the public in the
Sourceforge repository http://sourceforge.net/p/tps-db/ under
the Creative Commons Attribution-ShareAlike 3.0 Unported
License2. We have also added to the repository some C code
to show how to calculate the height values from TPs.

One of our goals is to find diverse solutions, which can
also be considered a way to assess the creativity of GTPa (on
a limited sense). Pereira et al. [14] suggest that if a system
presents repetitions in later runs that is a sign of less creativity.
So, in our preliminary assessment of creativity we looked for
any repeated TPs in our database. We found 98.61% of unique
genotypes and a total of 106 TPs that appeared more than once,
relative to 248 runs (1.39%). Figure 2 shows how the repeated

2License available at http://creativecommons.org/licenses/by-sa/3.0/



TABLE V
RUNS WHERE TP SHOWN IN EQ. (6) WAS THE BEST SOLUTION AND THEIR

CORRESPONDENT FITNESS VALUES.

terminal slope pa pe wa run fitness
T1 s18 a80 e20 0.1 18 0.03484

T1 s18 a90 e20 0.1 18 0.04143

T3 s18 a80 e20 0.1 6 0.03484

T3 s18 a80 e20 0.1 7 0.03484

T3 s18 a80 e20 0.3 7 0.03438

T3 s18 a90 e20 0.1 6 0.04143

T3 s18 a90 e20 0.1 7 0.04143

T3 s18 a90 e20 0.3 7 0.05390

TPs are distributed in relation to wa. The higher concentration
of repeated TPs is where wa values have worse fitness values
(see Fig. 3), specially for wa = 0.1. For wa = 0.7 there are no
repeated TPs. On average, the repeated TPs appear as solution
of 2.34 runs. Equation (6) shows the worse case, it appeared
8 times, Table V identifies the runs were this particular TP
appeared and the correspondent fitness values. We believe that
a larger limit of maximum allowed generations can drastically
reduce, or even eliminate, the amount of repeated TPs, but
more tests are needed to confirm it.

TP = cos(cos(atan(atan(atan(atan(myNoise(x, y))))))) (6)

Our repetition analysis only accounts for different terrains
genotypes. However, there might exist also different TPs that
are mathematically equivalent and render the same terrain.
Another important aspect, from the creativity point of view,
is how similar (or diverse) are terrains from our database.
Although GTPa may produce many different phenotypes, we
do not know if many of them are similar or not. To answer
the question of how many diverse terrains types GTPa is able
to generate further analysis must be conducted.

V. SAMPLES

To illustrate the terrains that GTPa is able to produce, we
selected a few different TPs, which are displayed in Fig. 4,
5, 6, 7, 8, and 9. Those figures show a rendered image of a
three dimension view point from the terrain. Those renders
were performed in Blender 3D without textures to emphasize
terrains surface shape. Each figure has the identification of the
TP that generated it with the following syntax: terminal,
slope, pa, pe, wa and seed. For abbreviation proposes we
replaced wa by wm and seed by ru, where m can take values
in the range m = 0, .., 10 and u = 1, .., 20.

Given the huge amount of results we have only performed
a visual inspection of 100 randomly selected terrains from
each terminal set. Our visual analysis showed a clear relation
between terminal sets and both terrain looks and diversity.
Terminal set T1 is the one that presented the lower diversity,
but also more realistic look. On the other hand, T2 presented
the highest diversity of terrains. However, terrains from this
terminal set tend to present geometric patterns and symmetry,
which give them a strange look. Although this characteristic

Fig. 4. Terrains generated by TP T1, s1, pa1, pe3, w0, r4 with fitness =
0.000000 on the left, and T2, s3, pa2, pe3, w0, r2 with fitness =
0.000000 on the right

Fig. 5. Terrains generated by TP T3, s3, pa2, pe1, w0, r10 with fitness =
0.000000 on the left, and T1, s3, pa1, pe2, w10, r10 with fitness =
0.000000 on the right

Fig. 6. Terrains generated by TP T2, s2, pa2, pe1, w10, r19 with fitness =
0.000000 on the left, and T3, s1, pa1, pe2, w10, r15 with fitness =
0.000000 on the right

Fig. 7. Terrains generated by TP T1, s2, pa1, pe2, w9, r9 with fitness =
0.000098 on the left, and T1, s2, pa2, pe3, w8, r1 with fitness =
0.000000 on the right

Fig. 8. Terrains generated by TP T2, s2, pa3, pe1, w8, r3 with fitness =
0.000181 on the left, and T2, s2, pa3, pe2, w9, r8 with fitness =
0.000068 on the right



Fig. 9. Terrains generated by TP T3, s3, pa2, pe2, w8, r10 with fitness =
0.000000 on the left, and T3, s3, pa3, pe2, w2, r8 with fitness =
0.020270 on the right

might be a good indicator of novelty and therefore creativity
[13], they might be considered less pleasant. Terrains from
terminal set T3 were the ones that the authors found to be
more balanced between aesthetic appeal and diversity.

VI. CONCLUSIONS

A series of tests have been made with GTPa where the
fitness function was the combination of two metrics: accessi-
bility score and edge length score. Our analysis showed that
GTPa is able to find many different solutions that fit our
goals, presenting 98.61% of unique solutions. Furthermore,
the 1.39% of repetitions were concentrated where the fitness
values were worse, which makes us believe that increasing
the value of maximum allowed generations would decrease or
eliminate them. The visual inspection of some terrains also
showed many diverse terrains types, although some of them
presented a strange look, specially from terminal T2.

So far our creativity analysis on GTPa is on a preliminary
stage and further studies must be conducted, like applying
Ritchie’s criteria [13]. Another interesting research would
be the use of classification system to aggregate terrains by
their morphological similarity and this way assess phenotype
diversity. This approach poses some challenges on which
metric used to classify morphological similarity. A different
possibility would be to perform a user study to classify terrains
creativity characteristics, like novelty or quality, and its impact
on video games replayability. GTPa evaluates TPs after con-
verting them to height maps, however with this approach if
we change the resolution nr and nc, their fitness value will
likely change. This dependence on the chosen resolution is not
desirable, so other approach could be devised to evaluate TPs
based on their equations rather than on their phenotype.
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