
0

On the Hybridization of Memetic Algorithms

with Branch-and-Bound Techniques
Jośe E. Gallardo, Carlos Cotta and Antonio J. Fernández

Abstract

Branch-and-Bound and memetic algorithms represent two very different approaches for tackling combinatorial

optimization problems. These approaches are not incompatible however. In this paper, we consider a hybrid model

that combines these two techniques. To be precise, it is based on the interleaved execution of both approaches. Since

the requirements of time and memory in branch-and-bound techniques are generally conflicting, we have opted for

carrying out a truncated exact search, namely, beam search. The resulting hybrid algorithm has therefore a heuristic

nature. The multidimensional 0-1 knapsack problem and the shortest common supersequence problem have been

chosen as benchmarks. As will be shown, the hybrid algorithm can produce better results in both problems at the

same computational cost, specially for large problem instances.

I. I NTRODUCTION

Branch-and-bound techniques (BnB) [1] constitute a well-known approach for solving combinatorial optimization

problems to optimality. Essentially, BnB techniques use an implicit enumeration scheme for exploring the search

space in anintelligent way. This is done by partitioning the search space, producing upper and lower bounds of

the solutions attainable in each partition. Thus, the search performed by the algorithm can be represented as a tree

traversed in a certain way. The most efficient (in terms of the number of iterations required to find the optimum and

prove its optimality) is best-first, i.e., expanding firstly the most promising –according to the local bound– nodes.

However, the memory requirements can make this strategy unrealistic for large problem instances. The alternative

is to use a depth-first traversal. This strategy does not require large amounts of memory, but it can expand many

more nodes than best-first. Besides these simple strategies, leading BnB software also uses more sophisticated

selection procedures such asbest first with diving(i.e., a mixture of depth-first and best-first) to quickly obtain

good incumbent solutions. For an in-depth discussion of search strategies for mixed-integer programming see [2].

On the other hand, evolutionary algorithms (EAs) [3] have a completely different philosophy: tentative solutions

are iteratively generated, aiming at producing better and better solutions. Their performance isprobably, yet

not provably, good: near-optimal solutions can be typically found at an acceptable computational cost in many
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combinatorial optimization problems. It should be noted that –despite the underlying algorithmic template of EAs

being pretty much the same in these different problems– the need to exploit problem-knowledge has been repeatedly

shown in theory and in practice [4]. Different attempts have been made to answer this need; memetic algorithms

[5] (MAs) is probably one of the most successful to date [6].

MAs [7] were originally conceived as a family of metaheuristics that tried to blend several concepts from tightly

separated –at that time– families such as EAs and simulated annealing. In essence, a MA is a search strategy in

which a population of optimizing agents synergistically cooperate and compete. This behavior can be accomplished

by using local-search strategies within a population-based search technique such as an EA, although it must be

noted that the MA paradigm does not simply reduce itself to this particular scheme.

Regarding this matter, we present here a model for further hybridizing MAs (and EAs in general) with BnB

techniques. The goal is to synergistically combine these two different solving approaches, exploiting the capability

of BnB for identifying provably good regions of the search space, and the potential of MAs for exploring these.

The next section will describe the model that we have used for this purpose. Subsequently, we will proceed to the

deployment of this hybrid approach on two combinatorial problems: the multidimensional 0-1 knapsack problem

(MKP) and the shortest common supersequence problem (SCSP).

II. T HE HYBRID MODEL

Despite the complementarity of exact techniques and metaheuristics (in particular EAs), combined approaches are

not plentiful in the literature. The reader is referred to [8] for an overview of these approaches. In general, hybrid

methods can be classified ascoercive(one technique plays the role of master, and uses the other as a subordinate

tool) andcooperative(both techniques work at the same level, and aim for a symbiotic collaboration). In this work,

we have considered this last approach in order to integrate evolutionary techniques and BnB models. This is done

by letting both techniques work in an intertwined way (i.e., both processes are allowed to perform independently).

By doing so, both processes will share the incumbent solution so that the following benefits can be obtained:

• The BnB can use the current solution to purge the problem queue, deleting those problems whose local bound

is smaller than the one obtained by the MA.

• The BnB can inject information about more promising regions of the search space into the MA population in

order to guide the memetic search.

In order to explore the search space, BnB methods can traverse the tree in different ways as mentioned in

Section I. If a depth-first strategy is used, the memory required grows linearly with the depth of the tree; hence

large problems can be considered. However, the time-consumption can be excessive. On the other hand, a best-first

strategy minimizes the number of nodes explored, but the size of the search tree (that is, the number of nodes kept

for latter expansion) will grow exponentially in general. A third option is to use a breadth-first traversal (i.e., every

node in a level is explored before moving on to the next). In principle, this option would have the drawbacks of

the previous two strategies, unless a heuristic choice is made: to keep at each level only the best (according to

somequality meassure)k nodes. This implies sacrificing exactness, but provides a very effective heuristic search
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approach. The namebeam search(BS) has been coined to denote this strategy [9]. An effective hybrid model can

be obtained by integrating this latter approach with a MA as shown in the following pseudocode:

1: for l0 levelsdo run BS

2: do selectbestpopsize nodes from problem queue

3: initialize MA population with selected nodes

4: run MA

5: if MA solution better than BS solutionthen

6: let BS solution← MA solution

7: for l levelsdo run BS

8: until timeoutor tree-exhausted

9: return BS solution

The algorithm starts by executing BS forl0 levels of the search tree. Afterwards, the MA and BS are interleaved

until a termination condition is reached. Every time the MA is run, its population is initialized using the best nodes

in the BS queue. Let us note, that nodes in the BS queue represent schemata, i.e, they are partial solutions in which

some genes are fixed but others are indeterminate, so they must first be converted to full solutions in a problem

dependent way. The intended goal of this initialization is to lead the MA search to these regions of the search

space (recall that the nodes in the queue represent subsets of the search space considered promising by the BnB;

hence, the MA is used for finding probably good solutions in this region). Upon stabilization of the MA, control

is returned to the BnB algorithm. The lower bound for the optimal solution obtained by the MA is then compared

to the current incumbent in the BnB, updating the latter if necessary. This may lead to new pruned branches in the

BS tree. Subsequently, BS is executed for descendingl levels of the search tree. This process is repeated until the

search tree is exhausted or a time limit is reached.

III. M ATERIALS AND METHODS

In this section, we introduce two difficult combinatorial problems that we have used to evaluate our model,

namely the MKP (a maximization problem) and the SCSP (a minimization problem).

A. The Multidimensional 0-1 Knapsack Problem

The MKP is a generalization of the classical 0-1 knapsack problem, so it is of benefit to first describe this

problem. An instance of the classical 0-1 knapsack problem is defined by a knapsack of capacityb, and a set of

n objectsO = {o1, · · · , on}. Each of these objectsoj has a valuepj and a weightrj . The problem amounts to

selecting a subsetS ⊆ O of objects, such that their combined weight does not exceed the knapsack capacity, and

their value is maximal.

The MKP generalizes the previous definition by consideringm different knapsacks, each of them with a possibly

different capacitybi. The subset of objects selected must fit simultaneously within allm knapsacks. Furthermore,
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objects have a different weightrij within each knapsack. This way, the problem can be formalized as follows:

maximize
n∑

j=1

pjxj , (1)

subject to
n∑

j=1

rijxj 6 bi, i = 1, . . . , m, (2)

xj ∈ {0, 1}, j = 1, . . . , n. (3)

where pj > 0, rij > 0, bi > 0 (4)

Thus, vector~x describes the objects selected in the solution. The problem can be regarded as a general statement of

binary integer programming with non-negative coefficients. Many real-world problems can be formulated like the

MKP, e.g., capital budgeting, project selection, etc. As regards this, it must be noted that the MKP has been shown

to be NP−hard; furthermore, it is known that it admits no fully polynomial time approximation scheme (FPTAS)

(unless P=NP) [10].

1) A Branch-and-Bound Approach to the MKP:The BnB algorithm considered carries out a standard exploration

of the search tree for this kind of problem (see [11]), namely using the linear relaxation approach. This means

assuming variables can take fractional values in the interval [0,1], and using linear-programming (LP) techniques

to provide upper bounds. More precisely, each node is defined by a set of constraintsC = {C1, · · · , Ck}, where

Ck = (ik, vk) implies thatxik
is forced to take the valuevk. If all variables take integral values, the subproblem is

solved. This is not generally the case though, and some variables are non-integer in the LP-relaxed solution; in the

latter situation, the variable whose value is closest to1/2 is selected, and two subproblems are generated, fixing

this variable to 0 or to 1 respectively. The LP-relaxed value of the node is used as its upper-bound, so that nodes

whose value is below the best-known solution can be pruned from the search tree. With the aim of obtaining good

incumbent solutions as soon as possible, a greedy first-fit heuristic based on the order determined bypseudo-utility

ratios (see next subsection) is used on each node to complete partial solutions.

2) A Memetic Algorithm for the MKP:The MKP has been tackled via EAs in many works, e.g., [12]–[14]. Among

these, the EA developed by Chu and Beasley [12] remains as one of the cutting-edge approaches for solving the

MKP. This EA uses the natural codification of solutions, namely binaryn-dimensional strings~x, representing the

incidence vector of a subsetS of objects on the universal setO (i.e., (xj = 1) ⇔ oj ∈ S). Since infeasible

solutions might be represented in this way, a Lamarckian repairing mechanism is used (see [15] for a comparison

of Lamarckian and Baldwinian repair mechanisms for the MKP). To do so, an initial pre-processing of the problem

instance is performed off-line. The goal is to obtain a heuristic precedence order among variables: they are ordered

by decreasingpseudo-utilityvalues:uj = pjPm
i=1 airij

, where we set the surrogate multipliersai to the dual variable

values of the solution of the LP-relaxation of the problem (see [12] for details). Variables near the front of this

ordered list are more likely to be included in feasible solutions (and analogously, variables near the end of the list

are more likely to be excluded from feasible solutions). More precisely, whenever an infeasible solution is obtained,

variables are set to zero in increasing order of pseudo-utility until feasibility is restored. After this, feasible solutions
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are improved by setting variables to one in decreasing order of pseudo-utility (as long as no constraint is violated).

This way, the repairing algorithm can actually be regarded as a (deterministic) local improvement procedure, and

hence this EA certainly qualifies as a MA. Since this MA just explores the feasible portion of the search space,

the fitness function can be readily defined asf(~x) =
∑n

j=1 pjxj .

B. The Shortest Common Supersequence Problem

Let us firstly introduce some notation. We write|s| for the length of strings (|s1s2 . . . sn| = n) and ε for the

empty string (|ε| = 0). Abusing the notation,|Σ| denotes the cardinality of setΣ. We uses D α for the total

number of occurrences of symbolα in string s (s1s2 . . . sn D α =
∑

1≤i≤n,si=α 1). We write αs for the string

obtained by appending the symbolα in front of string s. Finally, s ∈ Σ∗ means thats is a finite length string of

symbols inΣ.

Let s andr be two strings of symbols taken from an alphabetΣ. String s can be said to be a supersequence of

r (denoted ass Â r) using the following recursive definition:

s Â ε , True

ε Â r , False, if r 6= ε

αs Â αr , s Â r

αs Â βr , s Â βr, if α 6= β

(5)

Plainly, s Â r implies thatr can be embedded ins, meaning that all symbols inr are present ins in the very

same order (although not necessarily consecutive). For example, given the alphabetΣ = {a, b, c}, aacab Â acb.

We can now state the SCSP as follows: an instanceI = (Σ, L) for the SCSP is given by a finite alphabetΣ

and a setL of m strings{s1, · · · , sm}, si ∈ Σ∗. The problem consists of finding a strings of minimal length that

is a supersequence of each string inL (for example, givenI = ({a, b, c}, {cba, abba, abc}), a shortest common

supersequence ofI is abcba). The SCSP can be shown to be NP−hard, even if strong constraints are posed onL,

or on Σ (e.g., see [16]). It is also not fixed parameter tractable under several parameterizations, e.g., [17].

1) A Branch-and-Bound Approach to the SCSP:First of all, let us define the following function that will be

useful to estimate lower bounds for nodes explored by this algorithm:

s À ε , (ε, ε)

ε À r , (ε, r), if r 6= ε

αs À αr , (αre, rr), where (re, rr) = s À r

αs À βr , s À βr, if α 6= β

(6)

Intuitively, s À r = (re, rr) if re is the longest initial segment ofr embedded bys, andrr is the remaining part ofr

not embedded bys (for example,aabbacb À abca = (abc, a)). Note thatr = rerr, ands Â r ⇐⇒ s À r = (r, ε).

BnB algorithms for an instanceI = (Σ, L) of the SCSP start from a single node containing as tentative solution

ε. Each node is then split into|Σ| subproblems, each of them obtained by appending a symbol fromΣ to the
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TABLE I: Results of the different algorithms for the MKP.

BS MA Hybrid MA-BS

α m n solution time best mean± σ time best mean ± σ time

100 23057 1.7 23064 23064.0± 0.0 31.5 23064 23064.0± 0.0 98.9

0.25 10 250 59133 6.1 59187 59182.5± 7.0 139.0 59187 59183.2± 7.4 73.2

500 117772 50.5 117772 117736.9± 20.9 249.7 117809 117754.1± 17.8 248.9

100 21946 0.8 21946 21946.0± 0.0 1.0 21946 21946.0± 0.0 0.8

30 250 56824 10.3 56824 56730.1± 54.7 209.3 56824 56824.0± 0.0 277.0

500 115796 588.6 115903 115856.0± 25.7 254.5 116014 115893.2± 30.6 240.1

100 60633 3.7 60633 60633.0± 0.0 0.9 60633 60633.0± 0.0 0.7

0.75 10 250 149641 0.3 149704 149703.2± 3.7 117.0 149704 149704.0± 0.0 59.3

500 307013 24.1 307050 307040.2± 14.3 199.1 307072 307051.8± 12.9 430.1

100 60603 0.2 60603 60603.0± 0.0 2.7 60603 60603.0± 0.0 3.4

30 250 149595 32.6 149601 149585.5± 16.8 209.5 149595 149592.4± 8.8 510.0

500 300512 124.5 300512 300463.7± 23.9 169.4 300531 300471.9± 27.5 250.5

current tentative string. Nodes with unproductive characters (i.e., not contributing to embedding any string inL)

are pruned from the search tree.

To obtain a lower bound for a node with tentative solutionst, the set of remaining strings inL not embedded byst

must first be calculated as follows: letR = {ri | (se
i , ri) = st À si, si ∈ L}. Let M(α, R) = max{ri D α | ri ∈ R}

be the maximum number of occurrences of symbolα in any string inR. Clearly, every common supersequence

for the remaining strings must contain at leastM(α,R) copies of the symbolα. Thus a lower bound is given by

|st|+ ∑
α∈Σ M(α, R), that is the length of the tentative solution plus the maximum number of occurrences in any

string in R of each symbol of the alphabet. Similarly, a trivial supersequence can be calculated by concatenating

the remaining strings to the tentative solution. Hence,|st|+ ∑
ri∈R |ri| serves as an upper bound.

The WMM heuristic (see next section) can be further used on each node with the aim of improving the incumbent

solution. At any rate, Fraser [18] has shown that BnB algorithms alone need too much time to be practical, except for

very small alphabets. As we will show, a hybrid algorithm based on BnB and a MA can provide better performance.

2) Heuristics for the SCSP:The hardness results mentioned previously motivate the utilization of heuristic

approaches for tackling the SCSP. One of the most popular algorithms for this purpose isMAJORITY MERGE (MM).

This is a greedy algorithm that constructs a supersequence incrementally by adding the symbol most frequently

found at the front of the strings inL (ties are randomly broken), and removing these symbols from the corresponding

strings.

The myopic functioning of MM makes it incapable of grasping the global structure of strings inL. In particular,

MM misses the fact that the strings can have different lengths [19]. This implies that symbols at the front of short

strings will have more chances of being removed, since the algorithm still has to scan the longer strings. For this

reason, Brankeet al. [19] propose to weight each occurrence of a symbol at the front of a string precisely according

to the length of the string. This modified heuristic will be termedWEIGHTED MAJORITY MERGE (WMM). They
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also present results from the combination of EAs and WMM. In this heuristic, the EA is used to evolve weights

for each character of every string.

Another heuristic was proposed by Rahmann [20] in the context of the application of the SCSP to a microarray

production setting. This algorithm is termedALPHABET-LEFTMOST (AL), and takes as input the list of strings

whose supersequence is sought, and a permutationΠ of all symbols in the alphabet. The algorithm then proceeds

with successive repetitions of this pattern until all the strings inL are embedded. Obviously, unproductive steps

(i.e., when the next symbol in a row does not appear at the front of any string inL) are ignored.

3) A Memetic Algorithm for the SCSP:One of the difficulties faced by an EA (or by a MA) when applied to

the SCSP is the existence of feasibility constraints, i.e., an arbitrary strings ∈ Σ∗, no matter its length, is not

necessarily a supersequence of strings inL. As in the case of the MKP, this can be dealt with by penalizing, by

repairing, or by defining closed operators in feasible space. We have analyzed these three approaches elsewhere

[21], and we have found that repairing provided better results than penalizing or using closed operators. We will

thus elaborate on the repairing option.

Our MA evolves sequences in|Σ|λ, whereλ =
∑

si∈L |si|. Before being submitted for evaluation, these sequences

are repaired using a two-phase procedure: firstly, the sequence is scanned from left to right, removing unproductive

steps as in AL; if the scan is completed before all strings inL have been embedded, the MM heuristic is applied

to the remaining strings to complete a feasible solution.

Besides the basic improvement arising from the removal of unproductive steps, an additional local-improvement

level is considered. To do so, we have considered the neighborhood defined by symbol removals, i.e., extracting

a symbol from the sequence and then repairing it. A full local-search (LS) scheme is defined by iterating this

operation from left to right until no single deletion results in length reduction. The improvement in solution quality

attainable via the application of this LS operator comes obviously at the expense of an increased computational

cost. This additional cost might be too high if LS were massively applied. On the other hand, the extreme option

of simply removing LS handicaps the search capabilities of the algorithm. A pragmatic solution can be found in

the use of partial Lamarckism, namely using LS at some intermediate rate.

IV. EXPERIMENTAL RESULTS

In this section we compare our hybrid model to other heuristics using both the MKP and SCSP. The experiments

have been performed in all cases on a Pentium IV PC (2400MHz and 512MB RAM). Algorithms were coded in

C and compiled using gcc 3.2. In all cases, a steady-state MA (popsize = 100, pX = 0.9, pm = 1/n), with binary

tournament selection, uniform crossover and bit-flip mutation has been used. With the aim of maintaining diversity,

duplicated individuals were not allowed in the population.

A. Experimental Results for the MKP

A hybrid algorithm for the MKP was obtained from the general description in Section II with the following

parameters:k = 100, l0 = 0, l = 1 (see Section IV-C for a more detailed explanation).
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We tested our algorithms with problems available at the OR-library. We took two instances per problem set.

Each problem instance is characterized by a numberm of constraints (or knapsacks), a numbern of items and a

tightness ratio, 0 ≤ α ≤ 1. The closer to 0 the tightness ratio the more constrained the instance (the capacity of

the i-th knapsack isα
∑n

j=1 rij).

A single execution for each instance was performed for the BS method (since it is a deterministic method)

whereas 25 independent runs per instance were carried out for the MA and hybrid algorithm. The algorithms were

run for 600 seconds in all cases. For the MA and the hybrid algorithm, the population was initialized with random

feasible solutions.

Execution results are shown in Table I. The first three columns indicate the tightness ratio (α) and the sizes

(m and n) for a particular instance. The next columns report the best solution found and the time (in seconds)

consumed to find it. Specifically for the MA and hybrid algorithm, we also show the mean of the values obtained

and standard deviations, and the median time to obtain the best solution. For clarity, the best results per problem

set (excluding ties) are written in bold face, and entries in italics indicate that the hybrid algorithm provided the

best resultsex aequowith another algorithm(s).

As can be seen, the hybrid algorithm provides better (or at least equal) results in all cases except for the instance

0.75× 30× 250, for which the MA obtains the best result and the best mean corresponds to the hybrid algorithm.

For the smallest problem instances, results for the MA and hybrid algorithm coincide. This may be due to the

lower difficulty of these instances; the search overhead of switching from the MA to BS may not be worth it in this

case. The hybrid algorithm only becomes advantageous in larger instances, where the MA faces a more difficult

optimization scenario. The statistical significance of the results has been evaluated using a non-parametric test –

the Wilcoxon ranksum test. It has been found that forn = 100 results for the MA and hybrid algorithm coincide,

for n = 250 statistical significance is found forα = 0.25, m = 30, and forn = 500 differences are statistically

significant for all cases exceptm = 30, α = 0.75.

With respect to the BS algorithm, notice that the hybrid algorithm always provides better solutions than (or at

least equal to) beam search. Figure 1a shows the evolution of the best value found by the different algorithms for

a specific problem instance (α = 0.25, m = 30, n = 500). As can be seen, the hybrid algorithm outperforms both

the MA and BS due to their synergetic combination.

The best known results for these instances are currently due to two hybrid ILP\tabu search algorithms presented

in [22] and [23]. For the0.25× 30× 500 and0.25× 10× 500 instances, our hybrid algorithm obtains better results

than the ones presented in [22], whereas for the0.75 × 30 × 500 and0.25 × 10 × 500 instances results obtained

by [22] are 1 and 6 units better. Results in [23] could not be reached. Note however that to obtain those results,

the total running time for an instance withm = 30 was 12 hours for [22] and 33 hours for [23], whilst our hybrid

algorithm was only given 4.16 hours (accumulating the 25 runs).
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Fig. 1: (a) Evolution of the best solution in the MA, beam search, and the hybrid algorithm during 600 seconds

of execution for a MKP problem instance withα = 0.25, m = 30, n = 500. Curves are averaged for 25 runs in

the case of the MA and the hybrid algorithm. (b) Evolution of the best solution in the hybrid algorithm during 600

seconds of execution for a random SCSP problem instance average over different values for|Σ| for different values

for k. (c) Evolution of the best solution in the hybrid algorithm during 600 seconds of execution for a random

SCSP problem instance average over different values for|Σ| for different values forl0.

B. Experimental Results for the SCSP

A hybrid algorithm for the SCSP was obtained from the general description in Section II with the following

parameters:k = 10000, l = 10 andpopsize = 100 (again see Section IV-C for details).

Selection on every level of the search tree used the following quality function to measure a tentative solutions

st in each node:

quality (st, L) ,
∑

si∈L

{ |se
i | | (se

i , ri) = st À si} (7)

In this way, tentative solutions embedding more symbols inL are selected. Let us note that all tentative solutions in

one level of the search tree have the same length, so the algorithm selects nodes that provide good initial segments

for constructing a short supersequence. Before being injected into the MA population, tentative solutions were

randomly completed and repaired using the function described in Sect. III-B.3.
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TABLE II: Results of the different heuristics for the SCSP.

MM WMM

|Σ| best mean± σ i.% best mean± σ i.%

2 112.0 112.0± 0.1 0.0 114.8 114.8± 0.0 -2.5

4 152.6 153.4± 0.7 0.0 157.8 157.8± 0.0 -2.8

8 212.4 213.8± 0.9 0.0 208.2 208.2± 0.0 2.6

16 283.8 286.1± 2.0 0.0 272.8 273.4± 0.5 4.4

24 330.2 333.9± 2.3 0.0 324.0 325.2± 0.7 2.6

AL MA

|Σ| best mean± σ i.% best mean± σ i.%

2 121.4 123.4± 2.0 -10.2 111.2 112.4± 1.0 -0.4

4 183.0 191.2± 4.7 -24.6 150.0 152.6± 1.8 0.5

8 252.2 276.8± 6.4 -29.5 203.0 205.5± 1.9 3.9

16 320.6 352.9± 7.4 -23.3 264.4 270.4± 3.7 5.5

24 363.8 390.8± 6.4 -17.0 301.8 305.6± 3.4 8.5

Hybrid MA-BS BS

|Σ| best mean± σ i.% best mean± σ i.%

2 110.6 110.7± 0.0 1.2 110.8 110.8± 2.2 1.1

4 145.6 146.4± 0.5 4.6 149.4 149.4± 3.6 2.6

8 191.6 192.6± 1.4 9.9 198.2 198.2± 1.9 7.3

16 242.8 244.0± 1.0 14.7 253.0 253.0± 5.3 11.6

24 280.2 281.2± 0.8 15.8 287.8 287.8± 1.7 13.8

For the MA and the hybrid algorithm, local search was randomly applied with a probability ofp = 0.01.

Preliminary experiments were conducted with valuesp ∈ {0, 0.01, 0.1, 0.5, 1}, and this particular setting provided

a better tradeoff between the attainable improvement, and the additional computational cost implied [24].

Two different sets of problem instances have been used in the experimentation. The first one is composed of

random strings with different lengths. To be precise, each instance is composed of eight strings, four of them with

40 symbols, and the remaining four with 80 symbols. Each of these strings is randomly built, using an alphabet

Σ. Five subsets of instances have been defined using different alphabet sizes, namely|Σ| =2, 4, 8, 16 and 24. For

each alphabet size, five different instances have been generated.

The second set of instances constitutes a more realistic benchmark, and consists of strings with a common

source. A DNA sequence from a SARS coronavirus strain has been retrieved from a genomic database1, and taken

as supersequence; then, different sequences were obtained from this supersequence by scanning it from left to right,

skipping nucleotides with a certain fixed probability. In these experiments, the supersequence is 158-nucleotide

long, the gap probability is 10%, 15%, or 20% and the number of so-generated sequences is 10.

First of all, the results for random strings are shown in Table II. The results of AL are averaged over all

permutations of the alphabet (or a maximum 100,000 permutations for|Σ| > 16). For MM and WMM, a restart

approach allowing 600 seconds per run was used. The results of WW, WMM, MA and the hybrid algorithm are
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TABLE III: Results of the different heuristics on the SARS DNA sequence.

MM WMM

gap% best mean± σ best mean± σ

10% 158 158.0± 0.0 158 158.0± 0.0

15% 160 160.0± 0.0 231 231.0± 0.0

20% 228 229.6± 1.8 266 266.0± 0.0

AL MA

gap% best mean± σ best mean± σ

10% 307 315.2± 6.8 158 158.0± 0.0

15% 293 304.3± 8.8 158 159.0± 2.8

20% 274 288.3± 8.6 159 177.0± 9.3

Hybrid MA-BS BS

gap% best mean± σ best mean± σ

10% 158 158.0± 0.0 158 n.a.

15% 158 158.0± 0.0 158 n.a.

20% 158 158.0± 0.0 158 n.a.

averaged over 5 runs and the results of BS are for a single run. In all cases, the results are further averaged over

5 different problem instances (thus, 25 runs per each alphabet size). The column labelled as “i.%” indicates the

average relative improvement of the mean solutions with respect to the mean solution provided by MM. Clearly, the

hybrid algorithm performs better than the other algorithms on all the tests followed by BS and MA. This superior

performance is statistically significant in all cases, and indicates the synergy of this combination; thus, it supports

the idea that it is a profitable approach for tackling this combinatorial problem. WMM performs better than MM

for larger alphabet sizes whereas AL obtains the worst results.

Finally, the results for the strings from the SARS DNA sequence are shown in Table III. Again, AL performs

quite poorly here whilst MM and WMM match the optimal solution for low gap probability (10%). Note that

WMM performs worse than MM for this problem. BS and the hybrid algorithm find the optimal solution for three

instances whereas MA misses the last one.

To the best of our knowledge, the GA described in [19] and an Ant Colony Optimisation algorithm (ACO) in

[25] are among the best heuristics for the SCSP. A comparison of our algorithm with [19], indicates that the hybrid

algorithm performs similarly for|Σ| 6 4, and it is 5 points better (taking the performance of MM as baseline) for

|Σ| = 16. No tests were performed there for|Σ| ∈ {8, 24}, hence we can not compare our algorithm to theirs for

these cases. With respect to [25], their best algorithm performs 3.4 points better than our hybrid algorithm for a

random problem instance with|Σ| = 16, but it needs about 2 hours on a Pentium II 300MHz, while ours needs

only about 200 seconds on a machine 8 times faster.
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C. Dynamics and Sensitivity analysis on the Hybrid Model

After analyzing the traces of the algorithms, we have observed that most of the improved solutions obtained by

the hybrid algorithm are contributed by the MA part (e.g., 37% of the invocations of the MA result in a strictly

improved incumbent solution for the SCSP; this figure is just 10% for BS). On the other hand, the role of the BS

part seems to periodically provide good candidate solutions to the MA population. This is confirmed by the better

results obtained by the hybrid algorithm and the fact that the total number of generations in the MA part needed

to obtain these results is considerably less (for example, the MA needs an average of 30815 generations to obtain

its best result for a random SCSP instance with|Σ| = 24, whilst the MA part in the hybrid algorithm only needs

18055 generations on average). Recently, we have applied this hybrid approach to other combinatorial optimization

problems (finding minimum weight ultrametric trees [26] and maximum density still lifes [27]), and have obtained

similar results.

Several parameters can be tuned to control the hybrid algorithm, namely parametersl0 and l (controlling the

balance between MA and BS) and parameterk (which can be used to adjust the search breadth in BS). Aiming to

determine good values for these parameters, a sensitivity analysis was done for both the MKP and the SCSP. We

detected that the value of parameterk is directly related to the effort of computing bounds. Increasing this parameter

undoubtedly improves the quality of the results obtained by the BS part of the algorithm, but may delay the descent

through the search tree, specially when the estimation of bounds for each node is computationally expensive. If

this is the case (e.g., for the MKP) a low value fork should be used. Certainly, this value might be increased, but

a longer execution time would be needed for the algorithm to make progress. Regarding the SCSP, computation of

bounds is simple, so a greater value fork parameter may be used. Figure 1b shows the average evolution of the

best solution to this problem for the hybrid algorithm for different values ofk. Clearly, the quality of the solution

is increased with higher values fork up to 10000. For greater values ofk, the performance of the hybrid algorithm

degrades as most of the computation is dedicated to the BS part of the algorithm.

Parametersl0 andl are related to bound tightness, so that when bounds are tight and the BnB makes fast progress,

it is suggested that low values be used for these parameters. This is the case in the MKP. In the SCSP, bounds are

not tight and we observed that good solutions were only obtained after descending a substantial number of levels

in the BS tree (Figure 1c shows the average evolution of the hybrid algorithm for different values forl0). For this

reason an estimation for the SCSP solutions0 was calculated using the WMM algorithm and its length was used

to setl0 = 0.7 · |s0| in our experiments.

V. CONCLUSIONS ANDFUTURE WORK

We have presented a model for the hybridization of MAs with a truncated BnB algorithm. The model tries to

boost performance by mutual collaboration: the MA provides improved bounds that the BnB algorithm can use to

purge the problem queue, whereas the BnB guides the MA to look into promising regions of the search space.

The resulting hybrid algorithm has been tested on two combinatorial optimization problems –the MKP and the

SCSP– with encouraging results: the hybrid algorithm produces better results than the constituent algorithms on
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specific instances. This indicates the synergy of this combination, thus supporting the idea that it is a profitable

approach for tackling difficult combinatorial problems. In this sense, future work will be directed to confirm these

findings on additional combinatorial problems, as well as developing extensions of the model retaining completeness.

Another very interesting line for future developments relates to the parallelization of the hybrid algorithm.

Several possibilities can be considered here. On the one hand, any of the constituent algorithms could be internally

parallelized; for instance, the MA could use an island-based model, or we could distribute the evaluation of nodes

in the current level of the BS among a number of computers. This may well lead to improved results due to the

numerical speed-up in the BnB part, and the algorithmic speed-up in the MA component [28]. On the other hand,

a fully asynchronous functioning of both components (MA and BnB) with occasional communication is a very

appealing option for dealing with large-scale optimization tasks. The analysis of this asynchronous model, as well

as the design of alternative collaboration architectures promises to be a fruitful line for future research.
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