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Abstract

The Far From Most String Problem (FFMSP) is a string selection
problem. The objective is to find a string whose distance to other strings in
a certain input set is above a given threshold for as many of those strings as
possible. This problem has links with some tasks in computational biology
and its resolution has been shown to be very hard. We propose a memetic
algorithm (MA) to tackle the FFMSP. This MA exploits a heuristic objec-
tive function for the problem and features initialization of the population via
a Greedy Randomized Adaptive Search Procedure (GRASP) metaheuristic,
intensive recombination via path relinking and local improvement via hill
climbing. An extensive empirical evaluation using problem instances of both
random and biological origin is done to assess parameter sensitivity and draw
performance comparisons with other state-of-the-art techniques. The MA is
shown to perform better than these latter techniques with statistical signifi-
cance.

Keywords: Far from most string problem, String selection problems,
Bioinformatics, Metaheuristics, Memetic algorithms.

1. Introduction

From a very general point of view, string selection problems (SSPs) can
be defined as a class of problems involving the construction or identification
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of a string of symbols satisfying certain constraints (typically distance con-
straints) with respect to another certain set of strings provided as input. Such
problems have attracted a lot of interest for multiple reasons. From a the-
oretical (and even from a purely algorithmic) point of view, they constitute
a clear and well-defined domain in which computational complexity issues
can be analyzed and search/optimization algorithms can be put to work in
challenging conditions. From a more practical point of view, there are many
real-world problems which can be formalized as SSPs. Such problems are
notably found in the area of computational biology, in which technologi-
cal advances and the numerous initiatives are producing an unprecedented
flood of data (Reichhardt, 1999) very much requiring the use of powerful
computational tools to overcome the associated challenges (Meneses et al.,
2005). Among such problems of interest from the perspective of SSPs we can
cite discovering potential drug targets, creating diagnostic probes, designing
primers, locating binding sites, or identifying consensus sequences just to
name a few (Festa, 2007; Lanctot et al., 2003; Meneses et al., 2005).

SSPs can be classified in different ways. Following Pappalardo et al.
(2013), we can consider median SSPs (in which the goal is to find a string
that minimizes the sum of distances to strings in the input set), closest
SSPs (aiming to identify a string that is close to strings in the input set or
to fragments thereof), and farthest SSPs (whose goal is the recognition of
differences between sequences). Distinguishing SSPs have also been defined
(Lanctot et al., 2003) and can be regarded as a combination of closest and
farthest SSPs in which the input set is partitioned in two subsets, and a
string close to one of the partitions and far from the other one is sought.
In a biological context, median and closest SSPs relate to the identification
of consensus sequences or regions of similarity, a task of interest for creating
diagnostic probes for bacterial infections or discovering potential drug targets
(Festa, 2007) to give some examples. In this context, farthest SSPs relate
to, for example, the existence of hosts in which the string identified is not
preserved and hence should not be targeted.

Here we are specifically concerned with the Far From Most String
Problem (FFMSP), a problem which can be roughly described as identi-
fying a string whose distance is above a certain predefined threshold for as
many as possible strings in the input set. A formal definition of the problem
is provided in Section 2.1. As pointed out in Boucher et al. (2013), biological
sequence data is subject to frequent random mutations and errors and it can
thus be problematic to force the solution string to fit the entire input set.
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In this sense, the FFMSP provides an interesting tradeoff since it tries to
maximize the number of strings for which the distance constraint is fulfilled,
without thus requiring that this is done for all strings in the input set. Not
surprisingly, this turns out to be a task of formidable difficulty (a summary of
complexity results is provided in Section 2.2) so the use of complete methods
(exact or approximate) is often out of the question. Heuristic methods are
therefore required to solve this problem. See Section 2.3 for an overview of
related work in this direction.

We propose here a memetic approach to the FFMSP. Memetic algorithms
(MAs) (Moscato, 1989) are a broad class of metaheuristics that try to blend
together ideas from different optimization techniques, orchestrating the in-
terplay between global population-based search and local search components
– see Neri et al. (2012); Neri and Cotta (2012) for recent treatments of MAs;
we also refer to Ong et al. (2010) for an overview of the broad area of memetic
computing. Our MA is described in detail in Section 3. We have conducted
an extensive empirical evaluation of different variants of this technique and
–as shown in Section 4– it compares favorably to previous approaches in the
literature.

2. The Far From Most String Problem

In this section we formally state the FFMSP and analyze its complexity.
We then go on to summarize relevant related work.

2.1. Problem Statement

Let Σ denote a finite set of symbols (the alphabet), and let a string s
taken from such an alphabet be a finite sequence of zero or more of those
symbols (s ∈ Σ∗). We write |s| for the length of string s, s = s1s2 . . . sm
(si ∈ Σ, 1 6 i 6 m) to denote string s as a sequence of m symbols (si is i-th
symbol of s), and ε for the empty string.

Let s and r be two finite strings of same length taken from same alpha-
bet. The Hamming Distance (HD) between those strings is the number of
positions at which their symbols are different:

HD(s, r) =
∑

16i6|s|

[si 6= ri] (1)

where [] : B→ N is an indicator function ([true] = 1 and [false] = 0).
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An instance of the FFMSP is given by a triple (Σ, S, d), where Σ is a
finite alphabet of symbols, S = {S1, S2, . . . , Sn} is a finite set of n > 1
strings taken from Σ (Si ∈ Σm, 1 6 i 6 n), all of them with same length
(m), and 1 6 d 6 m is an integer standing for the distance threshold of the
problem.

A candidate solution x for the problem is a string of m symbols taken
from Σ (x ∈ Σm), and we say that x is far from string Si ∈ S ifHD(x, Si) > d
(if HD(x, Si) < d we say that x is near Si). The objective function f for a
candidate solution to the problem x is the number of strings in S that are
far from x:

f(x) =
∑
Si∈S

[HD(x, Si) > d] (2)

and the FFMSP consists of maximizing such an objective function.
Note that the problem is trivial if n < |Σ| as, in this case, a string x

that is far from all strings in S can be easily constructed by taking for xi
(1 6 i 6 |x|) a symbol that is not in position i for any string in S.

2.2. Computational Complexity of the FFMSP

The FFMSP is NP-hard in general by reduction from Independent Set
(cf. Lanctot et al. (2003)). The proof is provided for |Σ| = 3 and can be gen-
eralized to |Σ| > 4 with some changes. Of course, NP-hardness is a worst-case
result arising from a unidimensional analysis. A more careful multidimen-
sional analysis may indicate the existence of a structural parameter whose
value determines whether the problem’s resolution is tractable or not. Such
an analysis is the subject of parameterized complexity (see Fellows (2002)
for a general overview). Therein, the notion of tractability is captured by
class FPT (fixed-parameter tractable) (Downey and Fellows, 1995a), compris-
ing parameterized problems 〈A,k〉 for which a solution is computed in time
O(f(k)nc) where n = |A|, k is the parameter, f is an arbitrary function of k
only, and c is a constant independent of k. While the FFMSP has not been
directly addressed from the point of view of parameterized complexity, the
result in Lanctot et al. (2003) can be generalized to this domain since the
reduction used is a parameterized reduction (for most purposes, a reduction
between parameterized problems 〈A,k〉 and 〈B,k′〉 is termed a parameterized
reduction if B = Φ(A, k), with Φ being computable in time O(g(k)nc), and
k′ = h(k), where g, h are arbitrary functions of k and c is a constant inde-
pendent of k (Downey and Fellows, 1995a)). More precisely, the reduction
in Lanctot et al. (2003) is parameterized when the number of strings k that
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must be far from the constructed string is taken as a parameter of FFMSP
and the number k′ of vertices is the parameter in the Independent Set
problem. Unfortunately, Independent Set is W[1]-complete for this pa-
rameterization (Downey and Fellows, 1995b) so the FFMSP turns out to be
W[1]- hard. This means that –unlike FPT problems– for a fixed k there only
exist algorithms running in time O(f(k)ng(k)) with g(k)→∞ (Abrahamson
et al., 1995).

Having established the general hardness of the FFMSP, attention can
now be turned to its approximability. In this sense, it is known that W[1]-
hard problems have no fully polynomial-time approximation scheme unless
W[1]=FPT (Cai and Chen, 1997). The bad news does not end there since it
has been also shown that Independent Set does not admit a PTAS (Arora
et al., 1998), and hence neither does the FFMSP. As a matter of fact, Inde-
pendent Set is known to be APX-hard –i.e. for some ε > 0 finding a (1+ε)-
approximation is NP-hard– in general and even for some restricted cases
(Papadimitriou and Yannakakis, 1991). Currently, it is known to be inap-

proximable within a factor of n/2(logn)3/4+ε unless NP ⊆ BPTIME(2(logn)O(1)
)

(Khot and Ponnuswami, 2006). Note, finally, that APX-hardness of FFMSP
has been also established in the case |Σ| = 2 following a result of Boucher
et al. (2013).

2.3. Related Work

The FFMSP has attracted a lot of interest from the perspective of heuris-
tics due to the aforementioned hardness results. One of the first heuristic
attacks on the FFMSP was done by Meneses et al. (2005). They proposed
a base heuristic which greedily picked symbols to construct a string so as to
maximize the number of strings whose distance was above the threshold, and
augmented it with a local search procedure based on two-exchanges (which
provided an additional 1-5% improvement of the results). Later on, Festa
(2007) proposed a greedy randomized adaptive search procedure (GRASP)
(Feo and Resende, 1995) approach. GRASP tries to modulate the myopic
behavior of greedy techniques by making randomized choices from among
the elements of a restricted candidate list (comprising the best elements ac-
cording to their greedy value). A local search component analogous to that
in Meneses et al. (2005) was used. Overall, this approach provided improve-
ments of 10-16% using a similar computational time.

The GRASP in Festa (2007) has been benchmarked in several subsequent
publications. Mousavi (2010) proposed a beam search (BS) approach based
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on a heuristic objective function measuring the likelihood of candidate solu-
tions to lead to better solutions with as few changes as possible. This BS
approach was augmented with local search as well, and was shown to outper-
form GRASP in over 80% of test instances. The same objective function was
later used within the GRASP approach itself (Mousavi et al., 2012), leading
to huge improvements in solution quality. A genetic algorithm (GA) was
also proposed by Festa and Pardalos (2012). The main feature of this GA
was the use of a diversity-management policy by which the population was
divided into three tiers: the first (tier A) comprising the best solutions in the
previous generation, the second (tier B) comprising the results of applying
uniform crossover to a parent from tier A and another parent of tiers B/C,
and the third (tier C) comprising randomly generated solutions. This GA
provided average improvements of 54-257% over the previous GRASP, albeit
at a higher computational cost. Finally, Ferone et al. (2013) proposed a vari-
able neighborhood search (VNS) metaheuristic and its use both as a stand-
alone algorithm or within GRASP (as a local-search component). Also, path
relinking is used as an intensification procedure, either in GRASP, VNS or
hybrids thereof. The GRASP+VNS+PR hybrid was shown to provide the
best results (sometimes with an up to a 5-fold increase with respect to pure
GRASP), although GRASP+PR offered better performance in a scenario of
limited computational budget.

3. A Memetic Algorithm for the FFMSP

As anticipated in Section 1, an MA is a metaheuristic approach based
on the synergistic combination of local-search and population-based com-
ponents. This is commonly achieved via the integration of an evolutionary
algorithm (EA) and some local-search component(s), or in general via the
intelligent interplay of different problem-specific algorithms (Moscato, 1999;
Moscato and Cotta, 2010). In this sense, we have adopted an integrative
perspective (cf. Puchinger and Raidl (2005)), using an EA skeleton to which
several complex algorithmic add-ons are plugged. Figure 1 provides a pseudo-
code for the proposed memetic algorithm. This MA maintains a population
of solutions to the problem (parameter popSize corresponds to the size of this
population) that are firstly initialized and then recombined (with crossover
probability pX), mutated (with mutation probability pm) and improved (by
means of a local search procedure) until the allowed execution time is reached.
At the end, the best solution found is returned.
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Memetic Algorithm

function MA(I = (Σ, S = {S1, S2, . . . , Sn}, d), α, popSize, pX , pm)

1 : for i := 1 to popSize do

2 : popi := GRASP(α, I)

3 : Evaluate(popi)

4 : end for

5 : while allowed runtime not exceeded do

6 : if recombination is performed(pX) then

7 : parent1 := Select(pop)

8 : parent2 := Select(pop)

9 : offspring := Recombine(parent1, parent2)

10 : else

11 : offspring := Select(pop)

12 : end if

13 : offspring := Mutate(pm, offspring)

14 : offspring := Local Search(offspring , I)

15 : Evaluate(offspring)

16 : pop := Replace(pop, offspring)

17 : end while

18 : return best solution found

end function

Figure 1: Memetic Algorithm for FFMSP.

Since the problem does not pose constraints on the construction of solu-
tions, these can be naturally represented as strings of length m over alphabet
Σ. Although there exists a well-defined objective function f to be maximized,
corresponding to the number of strings in the instance that are far from the
current solution (see Equation 2), we have instead considered the heuristic
function proposed in Mousavi et al. (2012) as it reduces the number of local
optima of the resulting search landscape. This heuristic (which we henceforth
refer to as h) evaluates a solution taking into account its objective value but
also the likelihood of the solution to lead to better solutions with as few local
moves as possible. One important property of h is that f(s) > f(s′) implies
h(s) > h(s′). Details on the rationale of its design can be found in Mousavi

7



Heuristic Function

function h(s, I = (Σ, S = {S1, S2, . . . , Sn}, d))

m is |Si|, ∀i . 1 6 i 6 n

1 : near := 0

2 : for i := 1 to n do

3 : di := HD(s, Si)

4 : ci := m− di
5 : if di < d then

6 : near := near + 1

7 : end if

8 : end for

9 : f := n− near

10 : if near = 0 then

11 : GpC := 0

12 : else

13 : sumGpC := 0

14 : for i := 1 to n, di < d do

15 : gi := 1

16 : for j := 1 to n, i 6= j do

17 : sumP := 0

18 : for c := cj to ci do

19 : sumP := sumP + T [ci, c]/|Σ|ci
20 : end for

21 : gi := gi + sumP

22 : end for

23 : sumGpC := sumGpC + gi/ci
24 : end for

25 : GpC := sumGpC/near

26 : end if

27 : return (n+ 1)× f + GpC

end function

Figure 2: Heuristic function for FFMSP.
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et al. (2012), and we reproduce its pseudo-code in Figure 2 for completeness
of description of our proposal. In this pseudo-code, T is a bi-variable function
from N0 × Z to N0 that can be precomputed as follows:

T (0, 0) = 1
T (0, k) = 0, if k 6= 0
T (L, k) = T (L− 1, k − 1) + (|Σ| − 2)T (L− 1, k) + T (L− 1, k + 1), if L > 0

and, as a result, h can be calculated in O(nm + n2), having paid a one-off
time cost of O(m2) to initialize a bi-dimensional array corresponding to T .

Initialization of individuals in the population was done by means of a
Greedy Randomized Adaptive Search Procedure (GRASP) similar to the one
proposed in Ferone et al. (2013). Pseudo-code for this procedure is shown in
Figure 3, where Vj(c) stands for the total number of occurrences of symbol
c in position j in any of the strings in the given instance, and V min

j (V max
j )

is the number of occurrences of the least (most) frequent symbol at position
j. As can be seen, the procedure constructs a solution by adding a symbol
to the string on each iteration. This symbol is chosen uniformly at random
from a restricted candidate list (RCL) that includes candidate symbols. A
parameter α (0 6 α 6 1) is introduced as a generalization of the original
GRASP component of the algorithm by Ferone et al. (2013), in order to
control the degree of greediness used to generate the solution: smaller values
for this parameter imply the generation of greedier solutions and larger values
introduce more randomness. For instance, if α is 0, so is β, and then only
the least frequent symbol is included in the RCL (this would correspond to
a greedy selection strategy where the least frequent symbol for each position
would be selected). For greater values of α, more symbols can be included
in the RCL (all of them when β = 1), and then selection is more random.

Mutation of individuals has been implemented by substituting (with prob-
ability pm) symbols in current string with a random symbol from Σ, and
recombination has been performed by means of an intelligent operator that
uses path relinking (PR) (Glover et al., 2000) in order to attain a sensi-
ble recombination of information from parents. PR finds new solutions by
exploring paths that connect high quality solutions in neighborhood space.
This is achieved by starting a search in one of those solutions (the initiating
one) and performing local moves that lead to another solution (the guiding
one). Figure 4 shows the pseudo-code of this procedure for combining two
parent solutions (p1 and p2) for the FFMSP, where the worse parent (ac-
cording to heuristic function h) acts as the initiating solution (s) and the
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GRASP Algorithm

function GRASP(α, I = (Σ, S = {S1, S2, . . . , Sn}, d))

m is |Si|, ∀i . 1 6 i 6 n

1 : Vj(c) :=
∑

Si∈S, Sij=c 1, ∀c ∈ Σ, ∀j . 1 6 j 6 m

2 : V min
j := min{Vj(c) | c ∈ Σ}, ∀j . 1 6 j 6 m

3 : V max
j := max{Vj(c) | c ∈ Σ}, ∀j . 1 6 j 6 m

4 : s := ε

5 : β := Random[0,α]

6 : for j := 1 to m do

7 : RCLj := ∅
8 : µ := V min

j + β(V max
j − V min

j )

9 : for c ∈ Σ, Vj(c) 6 µ do

10 : RCLj := RCLj ∪ {c}
11 : end for

12 : s := s Random(RCLj)

13 : end for

14 : return(s)

end function

Figure 3: GRASP Algorithm for FFMSP.

better parent as the guiding one (s∗). As it can be seen, differences between
both solutions (as their positions and symbols in s∗) are firstly computed
(set ∆), thus defining the set of local moves to be done. Then, a path from
the initiating solution towards the guiding one is generated by incorporating
into the former, on each move, the component from the set ∆ that leads to
a better intermediate solution (the incorporation of the selected component
(i∗, s∗) is done by replacing the symbol at position i∗ with s∗ in the current
solution). This procedure is repeated until all moves have been performed
(i.e., the guiding solution has been reached) and the best solution found along
the path (s∗) is returned as a child.

Finally, improvement of solutions is done through a sequential hill climb-
ing local search procedure on the search space induced by h heuristic function
(see Figure 5), where a local move corresponds to modifying a single symbol
in the solution with another one from the alphabet.
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Path Relinking Crossover Algorithm

function Path Relinking(p1, p2, I = (Σ, S = {S1, S2, . . . , Sn}, d))

m is |Si|, ∀i . 1 6 i 6 n

1 : s := arg min{h(s, I) | s ∈ {p1, p2}}
2 : s∗ := arg max{h(s, I) | s ∈ {p1, p2}}
3 : h∗ := h(s∗, I)

4 : ∆ := {(i, s∗i ) | i ∈ {1 . . .m}, si 6= s∗i }
5 : while ∆ 6= ∅ do
6 : (i∗, c∗) := arg max{h(s1s2 . . . si−1 c si+1 . . . sm, I) | (i, c) ∈ ∆}
7 : s := s1s2 . . . si∗−1 c

∗ si∗+1 . . . sm
8 : ∆ := ∆− {(i∗, c∗)}
9 : if h(s, I) > h∗ then

10 : s∗ := s

11 : h∗ := h(s, I)

12 : end if

13 : end while

14 : return(s∗)

end function

Figure 4: Path Relinking Crossover Algorithm for FFMSP.

4. Results and Discussion

In order to evaluate the different heuristics, we have considered two bench-
mark sets. Instances in the first set – henceforth referred to as RandomSet
– are composed of different numbers (n) of strings of the same length (m)
randomly selected according to a uniform distribution from the alphabet Σ =
{A,T,C,G}. Eighteen subsets of instances have been defined using different
numbers of strings (n ∈ {100, 200}), string lengths (m ∈ {300, 600, 800})
and distance thresholds (d ∈ {0.75 ·m, 0.80 ·m, 0.85 ·m}). For each of the
eighteen subsets five different instances have been generated yielding thus a
total of 90 instances.

The second set – referred to as RealSet – is also composed of 90
instances with the same combination of parameters as those in Random-
Set, but instead of being randomly generated, different strings in each in-
stance have been selected from a random segment of a real genome, namely
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Local Search Algorithm

function Local Search(s, I = (Σ, S = {S1, S2, . . . , Sn}, d))

m is |Si|, ∀i . 1 6 i 6 n

1 : improvement := true

2 : while improvement do

3 : improvement := false

4 : for j := 1 to m do

5 : for c ∈ Σ, c 6= sj do

6 : s′ := s1s2 . . . sj−1 c sj+1 . . . sm
7 : if h(s′, I) > h(s, I) then

8 : s := s′

9 : improvement := true

10 : end if

11 : end for

12 : end for

13 : end while

14 : return(s)

end function

Figure 5: Local Search Algorithm for FFMSP.

Phytophthora Ramorum’s genome (Tyler et al., 2006) (available at http:

//genome.jgi.doe.gov/Phyra1_1/Phyra1_1.download.html).
Regarding the programs used in the experiments, all algorithms were

coded in C and compiled using gcc under Linux (the hybrid GRASP+VNS+PR
by Ferone et al. (2013) was available from their authors and we coded re-
maining algorithms). With the purpose of making a fair comparison, all
executions for different algorithms were performed on the same machine (HP
Proliant SL170s computer, Intel Xeon X5660 2.8 GHz processor, 8GB RAM,
CentOS 5.5 operating system) with a time limit of 600 seconds per execu-
tion. In all experiments, crossover probability was set to pX = 0.9, mutation
probability was pm = 1/m (m stands for the length of strings in the in-
stance), population size was popSize = 100 and binary tournament was used
to perform selection.

In order to report results in tables and figures uniformly, we calculate
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the relative percentage distance (RPD) of the solution obtained by each
algorithm from the best result for the corresponding instance obtained by
any of the compared algorithms (defined as (solbest − sol)× 100/solbest), and
provide statistical values for those distances.

The statistical analysis of the results of the experiments was done us-
ing software available on the web page of Research Group Soft Computing
and Intelligent Information Systems at the University of Granada (http:
//sci2s.ugr.es/sicidm). With the aim of analyzing the statistical signif-
icance of the results, we used the following methodology: firstly, we per-
formed an Aligned Friedman Rank Test (JL Hodges Jr and Lehmann, 1962),
a multiple-comparison non-parametric test that aims to detect significant dif-
ferences between the behavior of two or more algorithms and then ranks them
from the best to worst. If, as a result of this test, the null hypothesis stating
equality of rankings between the populations is rejected, we proceed to post-
hoc procedures in order to compare the control algorithm (the best perform-
ing one) with the remaining algorithms. The post-hoc procedures that we
have considered are Bonferroni–Dunn’s (Dunn, 1961), Holm’s (Holm, 1979),
Hochberg’s(Hochberg, 1988), Hommel’s (Hommel, 1988), Holland’s (Holland
and Copenhaver, 1987), Rom’s (Rom, 1990), Finner’s (Finner, 1993) and Li’s
(Li, 2008) procedures. Finally, we report adjusted p-values for different post-
hoc procedures (the smaller overall significance level at which the particular
null hypothesis stating equality between the distributions obtained by the
control algorithm and the other compared algorithm would be rejected).

4.1. Parameterization and Sensitivity Analysis

So as to analyze the influence of the different algorithmic components and
parameters in the performance of the proposed MA, we firstly compared dif-
ferent variants of the algorithm. For these experiments, we used instances in
RandomSet, and performed 10 independent executions for each algorithm
and instance (thus, 50 executions per subset and algorithm).

The different components and parameters of the MA that we took into
account were:

• Population initialization: we considered different values for parameter
α in the GRASP algorithm (Figure 3) used during the initialization of
the MA population (α ∈ {0.1, 0.25, 0.5}). This parameter controls the
greediness of GRASP, so that greater values imply less greediness. We
also considered completely randomly initializing individuals.
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• Recombination operator: we considered two possibilities; either using
uniform crossover (UX) or using a path relinking (PR) algorithm (Fig-
ure 4).

• Local search operator: we considered the possibility of using the hill
climbing operator (Figure 5) after mutation in the MA loop or not
using local search at all.

In order to name different algorithms, term GRASPp indicates using
GRASP for initializing the population and setting α = p in this compo-
nent of the algorithm. If the population was initialized randomly, the name
of the algorithm instead includes the term RND. If the name includes the
term PR, then path relinking was used as the crossover operator. Term
UX denotes the use of uniform crossover and term HC indicates that the
algorithm uses hill climbing as the local search operator. According to this
convention, MAGRASP0.25+PR+HC, for instance, is a memetic algorithm that
uses path relinking and hill climbing and sets α = 0.25 in the GRASP al-
gorithm for initializing the population. MARND+UX corresponds to using
uniform crossover, no local search and random initialization of population
(note that this particular algorithm is not a memetic algorithm but a genetic
algorithm).

Figure 6 shows the results of these experiments as boxplots for the RPD
from best solutions of results obtained by each algorithm on each subset for
different numbers of strings and string lengths when the distance thresh-
old is d = 0.80 ·m. It can be seen that, in most of the subsets, the memetic
algorithms using GRASP with path relinking and hill climbing obtain best re-
sults, and overall, a small value for α leads to better quality solutions. When
n = 200 and m > 600, algorithms using GRASP with uniform crossover and
no local search obtain best results. This may be due to the comparatively
higher computational cost of PR and HC in these particular instances, which
may consume the CPU budget faster (note at any rate that the difference
is small with respect to MAGRASP+HC+PR). This is further vindicated by
the comparatively worse results of UX in combination with HC, indicating
the interplay of the local improvement operator is better with PR (a more
intensive recombination operator, capable of efficiently locating regions of
interest) than with UX (a purely explorative, information-mixing operator).
For d = 0.85·m, results are similar (Figure 7), but best solutions are obtained
by algorithms using GRASP with uniform crossover and hill climbing when
n = 200 and m = 600 (these algorithms also obtain results as good as those
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Figure 6: Box plots for relative percentage distances (RPD) from best solutions of results
obtained by each memetic algorithm for instances in RandomSet and distance threshold
d = 0.80 ·m. We have considered 6 datasets, each one comprising 5 different instances.
Instances on each dataset are characterized by a number of strings (n) of the same length
(m) and a distance threshold (d). For each combination of n/m parameters, box plots in
left-to-right order correspond to algorithms in legend in top-to-bottom, left-to-right order.

obtained using path relinking when n = 200 and m = 300 or m = 800, but
perform worse in other cases). No differences could be observed in the case
of d = 0.75 ·m, as all algorithms were able to obtain optimal solutions in all
runs.

To detect statistical significances in the performance of different memetic
algorithms, we performed an Aligned Friedman Rank Test, with the re-
sults shown in Table 1 (distributed according to χ2 with 15 degrees of free-
dom: 844.06). The p-value calculated by this test is p = 2.44 · 10−10, and
this provides strong evidence for rejecting the null hypothesis that states
equality of rankings between the populations. It can also be observed that
MAGRASP0.1+PR+HC is ranked as the best performing algorithm followed by
MAGRASP0.25+PR+HC and MAGRASP0.5+PR+HC. As the Aligned Friedman Rank
Test found statistical differences between the different algorithms, we pro-
ceeded to perform post-hoc procedures, comparing the control algorithm
(MAGRASP0.1+PR+HC) with those remaining. Table 2 shows adjusted p-values
for the different procedures. The null hypothesis that states equality between
the distributions obtained by the control algorithm and the other compared
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Figure 7: Box plots for relative percentage distances (RPD) from best solutions of results
obtained by each memetic algorithm for instances in RandomSet and distance threshold
d = 0.85 ·m. We have considered 6 datasets, each one comprising 5 different instances.
Instances on each dataset are characterized by a number of strings (n) of the same length
(m) and a distance threshold (d). For each combination of n/m parameters, box plots in
left-to-right order correspond to algorithms in legend in top-to-bottom, left-to-right order.

algorithm was rejected by all procedures for all algorithms (results are statis-
tically significant) except for MAGRASP0.25+PR+HC and MAGRASP0.5+PR+HC. In
the case of MAGRASP0.5+PR+HC, all procedures except for Bonferroni–Dunn’s
reject null hypothesis (with p-values equal to 0.02 and 0.04, thus differences
are statistically significant). Finally, for MAGRASP0.25+PR+HC, none of the
procedures found statistical evidence to reject the null hypothesis, thus the
performance of this algorithm cannot be considered statistically different
from the one of MAGRASP0.1+PR+HC.

As a result of this analysis, it can be concluded that incorporating GRASP
(with an small setting for parameter α) in order to initialize the population,
using path relinking as a crossover operator and performing local search
by means of hill climbing yields overall best results and thus using these
components in the memetic algorithm is beneficial.

4.2. Comparison to state-of-the-art algorithms

In this section we compare one of the best performing memetic algorithm
(MAGRASP0.1+PR+HC – denoted by MAGRASP+HC+PR henceforth for simplicity)
to state-of-the-art algorithms for the FFMSP (hybrid GRASP+VNS+PR in

16



Table 1: Results for the Aligned Friedman Rank Test on RandomSet instances for dif-
ferent memetic algorithms.

position algorithm ranking

1st MAGRASP0.1+PR+HC 4125.76
2nd MAGRASP0.25+PR+HC 4482.05
3rd MAGRASP0.5+PR+HC 4584.02
4th MAGRASP0.1+UX 5591.35
5th MAGRASP0.5+UX 5699.21
6th MAGRASP0.25+UX 5851.03
7th MARND+UX 6206.48
8th MAGRASP0.5+PR 7615.16
9th MARND+PR+HC 7997.19

10th MAGRASP0.1+UX+HC 8206.66
11th MAGRASP0.25+UX+HC 8473.52
12th MAGRASP0.5+UX+HC 8504.02
13th MAGRASP0.25+PR 8569.03
14th MARND+UX+HC 8722.04
15th MAGRASP0.1+PR 9446.67
16th MARND+PR 11133.78

Table 2: Adjusted p-values for N × 1 comparisons of control algorithm
(MAGRASP0.1+PR+HC) with different memetic algorithms for the Aligned Friedman Rank
Test on RandomSet instances.
algorithm Bonf Holm Hoch Homm Holl Rom Finn Li

MAGRASP0.25+PR+HC 1.00E0 7.00E-2 7.00E-2 7.00E-2 7.00E-2 7.00E-2 7.00E-2 7.00E-2
MAGRASP0.5+PR+HC 2.90E-1 4.00E-2 4.00E-2 4.00E-2 4.00E-2 4.00E-2 2.00E-2 2.00E-2
MAGRASP0.1+UX 1.13E-12 2.25E-13 2.25E-13 2.25E-13 2.25E-13 2.25E-13 8.66E-14 8.06E-14
MAGRASP0.5+UX 1.47E-14 3.93E-15 3.93E-15 3.93E-15 4.00E-15 3.74E-15 1.22E-15 1.05E-15
MAGRASP0.25+UX 1.98E-17 6.61E-18 6.61E-18 6.61E-18 0.0 6.28E-18 0.0 1.42E-18
MARND+UX 3.70E-25 1.48E-25 1.48E-25 1.48E-25 0.0 1.41E-25 0.0 2.65E-26
MAGRASP0.5+PR 9.50E-70 4.43E-70 4.43E-70 4.43E-70 0.0 4.21E-70 0.0 6.80E-71
MARND+PR+HC 1.08E-85 5.74E-86 5.74E-86 5.74E-86 0.0 5.46E-86 0.0 7.71E-87
MAGRASP0.1+UX+HC 3.89E-95 2.34E-95 2.34E-95 2.34E-95 0.0 2.22E-95 0.0 2.79E-96
MAGRASP0.25+UX+HC 6.99E-108 4.66E-108 4.66E-108 4.66E-108 0.0 4.43E-108 0.0 5.01E-109
MAGRASP0.5+UX+HC 2.17E-109 1.59E-109 1.59E-109 1.59E-109 0.0 1.51E-109 0.0 1.55E-110
MAGRASP0.25+PR 1.22E-112 9.78E-113 9.78E-113 9.78E-113 0.0 9.30E-113 0.0 8.76E-114
MARND+UX+HC 1.78E-120 1.55E-120 1.55E-120 1.55E-120 0.0 1.47E-120 0.0 1.28E-121
MAGRASP0.1+PR 3.58E-161 3.34E-161 3.34E-161 3.34E-161 0.0 3.17E-161 0.0 2.56E-162
MARND+PR 6.60E-279 6.60E-279 6.60E-279 6.60E-279 0.0 6.27E-279 0.0 4.73E-280

Ferone et al. (2013) – that we denote by GRASPFFR– and GRASP algorithm
in Mousavi et al. (2012) – denoted by GRASPMou). For GRASPFFR we
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set corresponding parameters as indicated by the authors of that algorithm,
and for GRASPMou we set γ = 0.95, after observing that using this setting
provides better results than using the one suggested by the authors of this
algorithm. We firstly made a comparison on instances in RandomSet, for
which 20 independent runs on each of the instances were executed by each of
the algorithms (thus, 100 executions per subset and algorithm). Results are
shown numerically in Table 3 as the mean objective value obtained by each of
the algorithms on each subset, together with the mean and standard devia-
tion for RPD for best solutions and mean improvement percentage of results
obtained by MAGRASP+HC+PR with respect to those obtained by GRASPFFR

and GRASPMou.

Table 3: Results obtained by MAGRASP+HC+PR, GRASPFFR and GRASPMou for in-
stances in RandomSet. We have considered 18 datasets, each one comprising 5 different
instances. Instances on each dataset are characterized by a number of strings (n) of the
same length (m) and a distance threshold (d). Table shows mean solution obtained by
each algorithm (sol), along with statistical values (mean (µ) and standard deviation (σ))
for relative percentage distance (RPD) from best solutions of results obtained by each
algorithm. For GRASPFFR and GRASPMou algorithms, mean improvement percentage
of solutions (imp.%) obtained by MAGRASP+HC+PR with respect to the ones obtained by
these algorithms is also shown.

MAGRASP+HC+PR GRASPFFR GRASPMou

d n m sol. RPD µ± σ sol. RPD µ± σ imp.% sol. RPD µ± σ imp.%
0.75 ·m 100 300 100.00 0.00 ± 0.00 100.00 0.00 ± 0.00 0.00 100.00 0.00 ± 0.00 0.00

100 600 100.00 0.00 ± 0.00 100.00 0.00 ± 0.00 0.00 100.00 0.00 ± 0.00 0.00
100 800 100.00 0.00 ± 0.00 100.00 0.00 ± 0.00 0.00 100.00 0.00 ± 0.00 0.00
200 300 200.00 0.00 ± 0.00 200.00 0.00 ± 0.00 0.00 200.00 0.00 ± 0.00 0.00
200 600 200.00 0.00 ± 0.00 200.00 0.00 ± 0.00 0.00 200.00 0.00 ± 0.00 0.00
200 800 200.00 0.00 ± 0.00 200.00 0.00 ± 0.00 0.00 200.00 0.00 ± 0.00 0.00

0.80 ·m 100 300 84.82 1.14 ± 0.75 80.78 5.85 ± 1.51 4.71 70.99 17.27 ± 1.65 16.13
100 600 87.08 1.27 ± 0.72 79.12 10.30 ± 1.47 9.03 70.83 19.69 ± 1.06 18.42
100 800 89.90 1.21 ± 0.81 79.52 12.60 ± 1.75 11.40 71.08 21.88 ± 0.97 20.68
200 300 109.58 2.34 ± 1.49 105.85 5.66 ± 2.26 3.32 83.04 25.98 ± 1.69 23.64
200 600 101.23 2.86 ± 1.91 88.95 14.61 ± 2.60 11.76 80.90 22.29 ± 2.65 19.44
200 800 93.82 4.26 ± 2.28 80.09 18.27 ± 3.26 14.01 79.77 18.59 ± 1.97 14.33

0.85 ·m 100 300 32.58 3.61 ± 2.28 18.41 45.60 ± 5.55 41.99 30.10 10.95 ± 1.61 7.34
100 600 28.76 4.76 ± 3.12 4.89 83.82 ± 3.38 79.06 25.36 16.01 ± 2.12 11.25
100 800 27.96 2.90 ± 2.61 2.58 91.03 ± 3.25 88.13 24.33 15.51 ± 1.70 12.61
200 300 34.49 3.64 ± 2.29 14.85 58.57 ± 4.34 54.93 32.69 8.62 ± 2.80 4.98
200 600 26.17 6.54 ± 4.39 2.26 91.93 ± 2.60 85.39 25.54 8.76 ± 2.84 2.22
200 800 25.61 4.42 ± 2.95 0.60 97.76 ± 1.83 93.35 23.71 11.51 ± 2.97 7.10

For instances with d = 0.75·m, all the algorithms were always able to find
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optimal solutions on all instances. In the case of d = 0.80 ·m, the best results
were obtained by MAGRASP+HC+PR followed by GRASPFFR. The average
improvement percentage of MAGRASP+HC+PR over GRASPFFR ranges from
3.32% for n = 200 and m = 300 to 14.01% for n = 200 and m = 800. The
mean average improvement of MAGRASP+HC+PR over GRASPFFR is 9.04%
whereas it is 18.77% for MAGRASP+HC+PR over GRASPMou. Figure 8 shows
the results of these experiments as boxplots for the RPD from the best solu-
tions of results obtained by each algorithm on each subset. As can be seen,
the average improvement percentage of MAGRASP+HC+PR over GRASPFFR

increases with m, both for n = 100 and n = 200. In the case of GRASPMou,
this percentage is rather stable for n = 100 and seems to decrease gently
for increasing m with n = 200, but is always larger than for GRASPFFR.
For instances with d = 0.85 · m, the best results are again obtained by
MAGRASP+HC+PR followed by GRASPMou. The average improvement per-
centage of MAGRASP+HC+PR over GRASPMou ranges from 2.22% for n = 200
and m = 600 to 12.61% for n = 100 and m = 800. The mean aver-
age improvement of MAGRASP+HC+PR over GRASPMou is 7.58% whereas for
MAGRASP+HC+PR over GRASPFFR it is 73.81%.

Table 4 shows statistical results for an Aligned Friedman Rank Test (dis-
tributed according to χ2 with 2 degrees of freedom: 1327.33). The p-value
calculated by this test is 0, and this indicates strong evidence for rejecting
the null hypothesis that states equality of rankings between the populations.
We can also observe that MAGRASP+HC+PR is ranked as the best performing
algorithm followed by GRASPMou and GRASPFFR.

Table 4: Results for the Aligned Friedman Rank Test on RandomSet instances for
MAGRASP+HC+PR and different state-of-the-art algorithms.

position algorithm ranking

1st MAGRASP+HC+PR 1471.59
2nd GRASPMou 2998.60
3rd GRASPFFR 3631.29

Since the Aligned Friedman Rank Test found statistical differences be-
tween the different algorithms, we proceeded to perform post-hoc procedures
in order to compare the control algorithm (MAGRASP+HC+PR) with other al-
gorithms (GRASPMou and GRASPFFR). In all cases and with all procedures,
the null hypothesis that states equality between the distributions obtained
by the control algorithm and the other compared algorithm was rejected,
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Figure 8: Box plots for relative percentage distances (RPD) from best solutions of results
obtained by state-of-the-art algorithms for the FFMSP (GRASPFFR and GRASPMou)
and MAGRASP+HC+PR for instances in RandomSet and distance threshold d = 0.80 ·m.
Instances on each dataset are characterized by a number of strings (n) of the same length
(m) and a distance threshold (d). For each combination of n/m parameters, box plots in
left-to-right order correspond to algorithms in legend in top-to-bottom order.

thus there are statistical differences between the control algorithm and those
remaining. The adjusted p-values for different post-hoc procedures are shown
in Table 5. These p-values are 0 or very close to 0 and hence the results are
considered statistically significant.

Table 5: Adjusted p-values for N×1 comparisons of control algorithm (MAGRASP+HC+PR)
with different state-of-the-art algorithms for the Aligned Friedman Rank Test on Ran-
domSet instances.
algorithm Bonf Holm Hoch Homm Holl Rom Finn Li

GRASPFFR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GRASPMou 1.73E-189 8.66E-190 8.66E-190 8.66E-190 0.0 8.66E-190 0.0 8.66E-190

For instances in RealSet we also executed 20 independent runs by each
of the algorithms on each instance (thus, 100 executions per subset and al-
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Figure 9: Box plots for relative percentage distances (RPD) from best solutions of results
obtained by state-of-the-art algorithms for the FFMSP (GRASPFFR and GRASPMou)
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Instances on each dataset are characterized by a number of strings (n) of the same length
(m) and a distance threshold (d). For each combination of n/m parameters, box plots in
left-to-right order correspond to algorithms in legend in top-to-bottom order.

gorithm). The results are also shown numerically in Table 6 as the mean
objective value obtained by each of the algorithms on each subset, together
with the mean and standard deviation for RPD for best solutions and mean
improvement percentage of solutions obtained by MAGRASP+HC+PR with re-
spect to those obtained by GRASPFFR and GRASPMou.

The results are very similar to those on RandomSet instances. For
instances with d = 0.75 · m, all algorithms were always able to find opti-
mal solutions on all instances. In the case of d = 0.80 ·m, the best results
were obtained by MAGRASP+HC+PR followed by GRASPFFR. The average
improvement percentage of MAGRASP+HC+PR over GRASPFFR ranges from
4.06% for n = 200 and m = 300 to 13.14% for n = 100 and m = 800. The
mean average improvement of MAGRASP+HC+PR over GRASPFFR is 8.94%
whereas for MAGRASP+HC+PR over GRASPMou it is 17.36%. Figure 9 shows
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the results of these experiments as boxplots for the RPD from the best solu-
tions of results obtained by each algorithm on each subset. For instances with
d = 0.85 ·m, the best results are again obtained by MAGRASP+HC+PR followed
by GRASPMou. The average improvement percentage of MAGRASP+HC+PR

over GRASPMou ranges from 4.82% for n = 200 and m = 600 to 11.05% for
n = 100 and m = 600. The mean average improvement of MAGRASP+HC+PR

over GRASPMou is 7.77% whereas for MAGRASP+HC+PR over GRASPFFR it
is 59.25%. The trends are analogous as are those found in RandomSet,
confirming the sustained advantage of MAGRASP+HC+PR and the relative per-
formance of GRASPMou and GRASPFFR.

Table 7 shows statistical results for the Aligned Friedman Rank Test (dis-
tributed according to χ2 with 2 degrees of freedom: 1324.00). The p-value
calculated by this test is 0, and this indicates strong evidence for rejecting
the null hypothesis that states equality of rankings between the populations.
We can also observe that MAGRASP+HC+PR is ranked as the best perform-
ing algorithm followed by GRASPMou and GRASPFFR. Due to statistical
differences between the different algorithms, we proceeded to perform post-
hoc procedures in order to compare the control algorithm (MAGRASP+HC+PR)
with other algorithms (GRASPMou and GRASPFFR). In all cases and with
all procedures, the null hypothesis that states equality between the distribu-
tions obtained by the control algorithm and the other compared algorithm
was rejected, thus there are statistical differences between the control al-
gorithm and those remaining. The adjusted p-values for different post-hoc
procedures are shown in Table 8 and again the results can be considered sta-
tistically significant (let us also note en passant that significant results are
also obtained if the analysis is replicated separately for different values of d,
m and n).

Finally, with the aim of comparing the any-time behavior of the differ-
ent algorithms, Figures 10–11 show the solution quality (as average RPD
to best solutions) together with the execution time (SQT) provided by the
different algorithms for instances in RealSet and the different settings for
n, m and d (we have omitted SQTs for d = 0.75 ·m as all algorithms reach
optimal solutions right at the beginning of execution). It can be seen that
MAGRASP+HC+PR produces better solutions than the remaining algorithms
throughout the execution time in all cases, except for the case of n = 200,
m = 300 and d = 0.80 ·m, for which GRASPFFR produces better results for
the first 153 seconds of the execution.
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Table 6: Results obtained by MAGRASP+HC+PR, GRASPFFR and GRASPMou for in-
stances in RealSet. We have considered 18 datasets, each one comprising 5 different
instances. Instances on each dataset are characterized by a number of strings (n) of the
same length (m) and a distance threshold (d). Table shows mean solution obtained by
each algorithm (sol), along with statistical values (mean (µ) and standard deviation (σ))
for relative percentage distance (RPD) from best solutions of results obtained by each
algorithm. For GRASPFFR and GRASPMou algorithms, mean improvement percentage
of solutions (imp.%) obtained by MAGRASP+HC+PR with respect to the ones obtained by
these algorithms is also shown.

MAGRASP+HC+PR GRASPFFR GRASPMou

d n m sol. RPD µ± σ sol. RPD µ± σ imp.% sol. RPD µ± σ imp.%
0.75 ·m 100 300 100.00 0.00 ± 0.00 100.00 0.00 ± 0.00 0.00 100.00 0.00 ± 0.00 0.00

100 600 100.00 0.00 ± 0.00 100.00 0.00 ± 0.00 0.00 100.00 0.00 ± 0.00 0.00
100 800 100.00 0.00 ± 0.00 100.00 0.00 ± 0.00 0.00 100.00 0.00 ± 0.00 0.00
200 300 200.00 0.00 ± 0.00 200.00 0.00 ± 0.00 0.00 200.00 0.00 ± 0.00 0.00
200 600 200.00 0.00 ± 0.00 200.00 0.00 ± 0.00 0.00 200.00 0.00 ± 0.00 0.00
200 800 200.00 0.00 ± 0.00 200.00 0.00 ± 0.00 0.00 200.00 0.00 ± 0.00 0.00

0.80 ·m 100 300 92.66 0.57 ± 0.71 87.03 6.62 ± 1.57 6.04 80.34 13.81 ± 1.36 13.24
100 600 96.68 0.74 ± 0.57 86.30 11.41 ± 1.51 10.67 81.70 16.14 ± 1.25 15.40
100 800 95.68 0.34 ± 0.54 83.05 13.48 ± 1.64 13.14 78.37 18.39 ± 1.46 18.05
200 300 126.21 2.34 ± 1.58 120.92 6.40 ± 2.18 4.06 101.13 21.79 ± 2.13 19.45
200 600 125.53 2.58 ± 1.90 114.39 11.33 ± 2.53 8.74 99.06 23.07 ± 1.77 20.49
200 800 116.71 3.23 ± 1.87 103.43 14.24 ± 1.91 11.01 95.55 20.76 ± 1.59 17.54

0.85 ·m 100 300 37.96 2.69 ± 2.34 26.45 32.30 ± 5.84 29.61 34.92 10.47 ± 2.03 7.78
100 600 34.23 3.81 ± 2.27 10.18 71.82 ± 6.83 68.01 30.31 14.86 ± 1.89 11.05
100 800 31.07 4.07 ± 3.12 4.73 86.08 ± 7.17 82.01 27.61 14.65 ± 2.39 10.58
200 300 47.98 4.43 ± 2.65 32.66 35.39 ± 8.39 30.97 44.12 12.03 ± 2.45 7.60
200 600 40.65 4.52 ± 2.47 16.69 63.55 ± 14.51 59.02 38.50 9.34 ± 2.25 4.82
200 800 31.48 4.00 ± 2.56 3.41 89.86 ± 4.05 85.86 29.91 8.82 ± 2.19 4.82

Table 7: Results for the Aligned Friedman Rank Test on RealSet instances for
MAGRASP+HC+PR and different state-of-the-art algorithms.

position algorithm ranking

1st MAGRASP+HC+PR 1447.82
2nd GRASPMou 3014.03
3rd GRASPFFR 3639.63

Table 8: Adjusted p-values for N×1 comparisons of control algorithm (MAGRASP+HC+PR)
with different state-of-the-art algorithms for the Aligned Friedman Rank Test on RealSet
instances.
algorithm Bonf Holm Hoch Homm Holl Rom Finn Li

GRASPFFR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GRASPMou 2.99E-199 1.49E-199 1.49E-199 1.49E-199 0.0 1.49E-199 0.0 1.49E-199
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Figure 10: Solution quality over time as relative percentage distances (RPD) from best
solutions of results obtained by state-of-the-art algorithms for the FFMSP (GRASPFFR

and GRASPMou) and MAGRASP+HC+PR for instances in RealSet and distance threshold
d = 0.80 ·m. Instances on each dataset are characterized by a number of strings (n) of
the same length (m) and a distance threshold (d).
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Figure 11: Solution quality over time as relative percentage distances (RPD) from best
solutions of results obtained by state-of-the-art algorithms for the FFMSP (GRASPFFR

and GRASPMou) and MAGRASP+HC+PR for instances in RealSet and distance threshold
d = 0.85 ·m. Instances on each dataset are characterized by a number of strings (n) of
the same length (m) and a distance threshold (d).
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4.3. Very Large Real Instances

Finally, we have compared our proposal with state-of-the-art algorithms
on very large real instances. For this benchmark, nine subsets of instances
have been defined using 400 strings (n=400) and different string lengths (m ∈
{1600, 2400, 3200}) and distance thresholds (d ∈ {0.75 ·m, 0.80 ·m, 0.85 ·m}).
For each of the nine subsets, five different instances have been generated
yielding thus a total of 45 instances.

The results of this comparison are shown in Table 9. It can be ob-
served that for d = 0.75 · m optimal solutions were found in all cases by
MAGRASP+HC+PR and GRASPMou. For d = 0.80 ·m and d = 0.85 ·m, the best
results are obtained by MAGRASP+HC+PR. The mean average improvement
of MAGRASP+HC+PR over GRASPFFR is 18.12% whereas for MAGRASP+HC+PR

over GRASPMou it is 13.65%. For d = 0.85·m, the mean average improvement
of MAGRASP+HC+PR over GRASPFFR is 88.20% whereas for MAGRASP+HC+PR

over GRASPMou it is 2.55%. It is notable that the performance of GRASPFFR

substantially degrades in this case for d = 0.85 · m, that is, the most re-
stricted scenario. The heuristic fitness function used by MAGRASP+HC+PR

and GRASPMou seems to be able to cope with this situation better.
The results of the Aligned Friedman Rank Test for these instances are

shown in Table 10 (distributed according to χ2 with 2 degrees of freedom:
652.29). The p-value calculated by this test is p = 2.54 · 10−10, and this
provides evidence for rejecting the null hypothesis that states equality of
rankings between the populations. The results of post-hoc procedures com-
paring the control algorithm (MAGRASP+HC+PR) with those remaining are
shown in Table 11 as adjusted p-values. The null hypothesis that states
equality between the distributions obtained by the control algorithm and the
other compared algorithms was rejected by all procedures for all algorithms
(results are statistically significant).

5. Conclusions

The FFMSP is a SSP of enormous difficulty, whose resolution demands
the use of powerful heuristics. We have proposed a memetic algorithm to
this end. Our MA has successfully integrated different metaheuristic com-
ponents, namely, GRASP for population initialization, path relinking for
recombination and hill climbing for local improvement, into an evolutionary
search engine. A careful sensitivity analysis of the MA indicates that from a
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Table 9: Results obtained by MAGRASP+HC+PR, GRASPFFR and GRASPMou for very
large real instances. We have considered 9 datasets, each one comprising 5 different in-
stances. Instances on each dataset are characterized by a number of strings (n) of the
same length (m) and a distance threshold (d). Table shows mean solution obtained by
each algorithm (sol), along with statistical values (mean (µ) and standard deviation (σ))
for relative percentage distance (RPD) from best solutions of results obtained by each
algorithm. For GRASPFFR and GRASPMou algorithms, mean improvement percentage
of solutions (imp.%) obtained by MAGRASP+HC+PR with respect to the ones obtained by
these algorithms is also shown.

MAGRASP+HC+PR GRASPFFR GRASPMou

d n m sol. RPD µ± σ sol. RPD µ± σ imp.% sol. RPD µ± σ imp.%
0.75 ·m 400 1600 400.00 0.00 ± 0.00 399.94 0.02 ± 0.06 0.02 400.00 0.00 ± 0.00 0.00

400 2400 400.00 0.00 ± 0.00 399.98 0.01 ± 0.03 0.01 400.00 0.00 ± 0.00 0.00
400 3200 400.00 0.00 ± 0.00 399.91 0.02 ± 0.07 0.02 400.00 0.00 ± 0.00 0.00

0.80 ·m 400 1600 131.70 4.55 ± 2.31 112.80 18.76 ± 6.69 14.21 115.28 16.38 ± 2.74 11.83
400 2400 143.12 5.34 ± 3.25 119.22 22.64 ± 11.44 17.30 118.99 20.88 ± 4.48 15.54
400 3200 134.94 7.58 ± 3.43 102.35 30.43 ± 6.45 22.85 114.83 21.15 ± 3.82 13.58

0.85 ·m 400 1600 22.42 9.01 ± 5.88 0.61 97.51 ± 2.44 88.50 21.76 11.69 ± 5.70 2.67
400 2400 20.67 13.21 ± 5.91 0.16 99.31 ± 1.59 86.10 20.20 15.20 ± 5.67 1.99
400 3200 18.18 9.97 ± 5.76 0.00 100.00 ± 0.00 90.03 17.58 12.98 ± 5.62 2.98

Table 10: Results for the Aligned Friedman Rank Test on very large real instances for
MAGRASP+HC+PR and different state-of-the-art algorithms.

position algorithm ranking

1st MAGRASP+HC+PR 725.28
2nd GRASPMou 1307.96
3rd GRASPFFR 2018.26

Table 11: Adjusted p-values for N × 1 comparisons of control algorithm
(MAGRASP+HC+PR) with different state-of-the-art algorithms for the Aligned Friedman
Rank Test on very large real instances.
algorithm Bonf Holm Hoch Homm Holl Rom Finn Li

GRASPFFR 7.06E-271 7.06E-271 7.06E-271 7.06E-271 0.0 7.06E-271 0.0 7.06E-271
GRASPMou 2.56E-56 1.28E-56 1.28E-56 1.28E-56 0.0 1.28E-56 0.0 1.28E-56

global perspective this full-fledged memetic approach (i) exhibits a statisti-
cally significant superiority to versions in which some of the components are
substituted by standard operators, and (ii) provides better results when the
population initialization is done with more intensive (i.e. higher greediness)
GRASP. The comparison with state-of-the-art algorithms from Mousavi et al.
(2012) and Ferone et al. (2013) is also favorable to the MA, which provides
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average improvements of 8% and 74%, respectively on the hardest random
problem instances and of 8% and 60% on the hardest real-world instances.
Statistical tests confirm the significance of these improvements.

Future work will be directed towards testing the scalability of the MA.
For this purpose, we will consider the use of parallel versions of the tech-
nique. We also plan to transfer design ideas to related SSPs, in particular
to distinguishing SSPs, leading to the actual application of the technique in
practical bioinformatic problems.
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