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1 Introduction and historical notes

The generic denomination of ‘Memetic Algorithms’ (MAs) is used to encompass a broad class of
metaheuristics (i.e. general purpose methods aimed to guide an underlying heuristic). The method
is based on a population of agents and proved to be of practical success in a variety of problem
domains and in particular for the approximate solution of NP Optimization problems.

Unlike traditional Evolutionary Computation (EC) methods, MAs are intrinsically concerned
with exploiting all available knowledge about the problem under study. The incorporation of prob-
lem domain knowledge is not an optional mechanism, but a fundamental feature that characterizes
MAs. This functioning philosophy is perfectly illustrated by the term “memetic”. Coined by R.
Dawkins [52], the word ‘meme’ denotes an analogous to the gene in the context of cultural evolution
[154]. In Dawkins’ words:

“Examples of memes are tunes, ideas, catch-phrases, clothes fashions, ways of making
pots or of building arches. Just as genes propagate themselves in the gene pool by leaping
from body to body via sperms or eggs, so memes propagate themselves in the meme pool
by leaping from brain to brain via a process which, in the broad sense, can be called
imitation.”

This characterization of a meme suggest that in cultural evolution processes, information is not
simply transmitted unaltered between individuals. In contrast, it is processed and enhanced by
the communicating parts. This enhancement is accomplished in MAs by incorporating heuristics,
approximation algorithms, local search techniques, specialized recombination operators, truncated
exact methods, etc. In essence, most MAs can be interpreted as a search strategy in which a
population of optimizing agents cooperate and compete [169]. The success of MAs can probably
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be explained as being a direct consequence of the synergy of the different search approaches they
incorporate.

The most crucial and distinctive feature of MAs, the inclusion of problem knowledge mentioned
above, is also supported by strong theoretical results. As Hart and Belew [88] initially stated
and Wolpert and Macready [224] later popularized in the so-called No-Free-Lunch Theorem, a
search algorithm strictly performs in accordance with the amount and quality of the problem
knowledge they incorporate. This fact clearly underpins the exploitation of problem knowledge
intrinsic to MAs. Given that the term hybridization [42] is commonly used to denote the process
of incorporating problem knowledge, it is not surprising that MAs are sometimes called ‘Hybrid
Evolutionary Algorithms’ [51] as well. One of the first algorithms to which the MA label was
assigned dates from 1988 [169], and was regarded by many as a hybrid of traditional Genetic
Algorithms (GAs) and Simulated Annealing (SA). Part of the initial motivation was to find a way
out of the limitations of both techniques on a well-studied combinatorial optimization problem the
MIN EUCLIDEAN TRAVELING SALESMAN problem (MIN ETSP). According to the authors, the
original inspiration came from computer game tournaments [96] used to study “the evolution of
cooperation” [6] (see also [171] and [164] for more recent theoretical results in this field). That
approach had several features which anticipated many current algorithms in practice today. The
competitive phase of the algorithm was based on the new allocation of search points in configuration
phase, a process involving a “battle” for survival followed by the so-called “clonation”, which has a
strong similarity with the more recent ‘go with the winners’ algorithms [4] [182]. The cooperative
phase followed by local search may be better named “go-with-the-local-winners” since the optimizing
agents were arranged with a topology of a two dimensional toroidal lattice. After initial computer
experiments, an insight was derived on the particular relevance that the “spatial” organization,
when coupled with an appropriate set of rules, had for the overall performance of population search
processes. A few months later, Moscato and Norman discovered that they shared similar views with
other researchers [157] [74] and other authors proposing “island models” for GAs. Spacialization is
now being recognized as the “catalyzer” responsible of a variety of phenomena [164] [163]. This is
an important research issue, currently only understood in a rather heuristic way. However, some
proper undecidability results of have been obtained for related problems [80] giving some hope to
a more formal treatment.

Less than a year later, in 1989, Moscato and Norman identified several authors who were also
pioneering the introduction of heuristics to improve the solutions before recombining them [158]
[73] (see other references and the discussion in [154]). Particularly coming from the GA field,
several authors were introducing problem-domain knowledge in a variety of ways. In [154] the
denomination of ‘memetic algorithms’ was introduced for the first time. It was also suggested that
cultural evolution can be a better working metaphor for these metaheuristics to avoid “biologically
constrained” thinking that was restricting progress at that time.

Ten years later, albeit unfortunately under different names, MAs have become an important
optimization approach, with several successes in a variety of classical NP—hard optimization prob-
lems. We aim to provide an updated and self-contained introduction to MAs, focusing on their
technical innards and formal features, but without loosing the perspective of their practical appli-
cation and open research issues.

2 Memetic Algorithms

Before proceeding to the description of MAs, it is necessary to provide some basic concepts and
definitions. Several notions introduced in the first subsection are strongly related to the field of
computational complexity. Nevertheless, they may be presented in a slightly different way and pace
for the sake of the subsequent development. These basic concepts will give rise to the notions of
local search and population-based search, upon which MAs are founded. This latter class of search



settles the scenario for recombination, a crucial mechanism in the functioning of MAs that will be
studied to some depth. Finally, some guidelines for designing MAs will be presented.

2.1 Basic Concepts

An algorithm is a detailed step-by-step procedure for solving a computational problem. A compu-
tational problem P denotes a class of algoritmically-doable tasks, and it has an input domain set of
instances denoted Ip. For each instance z € Ip, there is an associated set solp(x) which denotes
the feasible solutions for problem P given instance z. The set solp(x) is also known as the set of
acceptable or valid solutions.

We are expected to deliver an algorithm that solves problem P; this means that our algorithm,
given instance z € Ip, must return at least one element y from a set of answers ansp(x) (also
called given solutions) that satisfies the requirements of the problem. This is the first design issue
to face. To be precise, depending on the kind of answers expected, computational problems can be
classified into different categories; for instance:

e finding all solutions in solp(z), i.e., enumeration problems.
e counting how many solutions exist in solp(x), i.e. counting problems.
e determining whether the set solp(x) is empty or not, i.e., decision problems.

e finding a solution in solp(z) maximizing or minimizing a given function, i.e., optimization
problems.

In this chapter, we will focus on the last possibility, that is, a problem will be considered
solved by finding a certain feasible solution, i.e. either finding an optimal y € solp(x) or giving
an indication that no such feasible solution exists. It is thus convenient in may situations to
define a Boolean feasibility function feasiblep(x,y) in order to identify whether a given solution
y € ansp(z) is acceptable for an instance x € Ip of a computational problem P, i.e., checking if
y € solp(x).

An algorithm is said to solve problem P if it can fulfill this condition for any given instance
x € Ip. This definition is certainly too broad, so a more restrictive characterization for our
problems of interest is necessary. This characterization is provided by restricting ourselves to the so-
called combinatorial optimization problems . These constitute a special subclass of computational
problems in which for each instance x € Ip:

e the cardinality of solp(x) is finite.

e cach solution y € solp(x) has a goodness integer value mp(y,x), obtained by means of an
associated objective function mp.

e a partial order <p is defined over the set of goodness values returned by the objective function,
allowing determining which of two goodness values is preferable.

An instance x € Ip of a combinatorial optimization problem P is solved by finding the best
solution y* € solp(z), i.e., finding a solution y* such that no other solution y <p y* exists if solp(x)
is not empty. It is very common to have <p defining a total order. In this case, the best solution
is the one that maximizes (or minimizes) the objective function.

As an example of a combinatorial optimization problem consider the 0-1 MULTIPLE KNAPSACK
PrOBLEM (0-1 MKP). Each instance x of this problem is defined by a vector of profits V =
{vo, - ,vn—1}, a vector of capacities C = {cp,---,cm—1}, and a matrix of capacity constraints
M ={m;; :0<i<m, 0<j<n}. Intuitively, the problem consists in selecting a set of objects



so as to maximize the profit of this set without violating the capacity constraints. If the objects are
indexed with the elements of the set N,, = {0,1,---,n — 1}, the answer set ansp(z) for an instance
z is simply the power set of N,,, that is, each subset of N,, is a possible answer. Furthermore,
the set of feasible answers solp(x) is composed of those subsets whose incidence vector B verifies
M- B < C'". Finally, the objective function is defined as mp(y,z) = >, i, i.e., the sum of profits
for all selected objects, being the goal to maximize this value.

Notice that, associated with a combinatorial optimization problem, we can define its decisional
version. To formulate the decision problem, an integer goodness value K is considered, and instead
of trying to find the best solution of instance x, we ask whether x has a solution whose goodness
is equal or better than K. In the above example, we could ask whether a feasible solution y exists
such that its associated profit is equal or better than K.

2.2 Search Landscapes

As mentioned above, having defined the concept of combinatorial optimization problem the goal
is finding at least one of the optimal solutions for a given instance. For this purpose, a search
algorithm must be used. Before discussing search algorithms, three entities must be discussed.
These are the search space, the neighborhood relation, and the guiding function. It is important
to consider that, for any given computational problem, these three entities can be instantiated in
several ways, giving rise to different optimization tasks.

Let us start by defining the concept of search space for a combinatorial problem P. To do so,
we consider a set Sp(x), whose elements have the following properties:

e Each element s € Sp(x) represents at least one answer in ansp(z).

e For decision problems: at least one element of solp(z) that stands for a ‘Yes’ answer must be
represented by one element in Sp(x).

e For optimization problems: at least one optimal element y* of solp(x) is represented by one
element in Sp(z).

Each element of Sp(x) will be termed a configuration, being related to an answer in ansp(z) by a
growth function g : Sp(z) — ansp(z). Note that the first requirement refers to ansp(z) and not to
solp(x), i.e., some configurations in the search space may correspond to infeasible solutions. Thus,
the search algorithm may need being prepared to deal with this fact. If these requirements have
been achieved, we say that we have a valid representation or valid formulation of the problem. For
simplicity, we will just write S to refer to Sp(z) when x and P are clear from the context. People
using biologically-inspired metaphors like to call Sp(x) the genotype space and ansp(z) denotes
the phenotype space, so we appropriately refer to g as the growth function.

To illustrate this notion of search space, consider again the case of the 0-1 MKP. Since solutions
in ansp(x) are subsets of N,,, we can define the search space as the set of n-dimensional binary
vectors. Each vector will represent the incidence vector of a certain subset, i.e., the growth function
g is defined as g(s) = g(bob1 - - - bp—1) = {i | b; = 1}. As mentioned above, many binary vectors may
correspond to infeasible sets of objects. Another possibility is defining the search space as the set
of permutations of elements in N,, [77]. In this case, the growth function may consist of applying a
greedy construction algorithm [45], considering objects in the order provided by the permutation.
Unlike the binary search space previously mentioned, all configurations represent feasible solutions
in this case.

The role of the search space is to provide a “ground” on while the search algorithm will act, and
of course, indirectly moving in the image set ansp(x). Important properties of the search space that
affect the dynamics of the search algorithm are related with the accessibility relationships between
the configurations. These relationships are dependent of a neighborhood function N : S — 2. This
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function assigns to each element s € S a set N'(s) C S of neighboring configurations of s. The set
N (s) is called the neighborhood of s and each member s’ € N (s) is called a neighbor of s.

It must be noted that the neighborhood depends on the instance, so the notation N (s) is a
simplified form of Np(s,z) since it is clear from the context. The elements of N (s) need not be
listed explicitly. In fact, it is very usual to define them implicitly by referring to a set of possible
moves, which define transitions between configurations. Moves are usually defined as “local”
modifications of some part of s, where “locality” refers to the fact that the move is done on a single
solution to obtain another single solution. This “locality”, is one of the key ingredients of local
search, and actually it has also given the name to the whole search paradigm.

As examples of concrete neighborhood definitions, consider the two representations of solutions
for the 0-1 MKP presented above. In the first case (binary representation), moves can be defined
as changing the values of a number of bits. If just one bit is modified at a time, the resulting
neighborhood structure is the n-dimensional binary hypercube. In the second case (permutation
representation), moves can be defined as the interchange of two positions in the permutation. Thus,
two configurations are neighboring if, and only if, they differ in exactly two positions.

This definition of locality presented above is not necessarily related to “closeness” under some
kind of distance relationship between configurations (except in the tautological situation in which
the distance between two configurations s and s’ is defined as the number of moves needed to
reach s’ from s). As a matter of fact, it is possible to give common examples of very complex
neighborhood definitions unrelated to intuitive distance measures.

An important feature that must be considered when selecting the class of moves to be used in
the search algorithm is its “ergodicity”, that is the ability, given any s € S to find a sequence of
moves that can reach all other configuration s’ € S. In many situations, this property is self-evident
and no explicit demonstration is required. It is important since even if having a valid representation
(recall the definition above), it is necessary to guarantee that a priori at least one optimal solution is
reachable from any given initial solution. Again, consider the binary representation of solutions for
a 0-1 MKP instance. If moves are defined as single bit-flips, it is easily seen that any configuration
s’ can be reached from another configuration s in exactly h moves, where h is the Hamming distance
between these configurations. This is not always the case though.

The last entity that must be defined is the guiding function. To do so, we require a set F whose
elements are termed fitness values (typically F = R), and a partial order <z on F (typically, but
not always, <z=<). The guiding function is defined as a function F : S — F that associates to
each configuration s € S a value Fy(s) that assesses the quality of the solution. The behavior of
the search algorithm will be “controlled” by these fitness values.

Notice that for optimization problems there is an obvious direct connection between the guiding
function Fy; and the objective function mp. As a matter of fact, it is very common to enforce
this relationship to the point that both terms are usually considered equivalent. However, this
equivalence is not necessary and, in many situations, not even desirable. For decision problems,
since a solution is a ‘Yes’ or ‘No’ answer, associated guiding functions usually take the form of
distance to satisfiability.

A typical example is the BOOLEAN SATISFIABILITY PROBLEM, i.e., determining whether a
Boolean expression in conjunctive normal form is satisfiable. In this case, solutions are assignments
of Boolean values to variables, and the objective function mp is a binary function returning 1 if the
solution satisfies the Boolean expression, and returning 0 otherwise. This objective function could
be used as guiding function. However, a much more typical choice is to use the number of satisfied
clauses in the current configuration as guiding function, i.e., Fy(s) =Y, fi(s), the sum over clauses
indexes 7 of f;(s), defined as f;(s) = 0 for a yet unsatisfied clause i, and f;(s) = 1 if the clause i is
satisfied. Hence, the goal is to maximize this number. Notice that the guiding function is in this
case the objective function of the associated NP Optimization problem called MAX SAT.

The above differentiation between objective function and guiding function is also very important



in the context of constrained optimization problems, i.e., problems for which, in general, solp(x)
is chosen to be a proper subset of ansp(z). Since the growth function establishes a mapping from
S to ansp(x), the search algorithm might need processing both feasible solutions (whose goodness
values are well-defined) and infeasible solutions (whose goodness values are ill-defined in general).
In many implementations of MAs for these problems, a guiding function is defined as a weighted
sum of the value of the objective function and the distance to feasibility (which accounts for the
constraints). Typically, a higher weight is assigned to the constraints, so as to give preference to
feasibility over optimality. Several other remedies to this problem abound, including resorting to
multi-objective techniques.

The combination of a certain problem instance and the three entities defined above induces
a so-called fitness landscape [106]. Essentially, a fitness landscape can be defined as a weighted
digraph, in which the vertices are configurations of the search space S, and the arcs connect
neighboring configurations. The weights are the difference of the guiding function of the endpoint
configurations. The search can thus be seen as the process of “navigating” the fitness landscape
using the information provided by the guiding function. This is a very powerful metaphor; it allows
interpreting in terms of well-known topographical objects such as peaks, wvalleys, mesas, etc, of
great utility to visualize the search progress, and to grasp factors affecting the performance of
the process. In particular, the important notion of local optimum is associated to this definition
of fitness landscape. To be precise, a local optimum is a vertex of the fitness landscape whose
guiding function value is better than the values of all its neighbors. Notice that different moves
define different neighborhoods and hence different fitness landscapes, even when the same problem
instance is considered. For this reason, the notion of local optimum is not intrinsic to a problem
instance as it is, sometimes, erroneously considered.

2.3 Local vs. Population-Based Search

The definitions presented in the previous subsection naturally lead to the notion of local search
algorithm. A local search algorithm starts from a configuration sy € S, generated at random or
constructed by some other algorithm. Subsequently, it iterates using at each step a transition based
on the neighborhood of the current configuration. Transitions leading to preferable (according to
the partial order <) configurations are accepted, i.e., the newly generated configuration turns to
be the current configuration in the next step. Otherwise, the current configuration is kept. This
process is repeated until a certain termination criterion is met. Typical criteria are the realization
of a pre-specified number of iterations, not having found any improvement in the last m iterations,
or even more complex mechanisms based on estimating the probability of being at a local optimum
[44].

Due to these characteristics, the approach is metaphorically called “hill climbing”. The whole
process is sketched in Fig. 1.

The selection of the particular type of moves (also known as mutation in the context of GAs)
to use does certainly depend on the specific characteristics of the problem and the representation
chosen. There is no general advice for this, since it is a matter of the available computer time for the
whole process as well as other algorithmic decisions that include ease of coding, etc. In some cases
some moves are conspicuous, for example it can be the change of the value of one single variable or
the swap of the values of two different variables. Sometimes the “step” may also be composed of a
chain of transitions. For instance, in relation with MAs, Radcliffe and Surry introduced the concept
of Binomial Minimal Mutation, where the number of mutations to perform is selected according
to certain binomial distribution [189]. In the context of fitness landscapes, this is equivalent to a
redefinition of the neighborhood relation, considering two configurations as neighbors when there
exists a chain of transitions connecting them.

Local search algorithms are thus characterized by keeping a single configuration at a time.



Procedure Local-Search-Engine (current)
begin
repeat
new «— GenerateNeighbor(current);
if (Fy(new) <7 Fy(current)) then
current < new;
endif
until TerminationCriterion();
return current;
end

Figure 1: A Local Search Algorithm

The immediate generalization of this behavior is the simultaneous maintenance of k, (k > 2)
configurations. The term population-based search algorithms has been coined to denote search
techniques behaving this way.

The availability of several configurations at a time allows the use of new powerful mechanisms for
traversing the fitness landscape in addition to the standard mutation operator. The most popular of
these mechanisms, the recombination operator, will be studied in more depth in the next section.
In any case, notice that the general functioning of population-based search techniques is very
similar to the pseudocode depicted in Fig. 1. As a matter of fact, a population-based algorithm
can be imagined as a procedure in which we sequentially visit vertices of a hypergraph. Each
vertex of the hypergraph represents a set of configurations in Sp(z), i.e., a population. The next
vertex to be visited, i.e., the new population, can be established according to the composition of the
neighborhoods of the different transition mechanisms used in the population algorithm. Despite the
analogy with local search, it is widely accepted in the scientific literature to apply the denomination
‘local’ just to one-configuration-at-a-time search algorithms. For this reason, the term ‘local’ will
be used with this interpretation in the remainder of the article.

2.4 Recombination

As mentioned in the previous section, local search is based on the application of a mutation operator
to a single configuration. Despite the apparent simplicity of this mechanism, “mutation-based”
local search has revealed itself a very powerful mechanism for obtaining good quality solutions for
N'P—hard problems (e.g., see [62] [199]). For this reason, some researchers have tried to provide
a more theoretically-solid background to this class of search. In this line, it is worth mentioning
the definition of the Polynomial Local Search class (PLS) by Johnson et al. [104]. Basically, this
complexity class comprises a problem and an associated search landscape such that we can decide
in polynomial time if we can find a better solution in the neighborhood. Unfortunately, it is very
likely that no N'P—hard problem is contained in class PLS, since that would imply that N'P=co-
NP [226], a conjecture usually assumed to be false. This fact has justified the quest for additional
search mechanisms to be used as stand-alone operators or as complements to standard mutation.

In this line, recall that population-based search allowed the definition of generalized move
operators termed recombination operators. In essence, recombination can be defined as a process
in which a set Sy, of n configurations (informally referred to as “parents”) is manipulated to create
a set Sgese C solp(x) of m new configurations (informally termed “descendants”). The creation
of these descendants involves the identification and combination of features extracted from the
parents.

At this point, it is possible to consider properties of interest that can be exhibited by recombina-



tion operators [189]. The first property, respect, represents the exploitative side of recombination.
A recombination operator is said to be respectful, regarding a particular type of features of the
configurations, if, and only if, it generates descendants carrying all basic features common to all
parents. Notice that, if all parent configurations are identical, a respectful recombination operator
is obliged to return the same configuration as a descendant. This property is termed purity, and
can be achieved even when the recombination operator is not generally respectful.

On the other hand, assortment represents the exploratory side of recombination. A recombina-
tion operator is said to be properly assorting if, and only if, it can generate descendants carrying
any combination of compatible features taken from the parents. The assortment is said to be weak
if it is necessary to perform several recombinations within the offspring to achieve this effect.

Finally, transmission is a very important property that captures the intuitive role of recombina-
tion. An operator is said to be transmitting if every feature exhibited by the offspring is present in
at least one of the parents. Thus, a transmitting recombination operator combines the information
present in the parents but does not introduce new information. This latter task is usually left
to the mutation operator. For this reason, a non-transmitting recombination operator is said to
introduce implicit mutation.

The three properties above suffice to describe the abstract input/output behaviour of a recom-
bination operator regarding some particular features. It provides a characterization of the possible
descendants that can be produced by the operator. Nevertheless, there exist other aspects of the
functioning of recombination that must be studied. In particular, it is interesting to consider how
the construction of Sy, is approached.

First of all, a recombination operator is said to be blind if it has no other input than Sy, i.e., it
does not use any information from the problem instance. This definition is certainly very restrictive,
and hence is sometimes relaxed as to allow the recombination operator use information regarding
the problem constraints (so as to construct feasible descendants), and possibly the fitness values of
configurations y € Spqr (so as to bias the generation of descendants to the best parents). A typical
example of a blind recombination operator is the classical Uniform crossover [209]. This operator
is defined on search spaces S = X", i.e., strings of n symbols taken from an alphabet . The
construction of the descendant is done by randomly selecting at each position one of the symbols
appearing in that position in any of the parents. This random selection can be totally uniform
or can be biased according to the fitness values of the parents as mentioned before. Furthermore,
the selection can be done so as to enforce feasibility (e.g., consider the binary representation of
solutions in the 0-1 MKP). Notice that, in this case, the resulting operator is neither respectful
nor transmitting in general.

The use of blind recombination operators has been usually justified on the grounds of not
introducing excessive bias in the search algorithm, thus preventing extremely fast convergence to
suboptimal solutions. This is questionable though. First, notice that the behaviour of the algorithm
is in fact biased by the choice of representation and the mechanics of the particular operators.
Second, there exist widely known mechanisms (e.g., spatial isolation) to hinder these problems.
Finally, it can be better to quickly obtain a suboptimal solution and restart the algorithm than
using blind operators for a long time in pursuit of an asymptotically optimal behaviour (not even
guaranteed in most cases).

Recombination operators that use problem knowledge are commonly termed heuristic or hy-
brid. In these operators, problem information is utilized to guide the process of constructing the
descendants. This can be done in a plethora of ways for each problem, so it is difficult to pro-
vide a taxonomy of heuristic recombination operators. Nevertheless, there exist two main aspects
into which problem knowledge can be injected: the selection of the parental features that will
be transmitted to the descendant, and the selection of non-parental features that will be added
to it. A heuristic recombination operator can focus in one of these aspects, or in both of them
simultaneously.



As an example of heuristic recombination operator focused in the first aspect, Dynastically
Optimal Recombination (DOR) [43] must be mentioned. This operator explores the dynastic
potential set (i.e. possible children) of the configurations being recombined, so as to find the best
member of this set (notice that, since configurations in the dynastic potential are entirely composed
of features taken from any of the parents, this is a transmitting operator). This exploration is done
using a subordinate A* algorithm in order to minimize the cost of traversing the dynastic potential.
The goal of this operator is thus finding the best combination of parental features giving rise to a
feasible child. Hence, this operator is monotonic in the sense that any child generated is at least
as good as the best parent.

Examples of heuristic recombination operators concentrating on the selection of non-parental
features, one can cite the patching-by-forma-completion operators proposed by Radcliffe and Surry
[188]. These operators are based on generating an incomplete child using a non-heuristic procedure
(e.g., the RAR,, operator [187]), and then completing the child either using a local hill climbing
procedure restricted to non-specified features (locally optimal forma completion) or a global search
procedure that finds the globally best solution carrying the specified features (globally optimal
forma completion). Notice the similarity of this latter approach with DOR.

Finally, there exist some operators trying to exploit knowledge in both of the above aspects. A
distinguished example is the Edge Assembly Crossover (EAX) [162]. EAX is a specialized operator
for the TSP (both for symmetric and asymmetric instances) in which the construction of the child
comprises two-phases: the first one involves the generation of an incomplete child via the so-called
E-sets (subtours composed of alternating edges from each parent); subsequently, these subtours
are merged into a single feasible subtours using a greedy repair algorithm. The authors of this
operator reported impressive results in terms of accuracy and speed. It has some similarities with
the recombination operator proposed in [155].

A final comment must be made in relation to the computational complexity of recombination.
It is clear that combining the features of several solutions is in general computationally more
expensive than modifying a single solution (i.e. a mutation). Furthermore, the recombination
operation will be usually invoked a large number of times. For this reason, it is convenient (and
in many situations mandatory) to keep it at a low computational cost. A reasonable guideline
is to consider an O(N log N) upper bound for its complexity, where N is the size of the input
(the set Spqr and the problem instance z). Such limit is easily affordable for blind recombination
operators, being the term crossover a reasonable name conveying the low complexity (yet not
always used in this context) of these. However, this limit can be relatively astringent in the case of
heuristic recombination, mainly when epistasis (non-additive inter-feature influence on the fitness
value) is involved. This admits several solutions depending upon the particular heuristic used.
For example, DOR has exponential worst case behavior, but it can be made affordable by picking
larger pieces of information from each parents (the larger the size of these pieces of information, the
lower the number of them needed to complete the child) [46]. In any case, consider that heuristic
recombination operators provide better solutions than blind recombination operators, and hence
they need not be invoked the same number of times.

2.5 Designing a Memetic Algorithm

In light of the above considerations, it is possible to provide a general template for a memetic
algorithm. As mentioned in Subsect. 2.3, this template is very similar to that of a local search
procedure acting on a set of |pop| > 2 configurations. This is shown in Fig. 2:

This template requires some explanation. First of all, the GeneratelnitialPopulation procedure
is responsible for creating the initial set of |pop| configurations. This can be done by simply
generating |pop| random configurations or by using a more sophisticated seeding mechanism (for
instance, some constructive heuristic), by means of which high-quality configurations are injected



Procedure Population-Based-Search-Engine
begin
Initialize pop using GeneratelnitialPopulation();
repeat
newpop < GenerateNewPopulation(pop);
pop — UpdatePopulation (pop, newpop)
if pop has converged then
pop — RestartPopulation(pop);
endif
until TerminationCriterion()
end

Figure 2: A Population-Based Search Algorithm

in the initial population [208] [130]. Another possibility, the Local-Search-Engine presented in
Subsect. 2.3 could be used as shown in Fig. 3:

Procedure GeneratelnitialPopulation
begin
Initialize pop using EmptyPopulation();
parfor j «— 1 to popsize do
i «+— GenerateRandomConfiguration();
i < Local-Search-Engine (i);
InsertInPopulation individual ¢ to pop;
endparfor
return pop
end

Figure 3: Injecting high-quality solutions in the initial population.

As to the TerminationCriterion function, it can be defined very similarly to the case of Local
Search, i.e., setting a limit on the total number of iterations, reaching a maximum number of
iterations without improvement, or having performed a certain number of population restarts, etc.

The GenerateNewPopulation procedure is the core of the memetic algorithm. Essentially, this
procedure can be seen as a pipelined process comprising n,, stages. Each of these stages consists
of taking arityfn configurations from the previous stage, generating aritygut new configurations by
applying an operator op’. This pipeline is restricted to have am'tyiln = popsize. The whole process
is sketched in Fig. 4:

This template for the GenerateNewPopulation procedure is usually instantiated in GAs by
letting n,, = 3, using a selection, a recombination, and a mutation operator. Traditionally, mu-
tation is applied after recombination, i.e., on each child generated by the recombination operator.
However, if a heuristic recombination operator is being used, it may be more convenient to apply
mutation before recombination. Since the purpose of mutation is simply to introduce new features
in the configuration pool, using it in advance is also possible. Furthermore, the smart feature
combination performed by the heuristic operator would not be disturbed this way.

This situation is slightly different in MAs. In this case, it is very common to let n,, = 5, inserting
a Local-Search-Engine right after applying op? and op* (respectively recombination and mutation).
Due to the local optimization performed after mutation, applying the latter after recombination is
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Procedure GenerateNewPopulation (pop)
begin
buf fer® «— pop;
parfor j < 1 to n,, do
Initialize buf fer’ using EmptyPopulation();
endparfor
parfor j < 1 to n,, do
Sgar « ExtractFromBuffer (bufferi—! aritygn);
Séesc « ApplyOperator (op/, nga);
for z — 1 to aritygut do
InsertInPopulation individual Sée 12| to buf ferd:
endfor
endparfor;
return buf fer™or
end

Figure 4: The pipelined GenerateNewPopulation procedure.

not as problematic as in GAs.

The UpdatePopulation procedure is used to reconstruct the current population using the old
population pop and the newly generated population newpop. Borrowing the terminology from
the evolution strategy [194, 202] community, there exist two main possibilities to carry on this
reconstruction: the plus strategy and the comma strategy. In the former, the current population
is constructed taken the best popsize configurations from pop U newpop. As to the latter, the best
popsize configurations are taken just from newpop. In this case, it is required to have |[newpop| >
popsize, so as to put some selective pressure on the process (the bigger the |newpop|/posize ratio,
the stronger the pressure). Otherwise, the search would reduce to a random wandering through S.

There are a number of studies regarding appropriate choices for the UpdatePopulation procedure
(e.g., [9] [78]). As a general guideline, the comma strategy is usually regarded as less prone to
stagnation, being the ratio |newpop|/posize ~ 6 a common choice [8]. Nevertheless, this option can
be somewhat computationally expensive if the guiding function is complex and time-consuming.
Another common alternative is using a plus strategy with a low value of |newpop|, analogous to
the so-called steady-state replacement strategy in GAs [222]. This option usually provides a faster
convergence to high-quality solutions. However, care has to be taken with premature convergence
to suboptimal regions of the search space, i.e., all configurations in the population being very similar
to each other, hence hindering the exploration of other regions of S.

The above consideration about premature convergence leads to the last component of the tem-
plate shown in Fig. 2, the restarting procedure. First of all, it must be decided whether the
population has degraded or has not. To do so, it is possible to use some measure of information
diversity in the population such as Shannon’s entropy [50]. If this measure falls below a predefined
threshold, the population is considered at a degenerate state. This threshold depends upon the
representation (number of values per variable, constraints, etc.) and hence must be determined
in an ad-hoc fashion. A different possibility is using a probabilistic approach to determine with a
desired confidence that the population has converged. For example, in [99] a Bayesian approach is
presented for this purpose.

Once the population is considered to be at a degenerate state, the restart procedure is invoked.
Again, this can be implemented in a number of ways. A very typical strategy is keeping a fraction
of the current population (this fraction can be as small as one solution, the current best), and
substituting the remaining configurations with newly generated (from scratch) solutions, as shown
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in Fig. 5:

Procedure RestartPopulation (pop)
begin
Initialize newpop using EmptyPopulation();
#preserved < popsize - Yopreserve;
for j «— 1 to #preserved do
i «— ExtractBestFromPopulation(pop);
InsertInPopulation individual ¢ to newpop;
endfor
parfor j «— #preserved + 1 to popsize do
i « GenerateRandomConfiguration();
i «— Local-Search-Engine (7);
InsertInPopulation individual ¢ to newpop;
endparfor;
return newpop
end

Figure 5: The RestartPopulation procedure.

The procedure shown in Fig. 5 is also known as the random-immigrant strategy [38]. A different
possibility is activating a strong or heavy mutation operator in order to drive the population
away from its current location in the search space. = Both options have their advantages and
disadvantages. For example, when using the random-immigrant strategy, one has to take some
caution to prevent the preserved configurations to take over the population (this can be achieved
by putting a low selective pressure, at least in the first iterations after the restarting). As to the
heavy mutation strategy, one has to achieve a tradeoff between an excessively strong mutation that
would destroy any information contained in the current population, and a not so strong mutation
that would cause the population to converge again in a few iterations.

3 Applications of Memetic Algorithms

This section will provide an overview of the numerous applications of MAs. This overview is far
from exhaustive since new applications are being developed continuously. However, it is intended
to be illustrative of the practical impact of these optimization techniques.

3.1 Traditional NP Optimization problems

Traditional NP Optimization problems constitute one of the most typical battlefields of MAs.
A remarkable history of successes has been reported with respect to the application of MAs to
NP—hard problems such as the following: GRAPH PARTITIONING [18] [19] [139] [142] [143], MIN
NUMBER PARTITIONING [14], MAX INDEPENDENT SET [2] [90] [200], BIN-PACKING [195], MIN
GRrAPH COLORING [41] [64] [60] [39], SET COVERING [11], SINGLE MACHINE SCHEDULING WITH
SETUP-TIMES AND DUE-DATES [119] [65] [146], PARALLEL MACHINE SCHEDULING [33] [35] [148]
[135], MIN GENERALISED ASSIGNMENT [36], MULTIDIMENSIONAL KNAPSACK [45] [12] [77], NON-
LINEAR INTEGER PROGRAMMING [210] QUADRATIC ASSIGNMENT [17] [29] [137] [142] [141], SET
PARTITIONING [120], and particularly on the MIN TRAVELLING SALESMAN PROBLEM [73] [75] [156]
[189] [67] [66] [76] [138] [110] [97] [142].

Regarding the theory of N'P-Completeness, most of them can be cited as “classical” as they
appeared in Karp’s notorious paper [108] on the reducibility of combinatorial problems. Remark-
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ably, in most of them the authors claim that they have developed the best heuristic for the problem
at hand. This is important since these problems have been addressed with several with different
approaches from the combinatorial optimization toolbox and almost all general-purpose algorithmic
techniques have been tested on them.

3.2 Other Combinatorial Optimization Problems

The MA paradigm is not limited to the above mentioned classical problems. There exist additional
“non-classical” combinatorial optimization problems of similar or higher complexity in whose reso-
lution MAs have revealed themselves as outstanding techniques. As an example of these problems,
one can cite partial shape matching [176], Kauffman NK Landscapes [140], spacecraft trajectory
design [48], frequency allocation [109], multiperiod network design [69], degree-constrained mini-
mum spanning tree problem [190], uncapacitated hub location [1], placement problems [201] [98]
[115], vehicle routing [101] [102], transportation problems [71] [170], task allocation [86], mainte-
nance scheduling [25] [26] [27], open shop scheduling [63] [34] [124], flowshop scheduling [159] [160]
[30], project scheduling [168] [191] [177], warehouse scheduling [216], production planning [57] [149],
timetabling [128] [20] [179] [192] [151] [152] [21] [22] [24] [23] [180], rostering [153] [53], and sport
games scheduling [40].

Obviously, this list is by no means complete since its purpose is simply to document the wide
applicability of the approach for combinatorial optimization.

3.3 Machine Learning and Robotics

Machine learning and robotics are two closely related fields since the different tasks involved in
the control of robots are commonly approached using artificial neural networks and/or classifier
systems. MAs, generally cited as “genetic hybrids” have been used in both fields, i.e., in general
optimization problems related to machine learning (for example, the training of artificial neural
networks), and in robotic applications. With respect to the former, MAs have been applied to
neural network training [155] [227] [212] [100], pattern recognition [3], pattern classification [113]
[145], and analysis of time series [173].

As to the application of MAs to robotics, work has been done in reactive rulebase learning in
mobile agents [47], path planning [172] [225] [183], manipulator motion planning [197], time optimal
control [31], etc.

3.4 Electronics and Engineering

Electronics and engineering are also two fields in which these methods have been actively used. For
example, with regard to engineering problems, work has been done in the following areas: structure
optimization [228], system modeling [215], aeronautic design [186] [16], trim loss minimization
[174], traffic control [205], and power planning [213]. As to practical applications in the field of
electronics, the following list can illustrate the numerous areas in which these techniques have been
utilized: semiconductor manufacturing [111], circuit design [87] [83] [220], computer aided design
[13], multilayered periodic strip grating [7], analogue network synthesis [81], and service restoration

[5].
3.5 Molecular Optimization Problems

We have selected this particular class of computational problems, involving nonlinear optimization
issues, to help the reader to identify a common trend in the literature. Unfortunately, the authors
continue referring to their technique as ‘genetic’, although they are closer in spirit to MAs [94].
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The Caltech report that gave its name to the, at that time incipient, field of MAs [154] discussed
a metaheuristic which can be viewed as a hybrid of GAs and SA developed with M.G. Norman in
1988. In recent years, several papers applied hybrids of GAs with SA or other methods to a variety
of molecular optimization problems [178] [230] [204] [203] [129] [10] [54] [221] [107] [123] [82] [117]
[105] [231] [49] [147] [59] [136] [131] [211] [68]. Hybrid population approaches like this can hardly
be catalogued as being ‘genetic’, but this denomination has appeared in previous work by Deaven
and Ho [55] and then cited by J. Maddox in Nature [132]. Other fields of application include cluster
physics [167]. Additional work has been done in [184] [93] [185] [221] [92] [56]. Other evolutionary
approaches to a variety of molecular problems can be found in: [214] [193] [59] [144] [134] [91] [89].
Their use for design problems is particularly appealing [107] [223] [37]. They have also been applied
in protein design [58] [118], probably due to energy landscape structure associated with proteins
(see the discussion in [155] and the literature review in [94]).

3.6 Other Applications

In addition to the application areas described above, MAs have been also utilized in other fields such
as, for example, medicine [217] [85] [84], economics [122] [175], oceanography [161], mathematics
[218] [196] [219], imaging science and speech processing [133] [28] [114] [198] [229], etc.

For further information about MA applications we suggest querying bibliographical databases
or web browsers for the keywords ‘memetic algorithms’ and ‘hybrid genetic algorithm’. We have
tried to be illustrative rather than exhaustive, pointing out some selected references for well-known
application areas. This means that, with high probability, many important contributions may have
been inadvertently left out.

4 Future Directions

The future seems promising for MAs. This is the combination of several factors. First, MAs (less
frequently disguised under different names) are showing a remarkable record of efficient implemen-
tations, providing very good results in practical problems. Second, there are reasons to believe
that some new attempts to do theoretical analysis can be conducted. This includes the worst-case
and average-case computational complexity of recombination procedures. Third, the ubiquitous
nature of distributed systems, like networks of workstations for example, plus the inherent asyn-
chronous parallelism of MAs and the existence of web-conscious languages like Java; all together
are an excellent combination to develop highly portable and extendable object-oriented frameworks
allowing algorithmic reuse. These frameworks might allow the users to solve subproblems using
commercial codes or well-tested software from other users who might be specialists in the other
area. Our current work on the MemePool Project goes in that direction. Fourth, an important
and pioneering group of MAs, that of Scatter Search, is challenging the role of randomization in
recombination. We expect that, as a healthy reaction, we will soon see new types of powerful MAs
that blend in a more appropriate way both exhaustive (either truncated or not) and systematic
search methods.

4.1 Lessons learned

In 1998, Applegate, Bixby, Cook, and Chvatal established new breakthrough results for the MIN
TSP. Interestingly enough, this work supports our view that MAs will have a central role as a
problem solving methodology. For instance, this research team solved to optimality an instance
of the TSP of 13,509 cities corresponding to all U.S. cities with populations of more than 500
people!. The approach, according to Bixby: “..involves ideas from polyhedral combinatorics and

1See: http://www.crpc.rice.edu/CRPC/newsArchive/tsp.html
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combinatorial optimization, integer and linear programming, computer science data structures and
algorithms, parallel computing, software engineering, numerical analysis, graph theory, and more”.
The solution of this instance demanded the use of three Digital AlphaServer 4100s (with a total of
12 processors) and a cluster of 32 Pentium-II PCs. The complete calculation took approximately
three months of computer time. The code has certainly more than 1,000 pages and is based on
state-of-the-art techniques from a wide variety of scientific fields.

The philosophy is the same of MAs, that of a synergy of different approaches. However, due to a
comment by Johnson and McGeoch ([103], page 301), we previously suggested that the connection
with MAs might be stronger since there is an analogy with multi-parent recombination. In a recent
unpublished manuscript, “Finding Tours in the TSP”, by the same authors (Bixby et al.), available
from their web site, this suspicion has been now confirmed. They present results on running an
optimal algorithm for solving the MIN WEIGHTED HAMILTONIAN CYCLE PROBLEM in a subgraph
formed by the union of 25 Chained Lin-Kernighan tours. The approach consistently finds the
optimal solution to the original MIN TSP instances with up to 4461 cities. They also attempted
to apply this idea to an instance with 85,900 cities (the largest instance in TSPLIB) and from that
experience they convinced themselves that it also works well for such large instances.

Their approach can possibly be classified as the most complex MA ever built for a given combi-
natorial optimization problem. One of the current challenges is to develop simpler algorithms that
achieve these impressive results.

The approach of running a local search algorithm (Chained Lin Kernighan) to produce a collec-
tion of tours, following by the dynastical-optimal recombination method the authors named tour
merging gave a non-optimal tour of only 0.0002 % excess above the proved optimal tour for the
13,509 cities instance. We take this as a clear proof of the benefits of the MA approach and that
more work is needed in developing good strategies for complete memetic algorithms, i.e. those
that systematically and synergistically use randomized and deterministic methods and can prove
optimality.

4.2 Computational complexity of recombination problems

An interesting new direction for theoretical research arose after the introduction of two compu-
tational complexity classes, the PMA class (for Polynomial Merger Algorithms problems) and its
unconstrained analogue, the uPMA class. We note that the dynastical optimal recombination, as
it was the tour merging procedure just discussed, can lead to solving another N"P-hard problem of
a smaller size. To try to avoid intractability of the new subproblem generated, we may wish to
find interesting cases with worst-case polynomial time complexity for the generated subproblem,
yet helpful towards the primary goal of solving the original optimization problem. Having these
ideas in mind we will discuss two recently introduced computational complexity classes.

We will define the classes PMA and uPMA by referring to three analogous algorithms to the
ones that define the class of Polynomial Local Search problems (PLS). These definitions (specially
for PMA) are particularly dependent on an algorithm called k-merger, that will help to formalize
the notion of recombination of a set of k given solutions, as generally used by most MAs (as well
as other population approaches). The input of a k-merger algorithm is a set Sy, of k > 2 feasible
solutions, so Sper C solp(z) They can be informally called “parent” solutions and, if successful, the
k-merger delivers as output at least one feasible solution. For the uPMA class the construction of
the new solution is less restricted than for PMA. In general, recombination processes can be very
complex with many side restrictions involving the detection, the preservation or avoidance, and the
feasible combination of features already present in the parent solutions.

Definition (uPMA). Let z be an instance of an optimization problem P. With M p(Spr, ) C
solp(x) we denote the set of all possible outputs that the k-merger algorithm can give if it receives
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as input the pair (Sper, z) for problem P. (Note that the set Mp(Spqer, x) generalizes the idea of
dynastic potential for more than two parents [43]).

A recombination problem P/M belongs to uPMA if there exist three polynomial-time algo-
rithms p-starter, p'-evaluator, and k-merger (where p, p’ and k are integer numbers such that
p' > p >k > 2) that satisfy the following properties:

e Given an input x (formally a string € {0,1}*), the p-starter determines whether z € Ip and
in this case produces a set of p different feasible solutions {y1,¥y2,...,yp} C solp(x).

e Given an instance x € Ip and an input (formally a string € {0,1}*), the p’-evaluator deter-
mines whether this input represents a set of feasible solutions, i.e. {y1,y2,...,yy} C solp(x)
and in that case it computes the value of the objective function associated to each one of
them, i.e. mp(y;,2),Vj=1,...,p.

e Given an instance x € Ip and a set of k feasible solutions Sy, C solp(x), the k-merger
determines whether the set Sy, is a k-merger optimum, and, if it is not, it outputs at least
one feasible solution y' € M p(Spar, z) with strictly better value of mp.

Analogously, the PMA class is more restricted since it embodies a particular type of recombi-
nation. For uPMA the type of recombination is implicit in the way the group neighborhood M
is defined. However, the definition for PMA is still general enough to encompasses most of the
recombination procedures used in practical population-based approaches.

Definition (PMA). A recombination problem P/M belongs to PMA if there exist three
polynomial-time algorithms p-starter, p’-evaluator, and k-merger (where p, p’ and k are integer
numbers such that p’ > p > k > 2), such that the p-starter and p'-evaluator satisfy the same
properties required by the uPMA class but the k-merger is constrained to be of a particular type,
ie.:

e Given an instance x € Ip and a set of k feasible solutions Sy, C solp(x), the k-merger

determines whether the set Sy, is a k-merger optimum, and, if it is not, it does the following:

— For each y € Spqr, it solves ny polynomial-time decision problems {II;(y),...,II,, (y)}.
Let D be a matrix of k x ny Boolean coefficients formed by the output of all these
decision problems, i.e. D;; = II;(y;).

— It creates a set of ny constraints C, such that C' can be partitioned in two subsets, i.e.
C = C;, U Cyy. Each constraint ¢ € C' is represented by a predicate m. such that its
associated decision problem II.(y) can be solved in polynomial-time for all y € solp(x).
Any predicate 7. is a polynomial-time computable function that has as input the Boolean
matrix D and the instance z. It is required that at least one predicate 7 to be a non-
constant function of at least two different elements of Spar.

— It outputs at least one offspring, i.e. another feasible solution y' € Mp(Spar, z) with
strictly better value of mp, (i.e. mp(y', z) < maz {mp(y1,x),mp(y2,),...,mp(yg, x) }
for a minimization problem, and mp(y', ) > min {mp(y1,z), mp(y2,x),...,mp(yr, z) }
for a maximization problem) subject to

max (Y w)-( Y w)] (1)

/ l
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where w, is an integer weight associated to constraint c.
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Current research is being conducted to identify problems, and their associated recombination
procedures, such that membership, in either PMA or uPMA, can be proved. It is also hoped that
after some initial attempts on challenging problems completeness and reductions for the classes can
be properly defined.

4.3 Exploiting fixed-parameter tractability results

An interesting new avenue of research can be established by appropriately linking results from the
theory of fixed-parameter tractability and the development of recombination algorithms. This is
an avenue that goes both ways. On one direction, efficient, (i.e. polynomial-time), fixed-parameter
algorithms can be used as “out of the bor” tools to create efficient recombination procedures.
They can be used as dynastical optimal recombination procedures or k-merger algorithms. On
the opposite direction, since MAs are typically designed to deal with large instances and scale
pretty well with their size, using both techniques together can produce complete MAs allowing to
extend the benefits of fixed-parameter tractability. ; From a software engineering perspective, the
combination is perfect both from code and algorithmic reuse.

A parameterized problem can be generally viewed as a problem that has as input two compo-
nents, i.e. a pair (x,k). The former is generally an instance (i.e. € Ip) of some other decision
problem P and the latter is some numerical aspect of the former (generally a positive integer as-
sumed k < |z]) that constitutes a parameter. For a maximization (resp. minimization) problem P,
the induced language Lp(param) is the parameterized language consisting of all pairs (z, k) where
xz € Ip and OPT(x) > k (resp. OPT(x) < k). If there exists an algorithm solving Lp(param) in
time O(f(k)|x|®), where |z| is a measure of the instance size, f(k) an arbitrary function depending
on k only, and « a constant independent of k or n, the parameterized problem is said to be fized-
parameter tractable and the language recognition problem belongs to the computational complexity
class FPT.

To illustrative on this topic, we can discuss one of the most emblematic FPT problems:

VERTEX COVER (FIXED PARAMETER, DECISION VERSION)

Instance: A graph G(V, E).

Parameter: A positive integer k.

Question: Is there a set V' C V, such that for every edge (u,v) € E, at least u or v is a
member of V' and |[V'| <k ?

In general, efficient FPT algorithms are based on the techniques of reduction to a problem
kernel and bounded search trees. To understand the techniques, the reader may check a method
by Chen, Kanj, and Yia [32]. This method can solve the parameterized version of vertex cover in
time O(1.271’“k2 + kn). However, using this method together with the speed-up method proposed
by Neidermeier and Rossmanith [166], the problem can be solved in O(1.271% 4+ n), i.e. linear in n.

The definition of the FPT class allows f(k) to grow arbitrarily fast. For the parameterized
version of PLANAR DOMINATING SET the best known algorithm has f(k) = 11%, but for other
problems, like VERTEX COVER this situation is not that dramatic. In addition, the new general
method to improve FPT algorithms that run on time O(q(k)3* 4+ p(n)) (where p and ¢ are polyno-
mials and (3 is a small constant) has been developed by Niedermeier and Rossmanith [166]. Their
method interleaves the reduction to a problem kernel and bounded search methods. If it is the case
that 3" is the size of the bounded search tree and q(k) is the size of the problem kernel, the new
technique is able to get rid of the ¢(k) factor allowing the algorithm to be O(B* + p(n)). Another
problem that belongs to the FPT class is:

HiTTING SET FOR SIZE THREE SETS (FIXED PARAMETER, DECISION VERSION)
Instance: A collection C of subsets of size three of a finite set S.
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Parameter: A positive integer k.
Question: Is there a subset S" C S, with |S’| < k which allows S’ contain at least one element
from each subset in C' 7

It can be seen as a generalization of the VERTEX COVER problem for hypergraphs, where there
is an hyperedge between three vertices (instead of only two as in VERTEX COVER), and the task
is to find a minimal subset of vertices covering all edges. Recently, Niedermeier and Rossmanith
have presented an algorithm that solves this problem in time O(2.311% 4 n) [165]. We leave as
an exercise to the reader the task of finding recombination operators that take advantage of this
algorithm. We also leave as an exercise the following, “is it possible to use the O(2.311F + n) to
construct a k-merger algorithm for the optimization problem MIN 3-HITTING SET that satisfies the
criteria required by the PMA and uPMA definitions ?2”

4.4 Addition of negative knowledge

During the past five years, the addition of problem-dependent knowledge to enhance population-
based approaches received a renewed interest among MAs researchers [189, 2, 70, 82, 12, 19, 204].
Earlier papers had emphasized the relevance [79, 125, 207, 154] of this issue, as well as Lawrence
Davis from his numerous writings, also supported this idea when there was still not such a consensus,
and many researchers were skeptical about their central role.

However, as many other things, the addition of problem-dependent, and instance-dependent
knowledge can be addressed in different ways. Today, it is reasonable to continue finding new ways
to incorporate negative knowledge in MAs. It is also challenging to find ways of extracting (or we
may better say induce), “negative knowledge” from the current population of solutions. We quote
M. Minsky [150]:

“We tend to think of knowledge in positive terms — and of experts as people who know
what to do. But a ‘negative’ way to seem competent is, simply, never to make mistakes.”

This is what heuristics do best, reducing the computational effort by radically changing the
search space, so certainly there is no paradox here. Most heuristics, however, have a “positive
bias”. For instance, in [181] we can read:

“The strategy developed by Lin [126] for the TSP is to obtain several local optima and
then identify edges that are common to all of them. These are then fized, thus reducing
the time to find more local optima. This idea is developed further in [127] and [72].”

Curiously enough, although this strategy has been around for more than three decades it is
hardly accepted by some researchers regardless all empirical evidence of the benefits of MAs that
exploit, by using recombination, the correlation of highly evolved solutions [112] [154] [157] [155]
[15] [142].

Already recognized by R. Hofmann in 1993, there is a certain curious asymmetry in this strat-
egy. We tend to think of common edges as pieces of “positive” information to be passed on between
generations. However, after a few generations of an MA, a highly evolved (yet still diverse) popu-
lation, might consistently avoid certain edges. What is the population of agents “suggesting” about
these edges ? For instance, given an edge, we can define two tours as being equivalent if they both
contain the edge, but also they can be defined equivalent if both do not. Hofmann recognized this
duality and came with the denomination of negative edge formae for the latter induced equivalence
class, that describes the set of tours that do not share this particular edge (see [95], page 35).

At this point it is important to distinguish knowledge from belief. Formally, knowledge is
generally defined as a true belief, for instance “agent a knows ¢ if a believes ¢ and ¢ is true”. So a
way of adding knowledge to the agents is to actually to attempt to prove things the agents believe.
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For instance, if we are trying to solve an Euclidean 2-dimensional instance of the MIN TSP, it is
always the case that the optimal tour must not have two crossing edges. This is a true fact that can
be proven with a theorem. Since 2-opt moves can efficiently remove crossing edges with the aid of
associate data structures and range queries, all agents in an MAs generally have it incorporated in
their local search methods. However, it is also the case that other predicates, involving more than
two edges, can be proved in all circumstances for the optimal tour (i.e. a predicate that is always
true for all instances under consideration), yet not efficient associated local search methods have
been found. This said, we envision that given an optimization with only one objective function, we
might use methods from multi-objective MAs, using as auxiliary objective functions the number
of violations of over a set of properties that the optimal solution should have. Research in this
direction is also under way.

4.5 Guided Memetic Algorithms

In [181] we can read:

“As is common with heuristics, one can also argue for exactly the opposite idea. Once
such common features are detected, they are forbidden rather than fized. This justifi-
cation is the following: If we fear that the global optimum is escaping us, this could be
because our heuristic is “fooled” by this tempting features. Forbidding them could finally
put us on the right track towards the global optimum. This is called denial in [206].”

We also envision that future generations of MAs will work in at least two levels and two
time scales. During the short-time scale, a set of agents would be searching in the search space
associated to the problem. This is what most MAs do today. However, a long-time scale would
adapt the algorithms associated with the agents. Here we encompass all of them, the individual
search strategies, the recombination operators, etc. For instance, an MA that uses guided local
search for an adaptive strategy has been proposed in [97]. Recombination operators with different
(rebel, obsequent, and conciliator behaviors) were introduced in [14]. We think that these new
promising directions need to be investigated, providing adaptive recombination mechanisms that
take information of the progress of the current population. Moreover, it is intriguing the idea of
using a combination of deterministic search procedures with a stochastic MA. The combination of
both would help to systematically explore sub-regions of the search space and guarantee a coverage
that currently is only left to some random procedure that aim to diversify the search (like the
so-called heavy mutation procedures).

4.6 Modal logics for M As and Belief Search

As alogical consequence of the possible directions that MAs can take, it is reasonable to affirm that
more complex schemes evolving solutions, agents, as well as representations, will soon be imple-
mented. Some theoretical computer science researchers dismiss heuristics and metaheuristics since
they are not coordinated as a formal paradigm. However, their achievements are well-recognized.
From [121]:

“Fxplaining and predicting the impressive empirical success of some of these algorithms
is one of the most challenging frontiers of the theory of computation today.”

This comment is even more relevant for MAs since they generally present even better results
than single-agent methods. Though metaheuristics are extremely powerful in practice, we agree
that one problem with the current trend of applied research is that it allows the introduction
of increasingly more complex heuristics, unfortunately most of the time parameterized by ad-hoc
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numbers. Moreover, some metaheuristics, like some ant-systems implementations, can basically be
viewed as particular types of MAs. This is the case if you allow the “ants” to use branch-and-bound
or local search methods. In addition, these methods for distributed recombination of information
(or beliefs) have some points in common with blackboard systems [61], as it has been recognized in
the past yet it is hardly being mentioned in the current metaheuristics literature.

To illustrate how Belief Search can work in an MA setting, we will use an illustrative example.
Let’s assume that the formula B¢ has the following meaning “agent i believes with strength (at
least) a that ¢ is true”, such that the strength values a are restricted to be rational numbers in [0,1].
Let’s also suppose we accept as an axiom that from 1 being true we can deduce B4 for all i. Now
let’s suppose that our agents are trying to solve a MIN TSP and that the particular instance being
considered is Euclidean and two-dimensional. Let ¢j, represent the proposition “edge ey is present
in the optimum tour” and let x;; be true if edges e;, and ¢; cross each other, and false otherwise.
It can be proved that for such type of instances “if edges ex and e; cross each other, then ey and
e; can not both be present in the optimal tour”. Then we can assume that this is known by all
agents, and by the previous axiom we can deduce that agent 2 now believes B?(xx,; — —(¢r A ¢1))-
Now let’s suppose that agent 1 believes, with strength 0.4, that “either edge e or e, but not both,
is present in the optimal tour”. We will represent this as B} ;. We will not enter into the
discussion of how that agent reached that belief and we take it as a fact. Now let us suppose that
another agent believes, at a level 0.7 that x; — ¢, then we write B%,?(Xk,l — ¢,1). Note that
this kind of assumption confuses our common sense, since in general we do not see any relationship
between the fact that two edges cross and that we can deduce that as a consequence one of them
should be present in the optimum tour. However, note that agent 3 believes in this relationship
(at a 0.7 level) for a particular pair of edges e and e;. Now, what can we say about the distributed
belief of this group of three agents 7 How can we recombine this information 7

According to PLY, a multi-agent epistemic logic recently introduced by Boldrin and Saffiotti,
the opinions shared by different a set of n agents can be recombined in a distributed belief. Using
PLY we can deduce Dggadr,;. The distributed belief about proposition ¢k, is stronger than any
individual belief about it, and is even stronger than what you would get if any agent would believe
the three facts.

4.7 The MemePool Project: our meeting place for algorithm and knowledge
reuse

As we have said before, we believe that these different research directions can blend together and
make an outstanding contribution when used in combination.

One interesting example of these new MAs, is a recent work by Lamma, Pereira, and Riguzzi
[116] applied to the field of diagnosing digital circuits. In their approach, they differentiate between
genes and “memes”. The latter group codes for the agents beliefs and assumptions. Using a logic-
based technique, they modify the memes according on how the present beliefs are contradicted by
integrity constraints that express observations and laws. Each agent keeps a population of chro-
mosomes and finds a solution to the belief revision problem by means of a genetic algorithm. A
Lamarckian operator is used to modify a chromosome using belief revision directed mutations, ori-
ented by tracing logical derivations. As a consequence, a chromosome will satisfy a larger number of
constraints. The evolution provided by the Darwinian operators, allow agents to improve the chro-
mosomes by gaining on the experience of other agents. Central to this approach is the Lamarckian
operator appropriately called Learn. It takes a chromosome and produces a revised chromosome
as output. To achieve that, it eliminates some derivation paths that reach to contradictions.

Surprisingly enough (and here we remark the first possibility of using the theory of fized-
parameter tractability), the learning is achieved by finding a hitting set which is not necessarily
minimal. The authors make clear this point by saying that: “a hitting set generated from these
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support sets is not necessarily a contradiction removal set and therefore is not a solution to the
belief revision problem.” The authors might not be aware of the O(2.311% 4 n) exact algorithm for
MiN 3-HITTING SET. They might be able to use it, but that is anecdotal at the moment. What
it is important to remark is that algorithms like this one might be used out-of-the-boz if a proper,
world-wide based, algorithmic framework were created.

On the other hand, we remarked how results of logic programming and belief revision may help
the current status of metaheuristics. The current situation where everybody comes with new names
for the same basic techniques, and most contributions are just the addition of new parameters to
guide the search, is a futile research direction. It may be possible, that belief search guided MAs can
be a valid tool to help systematize the scenario. In particular, if the discussion is based on which
multi-agent logic performs better rather than which parameters work better for specific problems
or instances. Towards that end, we hope to convince researchers in logic programming to start to
address these issues, challenging them with the task of guiding MAs for large-scale combinatorial
optimization. The MemePool Project? seems to be a good scenario for such an interdisciplinary and
international enterprise. Whether it will work or not relies more on our ability to work cooperatively
more than anything else.
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